Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Copy Number Variation of GSTT1 and GSTM1 and the Risk of Prostate Cancer in a Caribbean Population of African Descent 
PLoS ONE  2014;9(9):e107275.
Deletions of the glutathione S-transferase genes M1 and T1 (GSTM1 and GSTT1) have been studied as potential risk factors for prostate cancer. Conflicting results have been obtained. Moreover, most such studies could not discriminate heterozygous from homozygous carriers of the non-deleted alleles.
We investigated whether copy number variation (CNV) of the GSTM1 and/or GSTT1 genes contribute to the risk of prostate cancer in the Caribbean population of African descent of Guadeloupe.
In a population-based case-control study, we compared 629 prostate cancer patients and 622 control subjects. Logistic regression was used to estimate adjusted odds ratios (OR) and 95% confidence intervals (CI). Exact copy numbers of GSTM1 and GSTT1 were determined by real-time PCR.
A higher copy number of GSTM1 was marginally associated with prostate cancer risk. Men with 2 and 3 or more GSTT1 genes were at higher risk of prostate cancer (OR: 1.55, 95% CI: 1.11–2.16 and OR: 4.89, 95% CI: 1.71–13.99, respectively; Ptrend<0.001). Men with 3, 4 and 5 or more copies of both GSTM1 and GSTT1 genes were at higher risk of prostate cancer (OR: 2.18, 95% CI: 1.21–3.91, OR: 3.24, 95% CI: 1.63–6.46, and OR: 5.77, 95% CI: 1.40–23.84, respectively; Ptrend<0.001).
Copy number of GSTT1 and combined GSTM1/GSTT1 appear to be associated with prostate cancer risk in our population study with gene dose relationship. Our results support the hypothesis that variations in copy number of GSTT1 modulate the risk of prostate cancer.
PMCID: PMC4157893  PMID: 25198353
2.  Use of genotyping based clustering to quantify recent tuberculosis transmission in Guadeloupe during a seven years period: analysis of risk factors and access to health care 
BMC Infectious Diseases  2013;13:364.
The present study aimed to characterize Mycobacterium tuberculosis population structure and to identify transmission chains and risk factors by prospective molecular typing in conjunction with conventional epidemiological investigations in the French overseas department of Guadeloupe.
The study included all the culture-positive TB cases (1 clinical isolate per patient; n = 129) diagnosed between a seven year period (April 4th, 1999 to December 31st, 2005). Prospective molecular typing was performed using spoligotyping and VNTRs, and a subset of 44 M. tuberculosis isolates found to be clustered was retrospectively typed using 12-loci MIRUs. Data were compared using the SITVIT2 database, followed by analysis of risk factors in function of clustering of the isolates and available demographic and socioeconomic data.
The study sample was characterized by a majority of new cases (87.4%); a moderate proportion of drug-resistance (7.8%); a high level of immigration (51.2% foreign-born) originating from high TB/HIV incidence neighboring islands such as Haiti or Dominican Republic; lower socioeconomic conditions (70.7% of jobless, average income 824 EUR/month); and a significantly higher proportion of TB/HIV co-infected cases (38.2% vs. 8.5%; p < 0.001), and extrapulmonary disease (18.2% vs. 4.8%; p < 0.02) among migrants as compared to French patients. The study revealed an important delay in access to healthcare with a median delay of 74.5 days between the 1st symptoms and clinical suspicion of TB. Prospective molecular typing based on spoligotyping and 5-loci VNTRs showed that evolutionary recent Euro-American lineages predominated in Guadeloupe (91.5% of isolates). In conjunction with epidemiological data, it allowed to estimate a recent transmission rate of 18.6%, which was close to the rate of 16.7% estimated using retrospective 12-loci MIRU typing. Although a higher proportion of cases in older age-group were apparently linked to reactivation; univariate analysis of risk factors did not allow pinpointing specific risk factors for a patient to belong to a TB transmission group.
Ongoing TB transmission in the insular, low TB-incidence setting of Guadeloupe can be defined as follows: (i) a significant proportion of imported cases of the disease from neighboring islands; (ii) significantly higher TB/HIV coinfection among foreign-born cases; and, (iii) a higher proportion of cases affecting older age-group among French patients due to reactivation. This study emphasizes the need for universal typing using spoligotyping and 15-loci MIRUs in prospective studies.
PMCID: PMC3750484  PMID: 23914829
Mycobacterium; Tuberculosis; Transmission; Guadeloupe; Genotyping; Spoligotyping; Exact-Tandem-Repeats; Database; Drug-resistance
3.  Long-Term Population-Based Genotyping Study of Mycobacterium tuberculosis Complex Isolates in the French Departments of the Americas†  
Journal of Clinical Microbiology  2006;44(1):183-191.
The three French overseas departments of the Americas are characterized both by insular (Guadeloupe and Martinique) and continental (French Guiana) settings with a tuberculosis case detection rate that varies from less than 10 per 100,000 per year in insular areas to an estimated incidence of more than 55 per 100,000 in French Guiana. Under a long-term genotyping program, more than three-fourths of all the Mycobacterium tuberculosis isolates (n = 744) received from the three settings were fingerprinted over a 10-year period (1994 to 2003) by spoligotyping and variable number of tandem DNA repeats (VNTRs) in order to understand the current trends in their detection rates, drug resistance, and groups and subpopulations at risk of contracting the disease and to pinpoint the circulating phylogeographical clades of the bacilli. The major difference in the study populations was the nationality of the patients, with a high percentage of immigrants from high-incidence neighboring countries in French Guiana and a low but increasing percentage in the French Caribbean. The rate of recent transmission was calculated to be 49.3% in French Guiana, compared to 27.2% and 16.9% in Guadeloupe and Martinique, respectively. At the phylogeographic level, 77.9% of the isolates studied belonged to four major clades (Haarlem, Latin-American and Mediterranean, T, and X) which are already reported from neighboring Caribbean islands in an international database and may underline potential interregional transmission events.
PMCID: PMC1351934  PMID: 16390968
4.  Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology 
BMC Microbiology  2006;6:23.
The Direct Repeat locus of the Mycobacterium tuberculosis complex (MTC) is a member of the CRISPR (Clustered regularly interspaced short palindromic repeats) sequences family. Spoligotyping is the widely used PCR-based reverse-hybridization blotting technique that assays the genetic diversity of this locus and is useful both for clinical laboratory, molecular epidemiology, evolutionary and population genetics. It is easy, robust, cheap, and produces highly diverse portable numerical results, as the result of the combination of (1) Unique Events Polymorphism (UEP) (2) Insertion-Sequence-mediated genetic recombination. Genetic convergence, although rare, was also previously demonstrated. Three previous international spoligotype databases had partly revealed the global and local geographical structures of MTC bacilli populations, however, there was a need for the release of a new, more representative and extended, international spoligotyping database.
The fourth international spoligotyping database, SpolDB4, describes 1939 shared-types (STs) representative of a total of 39,295 strains from 122 countries, which are tentatively classified into 62 clades/lineages using a mixed expert-based and bioinformatical approach. The SpolDB4 update adds 26 new potentially phylogeographically-specific MTC genotype families. It provides a clearer picture of the current MTC genomes diversity as well as on the relationships between the genetic attributes investigated (spoligotypes) and the infra-species classification and evolutionary history of the species. Indeed, an independent Naïve-Bayes mixture-model analysis has validated main of the previous supervised SpolDB3 classification results, confirming the usefulness of both supervised and unsupervised models as an approach to understand MTC population structure. Updated results on the epidemiological status of spoligotypes, as well as genetic prevalence maps on six main lineages are also shown. Our results suggests the existence of fine geographical genetic clines within MTC populations, that could mirror the passed and present Homo sapiens sapiens demographical and mycobacterial co-evolutionary history whose structure could be further reconstructed and modelled, thereby providing a large-scale conceptual framework of the global TB Epidemiologic Network.
Our results broaden the knowledge of the global phylogeography of the MTC complex. SpolDB4 should be a very useful tool to better define the identity of a given MTC clinical isolate, and to better analyze the links between its current spreading and previous evolutionary history. The building and mining of extended MTC polymorphic genetic databases is in progress.
PMCID: PMC1468417  PMID: 16519816
5.  Snapshot of Moving and Expanding Clones of Mycobacterium tuberculosis and Their Global Distribution Assessed by Spoligotyping in an International Study†  
Journal of Clinical Microbiology  2003;41(5):1963-1970.
The present update on the global distribution of Mycobacterium tuberculosis complex spoligotypes provides both the octal and binary descriptions of the spoligotypes for M. tuberculosis complex, including Mycobacterium bovis, from >90 countries (13,008 patterns grouped into 813 shared types containing 11,708 isolates and 1,300 orphan patterns). A number of potential indices were developed to summarize the information on the biogeographical specificity of a given shared type, as well as its geographical spreading (matching code and spreading index, respectively). To facilitate the analysis of hundreds of spoligotypes each made up of a binary succession of 43 bits of information, a number of major and minor visual rules were also defined. A total of six major rules (A to F) with the precise description of the extra missing spacers (minor rules) were used to define 36 major clades (or families) of M. tuberculosis. Some major clades identified were the East African-Indian (EAI) clade, the Beijing clade, the Haarlem clade, the Latin American and Mediterranean (LAM) clade, the Central Asian (CAS) clade, a European clade of IS6110 low banders (X; highly prevalent in the United States and United Kingdom), and a widespread yet poorly defined clade (T). When the visual rules defined above were used for an automated labeling of the 813 shared types to define nine superfamilies of strains (Mycobacterium africanum, Beijing, M. bovis, EAI, CAS, T, Haarlem, X, and LAM), 96.9% of the shared types received a label, showing the potential for automated labeling of M. tuberculosis families in well-defined phylogeographical families. Intercontinental matches of shared types among eight continents and subcontinents (Africa, North America, Central America, South America, Europe, the Middle East and Central Asia, and the Far East) are analyzed and discussed.
PMCID: PMC154710  PMID: 12734235
6.  Molecular Characterization and Drug Resistance Patterns of Strains of Mycobacterium tuberculosis Isolated from Patients in an AIDS Counseling Center in Port-au-Prince, Haiti: a 1-Year Study 
Journal of Clinical Microbiology  2003;41(2):694-702.
Tuberculosis (TB) is one of the most common opportunistic diseases that appear among human immunodeficiency virus (HIV)-positive patients in Haiti. In this context the probable emergence of multidrug-resistant (MDR) strains of Mycobacterium tuberculosis is of great epidemiological concern. However, as routine culture of M. tuberculosis and drug susceptibility testing are not performed in Haiti, it has not been possible so far to evaluate the rate of drug resistance among M. tuberculosis isolates from circulating TB cases. This report describes the first study on the molecular typing and drug resistance of M. tuberculosis isolates from patients with culture-positive pulmonary tuberculosis monitored at the GHESKIO Centers in Haiti during the year 2000. Clinical, epidemiological, and drug susceptibility testing results were available for 157 patients with confirmed cases of TB, with a total of 8.9% of patients harboring MDR M. tuberculosis. A significant association between the occurrence of resistance and previous TB treatment was observed (P < 0.001), suggesting that a previous history of TB treatment was a risk factor associated with MDR TB in Haiti. The DNAs of individual isolates from 106 samples were available and were typed by spoligotyping and determination of the variable number of tandem DNA repeats. Both typing methods provided interpretable results for 96 isolates, and the clusters observed were further confirmed by ligation-mediated PCR to define potential cases of active transmission. Thirty-three (34%) of the isolates were found to be grouped into 11 clusters with two or more identical patterns. However, an assessment of risk factors (sex, HIV positivity, previous treatment, drug resistance) showed that none was significantly associated with the active transmission of TB. These observations suggest that acquired MDR TB is prevalent in Haiti and may be associated with compliance issues during TB treatment since prior TB therapy is the strongest risk factor associated with MDR TB. Prevention of TB transmission in Haiti should target active case investigation, routine detection of drug resistance, and adequate treatment of patients. The use of directly observed short-course therapy should be enforced throughout the country; and relapses, reactivations, or newly acquired infections should be discriminated by genotyping methods.
PMCID: PMC149692  PMID: 12574269
7.  Global Distribution of Mycobacterium tuberculosis Spoligotypes 
Emerging Infectious Diseases  2002;8(11):1347-1349.
We present a short summary of recent observations on the global distribution of the major clades of the Mycobacterium tuberculosis complex, the causative agent of tuberculosis. This global distribution was defined by data-mining of an international spoligotyping database, SpolDB3. This database contains 11,708 patterns from as many clinical isolates originating from more than 90 countries. The 11,708 spoligotypes were clustered into 813 shared types. A total of 1,300 orphan patterns (clinical isolates showing a unique spoligotype) were also detected.
PMCID: PMC2738532  PMID: 12453368
Mycobacterium tuberculosis; spoligotyping

Results 1-7 (7)