Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Mo-CBP3, an Antifungal Chitin-Binding Protein from Moringa oleifera Seeds, Is a Member of the 2S Albumin Family 
PLoS ONE  2015;10(3):e0119871.
Mo-CBP3 is a chitin-binding protein from M. oleifera seeds that inhibits the germination and mycelial growth of phytopathogenic fungi. This protein is highly thermostable and resistant to pH changes, and therefore may be useful in the development of new antifungal drugs. However, the relationship of MoCBP3 with the known families of carbohydrate-binding domains has not been established. In the present study, full-length cDNAs encoding 4 isoforms of Mo-CBP3 (Mo-CBP3-1, Mo-CBP3-2, Mo-CBP3-3 and Mo-CBP3-4) were cloned from developing seeds. The polypeptides encoded by the Mo-CBP3 cDNAs were predicted to contain 160 (Mo-CBP3-3) and 163 amino acid residues (Mo-CBP3-1, Mo-CBP3-2 and Mo-CBP3-4) with a signal peptide of 20-residues at the N-terminal region. A comparative analysis of the deduced amino acid sequences revealed that Mo-CBP3 is a typical member of the 2S albumin family, as shown by the presence of an eight-cysteine motif, which is a characteristic feature of the prolamin superfamily. Furthermore, mass spectrometry analysis demonstrated that Mo-CBP3 is a mixture of isoforms that correspond to different mRNA products. The identification of Mo-CBP3 as a genuine member of the 2S albumin family reinforces the hypothesis that these seed storage proteins are involved in plant defense. Moreover, the chitin-binding ability of Mo-CBP3 reveals a novel functionality for a typical 2S albumin.
PMCID: PMC4366206  PMID: 25789746
2.  New Insights into the Structure and Mode of Action of Mo-CBP3, an Antifungal Chitin-Binding Protein of Moringa oleifera Seeds 
PLoS ONE  2014;9(10):e111427.
Mo-CBP3 is a chitin-binding protein purified from Moringa oleifera Lam. seeds that displays inhibitory activity against phytopathogenic fungi. This study investigated the structural properties and the antifungal mode of action of this protein. To this end, circular dichroism spectroscopy, antifungal assays, measurements of the production of reactive oxygen species and microscopic analyses were utilized. Mo-CBP3 is composed of 30.3% α-helices, 16.3% β-sheets, 22.3% turns and 30.4% unordered forms. The Mo-CBP3 structure is highly stable and retains its antifungal activity regardless of temperature and pH. Fusarium solani was used as a model organism for studying the mechanisms by which this protein acts as an antifungal agent. Mo-CBP3 significantly inhibited spore germination and mycelial growth at 0.05 mg.mL−1. Mo-CBP3 has both fungistatic and fungicidal effects, depending on the concentration used. Binding of Mo-CBP3 to the fungal cell surface is achieved, at least in part, via electrostatic interactions, as salt was able to reduce its inhibitory effect. Mo-CBP3 induced the production of ROS and caused disorganization of both the cytoplasm and the plasma membrane in F. solani cells. Based on its high stability and specific toxicity, with broad-spectrum efficacy against important phytopathogenic fungi at low inhibitory concentrations but not to human cells, Mo-CBP3 has great potential for the development of new antifungal drugs or transgenic crops with enhanced resistance to phytopathogens.
PMCID: PMC4210214  PMID: 25347074
3.  Antifungal Activity of Naphthoquinoidal Compounds In Vitro against Fluconazole-Resistant Strains of Different Candida Species: A Special Emphasis on Mechanisms of Action on Candida tropicalis 
PLoS ONE  2014;9(5):e93698.
In recent decades, the incidence of candidemia in tertiary hospitals worldwide has substantially increased. These infections are a major cause of morbidity and mortality; in addition, they prolong hospital stays and raise the costs associated with treatment. Studies have reported a significant increase in infections by non-albicans Candida species, especially C. tropicalis. The number of antifungal drugs on the market is small in comparison to the number of antibacterial agents available. The limited number of treatment options, coupled with the increasing frequency of cross-resistance, makes it necessary to develop new therapeutic strategies. The objective of this study was to evaluate and compare the antifungal activities of three semisynthetic naphthofuranquinone molecules against fluconazole-resistant Candida spp. strains. These results allowed to us to evaluate the antifungal effects of three naphthofuranquinones on fluconazole-resistant C. tropicalis. The toxicity of these compounds was manifested as increased intracellular ROS, which resulted in membrane damage and changes in cell size/granularity, mitochondrial membrane depolarization, and DNA damage (including oxidation and strand breakage). In conclusion, the tested naphthofuranquinones (compounds 1–3) exhibited in vitro cytotoxicity against fluconazole-resistant Candida spp. strains.
PMCID: PMC4015898  PMID: 24817320
4.  Clinical-Epidemiological Features of 13 Cases of Melioidosis in Brazil 
Journal of Clinical Microbiology  2012;50(10):3349-3352.
The aim of this work was to catalog the clinical and ecoepidemiological characteristics of melioidosis in Brazil. The clinical-epidemiological features of melioidosis in Ceará are similar to those in other regions where the disease is endemic. These findings support the inclusion of this Brazilian state as part of the zone of endemicity for melioidosis.
PMCID: PMC3457459  PMID: 22814457
5.  Swine and Poultry Pathogens: the Complete Genome Sequences of Two Strains of Mycoplasma hyopneumoniae and a Strain of Mycoplasma synoviae†  
Vasconcelos, Ana Tereza R. | Ferreira, Henrique B. | Bizarro, Cristiano V. | Bonatto, Sandro L. | Carvalho, Marcos O. | Pinto, Paulo M. | Almeida, Darcy F. | Almeida, Luiz G. P. | Almeida, Rosana | Alves-Filho, Leonardo | Assunção, Enedina N. | Azevedo, Vasco A. C. | Bogo, Maurício R. | Brigido, Marcelo M. | Brocchi, Marcelo | Burity, Helio A. | Camargo, Anamaria A. | Camargo, Sandro S. | Carepo, Marta S. | Carraro, Dirce M. | de Mattos Cascardo, Júlio C. | Castro, Luiza A. | Cavalcanti, Gisele | Chemale, Gustavo | Collevatti, Rosane G. | Cunha, Cristina W. | Dallagiovanna, Bruno | Dambrós, Bibiana P. | Dellagostin, Odir A. | Falcão, Clarissa | Fantinatti-Garboggini, Fabiana | Felipe, Maria S. S. | Fiorentin, Laurimar | Franco, Gloria R. | Freitas, Nara S. A. | Frías, Diego | Grangeiro, Thalles B. | Grisard, Edmundo C. | Guimarães, Claudia T. | Hungria, Mariangela | Jardim, Sílvia N. | Krieger, Marco A. | Laurino, Jomar P. | Lima, Lucymara F. A. | Lopes, Maryellen I. | Loreto, Élgion L. S. | Madeira, Humberto M. F. | Manfio, Gilson P. | Maranhão, Andrea Q. | Martinkovics, Christyanne T. | Medeiros, Sílvia R. B. | Moreira, Miguel A. M. | Neiva, Márcia | Ramalho-Neto, Cicero E. | Nicolás, Marisa F. | Oliveira, Sergio C. | Paixão, Roger F. C. | Pedrosa, Fábio O. | Pena, Sérgio D. J. | Pereira, Maristela | Pereira-Ferrari, Lilian | Piffer, Itamar | Pinto, Luciano S. | Potrich, Deise P. | Salim, Anna C. M. | Santos, Fabrício R. | Schmitt, Renata | Schneider, Maria P. C. | Schrank, Augusto | Schrank, Irene S. | Schuck, Adriana F. | Seuanez, Hector N. | Silva, Denise W. | Silva, Rosane | Silva, Sérgio C. | Soares, Célia M. A. | Souza, Kelly R. L. | Souza, Rangel C. | Staats, Charley C. | Steffens, Maria B. R. | Teixeira, Santuza M. R. | Urmenyi, Turan P. | Vainstein, Marilene H. | Zuccherato, Luciana W. | Simpson, Andrew J. G. | Zaha, Arnaldo
Journal of Bacteriology  2005;187(16):5568-5577.
This work reports the results of analyses of three complete mycoplasma genomes, a pathogenic (7448) and a nonpathogenic (J) strain of the swine pathogen Mycoplasma hyopneumoniae and a strain of the avian pathogen Mycoplasma synoviae; the genome sizes of the three strains were 920,079 bp, 897,405 bp, and 799,476 bp, respectively. These genomes were compared with other sequenced mycoplasma genomes reported in the literature to examine several aspects of mycoplasma evolution. Strain-specific regions, including integrative and conjugal elements, and genome rearrangements and alterations in adhesin sequences were observed in the M. hyopneumoniae strains, and all of these were potentially related to pathogenicity. Genomic comparisons revealed that reduction in genome size implied loss of redundant metabolic pathways, with maintenance of alternative routes in different species. Horizontal gene transfer was consistently observed between M. synoviae and Mycoplasma gallisepticum. Our analyses indicated a likely transfer event of hemagglutinin-coding DNA sequences from M. gallisepticum to M. synoviae.
PMCID: PMC1196056  PMID: 16077101

Results 1-5 (5)