PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Geological and climatic changes in quaternary shaped the evolutionary history of Calibrachoa heterophylla, an endemic South-Atlantic species of petunia 
Background
The glacial and interglacial cycles that characterized the Quaternary greatly affected the distribution and genetic diversity of plants. In the Neotropics, few phylogeographic studies have focused on coastal species outside of the Atlantic Rainforest. Climatic and sea level changes during the Quaternary played an important role in the evolutionary history of many organisms found in coastal regions. To contribute to a better understanding of plant evolution in this environment in Southern South America, we focused on Calibrachoa heterophylla (Solanaceae), an endemic and vulnerable wild petunia species from the South Atlantic Coastal Plain (SACP).
Results
We assessed DNA sequences from two cpDNA intergenic spacers and analyzed them using a phylogeographic approach. The present phylogeographic study reveals the influence of complex geologic and climatic events on patterns of genetic diversification. The results indicate that C. heterophylla originated inland and subsequently colonized the SACP; the data show that the inland haplogroup is more ancient than the coastal one and that the inland was not affected by sea level changes in the Quaternary. The major diversification of C. heterophylla that occurred after 0.4 Myr was linked to sea level oscillations in the Quaternary, and any diversification that occurred before this time was obscured by marine transgressions that occurred before the coastal sand barrier’s formation. Results of the Bayesian skyline plot showed a recent population expansion detected in C. heterophylla seems to be related to an increase in temperature and humidity that occurred at the beginning of the Holocene.
Conclusions
The geographic clades have been formed when the coastal plain was deeply dissected by paleochannels and these correlate very well with the distributional limits of the clades. The four major sea transgressions formed a series of four sand barriers parallel to the coast that progressively increased the availability of coastal areas after the regressions and that may have promoted the geographic structuring of genetic diversity observed today. The recent population expansion for the entire species may be linked with the event of marine regression after the most recent sea transgression at ~5 kya.
doi:10.1186/1471-2148-13-178
PMCID: PMC3765879  PMID: 23987105
South-Atlantic coastal plain; Phylogeography; Pleistocene; Quaternary; Genetic diversity; Climatic changes; Petunia
2.  Phylogeny, biogeography and divergence times in Passiflora (Passifloraceae) 
Genetics and Molecular Biology  2012;35(4 Suppl):1036-1043.
As part of a long-term investigation on the evolution of Passiflora L., we investigated the divergence ages of the genus and diversification of its subgenera, relating them with biogeographical and/or historical events, and other characteristics of this taxon. The main aim of the present work was to evaluate the biogeographic distribution of this genus to better understand its evolutionary history. This is the first time that representatives from South American and Old World Passifloraceae genera have been studied as a group comprising a total of 106 widely distributed species, with representative samples of the four suggested subgenera. Seven DNA regions were studied, comprising 7,431 nucleotides from plastidial, mitochondrial and nuclear genomes. Divergence time estimates were obtained by using a Bayesian Markov Chain Monte Carlo method and a random local clock model for each partition. Three major subgenera have been shown to be monophyletic and here we are proposing to include another subgenus in the Passiflora infrageneric classification. In general, divergence among the four subgenera in Passiflora is very ancient, ranging from ∼32 to ∼38 Mya, and Passifloraceae seems to follow a biogeographic scenario proposed for several plant groups, originating in Africa, crossing to Europe/Asia and arriving in the New World by way of land bridges. Our results indicated that Passiflora ancestors arrived in Central America and diversified quickly from there, with many long distance dispersion events.
PMCID: PMC3571420  PMID: 23412994
biogeography; molecular phylogenetics analysis; passionflowers; plant evolution; taxonomic classification
3.  Isolation and Characterization of Microsatellite Markers for Passiflora contracta 
Passiflora contracta Vitta (Passifloraceae) is an endemic species of the Atlantic Rainforest, one of the most species-rich ecoregions in the world, although extremely endangered. We have developed an enriched microsatellite library in order to fine-scale studies of the genetic structure of P. contracta. Twelve pairs of microsatellite primers were designed, and seven loci were successfully amplified and characterized by genotyping two wild populations of P. contracta. All seven loci were polymorphic, with an average number of alleles found being 4.8 and 5 per population. The cross-species transferability was tested using sister species Passiflora ovalis Vell. Ex Roemer. The development of these markers will contribute to the studies of population genetics in P. contracta as well as future studies concerning diversity patterns in the Atlantic Rainforest, and may also help to establish strategies for the conservation of this species.
doi:10.3390/ijms130911343
PMCID: PMC3472749  PMID: 23109857
nuclear microsatellites; Passiflora contracta; conservation genetics
4.  Does Variation in Genome Sizes Reflect Adaptive or Neutral Processes? New Clues from Passiflora 
PLoS ONE  2011;6(3):e18212.
One of the long-standing paradoxes in genomic evolution is the observation that much of the genome is composed of repetitive DNA which has been typically regarded as superfluous to the function of the genome in generating phenotypes. In this work, we used comparative phylogenetic approaches to investigate if the variations in genome sizes (GS) should be considered as adaptive or neutral processes by the comparison between GS and flower diameters (FD) of 50 Passiflora species, more specifically, within its two most species-rich subgenera, Passiflora and Decaloba. For this, we have constructed a phylogenetic tree of these species, estimated GS and FD of them, inferred the tempo and mode of evolution of these traits and their correlations, using both current and phylogenetically independent contrasted values. We found significant correlations among the traits, when considering the complete set of data or only the subgenus Passiflora, whereas no correlations were observed within Decaloba. Herein, we present convincing evidence of adaptive evolution of GS, as well as clues that this pattern is limited by a minimum genome size, which could reduce both the possibilities of changes in GS and the possibility of phenotypic responses to environment changes.
doi:10.1371/journal.pone.0018212
PMCID: PMC3065483  PMID: 21464897
5.  The use and limits of ITS data in the analysis of intraspecific variation in Passiflora L. (Passifloraceae) 
Genetics and Molecular Biology  2010;33(1):99-108.
The discovery and characterization of informative intraspecific genetic markers is fundamental for evolutionary and conservation genetics studies. Here, we used nuclear ribosomal ITS sequences to access intraspecific genetic diversity in 23 species of the genus Passiflora L. Some degree of variation was detected in 21 of these. The Passiflora and Decaloba (DC.) Rchb. subgenera showed significant differences in the sizes of the two ITS regions and in GC content, which can be related to reproductive characteristics of species in these subgenera. Furthermore, clear geographical patterns in the spatial distribution of sequence types were identified in six species. The results indicate that ITS may be a useful tool for the evaluation of intraspecific genetic variation in Passiflora.
doi:10.1590/S1415-47572009005000101
PMCID: PMC3036088  PMID: 21637612
genetic diversity; intraspecific variability; ITS; Passiflora; phylogeography
6.  A Reevaluation of the Native American MtDNA Genome Diversity and Its Bearing on the Models of Early Colonization of Beringia 
PLoS ONE  2008;3(9):e3157.
The Americas were the last continents to be populated by humans, and their colonization represents a very interesting chapter in our species' evolution in which important issues are still contentious or largely unknown. One difficult topic concerns the details of the early peopling of Beringia, such as for how long it was colonized before people moved into the Americas and the demography of this occupation. A recent work using mitochondrial genome (mtDNA) data presented evidence for a so called “three-stage model” consisting of a very early expansion into Beringia followed by ∼20,000 years of population stability before the final entry into the Americas. However, these results are in disagreement with other recent studies using similar data and methods. Here, we reanalyze their data to check the robustness of this model and test the ability of Native American mtDNA to discriminate details of the early colonization of Beringia. We apply the Bayesian Skyline Plot approach to recover the past demographic dynamic underpinning these events using different mtDNA data sets. Our results refute the specific details of the “three-stage model”, since the early stage of expansion into Beringia followed by a long period of stasis could not be reproduced in any mtDNA data set cleaned from non-Native American haplotypes. Nevertheless, they are consistent with a moderate population bottleneck in Beringia associated with the Last Glacial Maximum followed by a strong population growth around 18,000 years ago as suggested by other recent studies. We suggest that this bottleneck erased the signals of ancient demographic history from recent Native American mtDNA pool, and conclude that the proposed early expansion and occupation of Beringia is an artifact caused by the misincorporation of non-Native American haplotypes.
doi:10.1371/journal.pone.0003157
PMCID: PMC2527677  PMID: 18797501
7.  Swine and Poultry Pathogens: the Complete Genome Sequences of Two Strains of Mycoplasma hyopneumoniae and a Strain of Mycoplasma synoviae†  
Vasconcelos, Ana Tereza R. | Ferreira, Henrique B. | Bizarro, Cristiano V. | Bonatto, Sandro L. | Carvalho, Marcos O. | Pinto, Paulo M. | Almeida, Darcy F. | Almeida, Luiz G. P. | Almeida, Rosana | Alves-Filho, Leonardo | Assunção, Enedina N. | Azevedo, Vasco A. C. | Bogo, Maurício R. | Brigido, Marcelo M. | Brocchi, Marcelo | Burity, Helio A. | Camargo, Anamaria A. | Camargo, Sandro S. | Carepo, Marta S. | Carraro, Dirce M. | de Mattos Cascardo, Júlio C. | Castro, Luiza A. | Cavalcanti, Gisele | Chemale, Gustavo | Collevatti, Rosane G. | Cunha, Cristina W. | Dallagiovanna, Bruno | Dambrós, Bibiana P. | Dellagostin, Odir A. | Falcão, Clarissa | Fantinatti-Garboggini, Fabiana | Felipe, Maria S. S. | Fiorentin, Laurimar | Franco, Gloria R. | Freitas, Nara S. A. | Frías, Diego | Grangeiro, Thalles B. | Grisard, Edmundo C. | Guimarães, Claudia T. | Hungria, Mariangela | Jardim, Sílvia N. | Krieger, Marco A. | Laurino, Jomar P. | Lima, Lucymara F. A. | Lopes, Maryellen I. | Loreto, Élgion L. S. | Madeira, Humberto M. F. | Manfio, Gilson P. | Maranhão, Andrea Q. | Martinkovics, Christyanne T. | Medeiros, Sílvia R. B. | Moreira, Miguel A. M. | Neiva, Márcia | Ramalho-Neto, Cicero E. | Nicolás, Marisa F. | Oliveira, Sergio C. | Paixão, Roger F. C. | Pedrosa, Fábio O. | Pena, Sérgio D. J. | Pereira, Maristela | Pereira-Ferrari, Lilian | Piffer, Itamar | Pinto, Luciano S. | Potrich, Deise P. | Salim, Anna C. M. | Santos, Fabrício R. | Schmitt, Renata | Schneider, Maria P. C. | Schrank, Augusto | Schrank, Irene S. | Schuck, Adriana F. | Seuanez, Hector N. | Silva, Denise W. | Silva, Rosane | Silva, Sérgio C. | Soares, Célia M. A. | Souza, Kelly R. L. | Souza, Rangel C. | Staats, Charley C. | Steffens, Maria B. R. | Teixeira, Santuza M. R. | Urmenyi, Turan P. | Vainstein, Marilene H. | Zuccherato, Luciana W. | Simpson, Andrew J. G. | Zaha, Arnaldo
Journal of Bacteriology  2005;187(16):5568-5577.
This work reports the results of analyses of three complete mycoplasma genomes, a pathogenic (7448) and a nonpathogenic (J) strain of the swine pathogen Mycoplasma hyopneumoniae and a strain of the avian pathogen Mycoplasma synoviae; the genome sizes of the three strains were 920,079 bp, 897,405 bp, and 799,476 bp, respectively. These genomes were compared with other sequenced mycoplasma genomes reported in the literature to examine several aspects of mycoplasma evolution. Strain-specific regions, including integrative and conjugal elements, and genome rearrangements and alterations in adhesin sequences were observed in the M. hyopneumoniae strains, and all of these were potentially related to pathogenicity. Genomic comparisons revealed that reduction in genome size implied loss of redundant metabolic pathways, with maintenance of alternative routes in different species. Horizontal gene transfer was consistently observed between M. synoviae and Mycoplasma gallisepticum. Our analyses indicated a likely transfer event of hemagglutinin-coding DNA sequences from M. gallisepticum to M. synoviae.
doi:10.1128/JB.187.16.5568-5577.2005
PMCID: PMC1196056  PMID: 16077101
8.  An Alternative Model for the Early Peopling of Southern South America Revealed by Analyses of Three Mitochondrial DNA Haplogroups 
PLoS ONE  2012;7(9):e43486.
After several years of research, there is now a consensus that America was populated from Asia through Beringia, probably at the end of the Pleistocene. But many details such as the timing, route(s), and origin of the first settlers remain uncertain. In the last decade genetic evidence has taken on a major role in elucidating the peopling of the Americas. To study the early peopling of South America, we sequenced the control region of mitochondrial DNA from 300 individuals belonging to indigenous populations of Chile and Argentina, and also obtained seven complete mitochondrial DNA sequences. We identified two novel mtDNA monophyletic clades, preliminarily designated B2l and C1b13, which together with the recently described D1g sub-haplogroup have locally high frequencies and are basically restricted to populations from the extreme south of South America. The estimated ages of D1g and B2l, about ∼15,000 years BP, together with their similar population dynamics and the high haplotype diversity shown by the networks, suggests that they probably appeared soon after the arrival of the first settlers and agrees with the dating of the earliest archaeological sites in South America (Monte Verde, Chile, 14,500 BP). One further sub-haplogroup, D4h3a5, appears to be restricted to Fuegian-Patagonian populations and reinforces our hypothesis of the continuity of the current Patagonian populations with the initial founders. Our results indicate that the extant native populations inhabiting South Chile and Argentina are a group which had a common origin, and suggest a population break between the extreme south of South America and the more northern part of the continent. Thus the early colonization process was not just an expansion from north to south, but also included movements across the Andes.
doi:10.1371/journal.pone.0043486
PMCID: PMC3438176  PMID: 22970129
9.  A functional ABCA1 gene variant is associated with low HDL-cholesterol levels and shows evidence of positive selection in Native Americans 
Human Molecular Genetics  2010;19(14):2877-2885.
It has been suggested that the higher susceptibility of Hispanics to metabolic disease is related to their Native American heritage. A frequent cholesterol transporter ABCA1 (ATP-binding cassette transporter A1) gene variant (R230C, rs9282541) apparently exclusive to Native American individuals was associated with low high-density lipoprotein cholesterol (HDL-C) levels, obesity and type 2 diabetes in Mexican Mestizos. We performed a more extensive analysis of this variant in 4405 Native Americans and 863 individuals from other ethnic groups to investigate genetic evidence of positive selection, to assess its functional effect in vitro and to explore associations with HDL-C levels and other metabolic traits. The C230 allele was found in 29 of 36 Native American groups, but not in European, Asian or African individuals. C230 was observed on a single haplotype, and C230-bearing chromosomes showed longer relative haplotype extension compared with other haplotypes in the Americas. Additionally, single-nucleotide polymorphism data from the Human Genome Diversity Panel Native American populations were enriched in significant integrated haplotype score values in the region upstream of the ABCA1 gene. Cells expressing the C230 allele showed a 27% cholesterol efflux reduction (P< 0.001), confirming this variant has a functional effect in vitro. Moreover, the C230 allele was associated with lower HDL-C levels (P = 1.77 × 10−11) and with higher body mass index (P = 0.0001) in the combined analysis of Native American populations. This is the first report of a common functional variant exclusive to Native American and descent populations, which is a major determinant of HDL-C levels and may have contributed to the adaptive evolution of Native American populations.
doi:10.1093/hmg/ddq173
PMCID: PMC2893805  PMID: 20418488
10.  Population Structure of Humpback Whales from Their Breeding Grounds in the South Atlantic and Indian Oceans 
PLoS ONE  2009;4(10):e7318.
Although humpback whales are among the best-studied of the large whales, population boundaries in the Southern Hemisphere (SH) have remained largely untested. We assess population structure of SH humpback whales using 1,527 samples collected from whales at fourteen sampling sites within the Southwestern and Southeastern Atlantic, the Southwestern Indian Ocean, and Northern Indian Ocean (Breeding Stocks A, B, C and X, respectively). Evaluation of mtDNA population structure and migration rates was carried out under different statistical frameworks. Using all genetic evidence, the results suggest significant degrees of population structure between all ocean basins, with the Southwestern and Northern Indian Ocean most differentiated from each other. Effective migration rates were highest between the Southeastern Atlantic and the Southwestern Indian Ocean, followed by rates within the Southeastern Atlantic, and the lowest between the Southwestern and Northern Indian Ocean. At finer scales, very low gene flow was detected between the two neighbouring sub-regions in the Southeastern Atlantic, compared to high gene flow for whales within the Southwestern Indian Ocean. Our genetic results support the current management designations proposed by the International Whaling Commission of Breeding Stocks A, B, C, and X as four strongly structured populations. The population structure patterns found in this study are likely to have been influenced by a combination of long-term maternally directed fidelity of migratory destinations, along with other ecological and oceanographic features in the region.
doi:10.1371/journal.pone.0007318
PMCID: PMC2754530  PMID: 19812698

Results 1-10 (10)