Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Toward a Refined Definition of Monocyte Subsets 
In a nomenclature proposal published in 2010 monocytes were subdivided into classical and non-classical cells and in addition an intermediate monocyte subset was proposed. Over the last couple of years many studies have analyzed these intermediate cells, their characteristics have been described, and their expansion has been documented in many clinical settings. While these cells appear to be in transition from classical to non-classical monocytes and hence may not form a distinct cell population in a strict sense, their separate analysis and enumeration is warranted in health and disease.
PMCID: PMC3562996  PMID: 23382732
classical monocytes; non-classical monocytes; intermediate monocytes; monocyte subsets; monocyte classification
2.  Chemokine Expression by Small Sputum Macrophages in COPD 
Molecular Medicine  2011;17(7-8):762-770.
Small sputum macrophages represent highly active cells that increase in the airways of patients with inflammatory diseases such as chronic obstructive pulmonary disease (COPD). It has been reported often that levels of cytokines, chemokines and pro-teases are increased in sputum supernatants of these patients. In COPD, the small sputum macrophages may contribute to these supernatant proteins and recruit additional cells via specific chemokine expression patterns. We therefore investigated the expression profile of chemokines in sputum macrophages obtained from COPD patients in comparison to cells from healthy donors and cells isolated after inhalation of lipopolysaccharide (LPS). We used the minimally invasive procedure of sputum induction and have purified macrophages with the RosetteSep technology. Using macrophage purification and flow cytometry we show that in COPD small sputum macrophages account for 85.9% ± 8.3% compared with 12.9% ± 7.1% of total macrophages in control donors. When looking at chemokine expression we found, for the small macrophages in COPD, increased transcript and protein levels for CCL2, CCL7, CCL13 and CCL22 with a more than 100-fold increase for CCL13 mRNA (P < 0.001). Looking at active smokers without COPD, there is a substantial increase of small macrophages to 60% ± 15% and, here, chemokine expression is increased as well. In a model of airway inflammation healthy volunteers inhaled 20 μg of lipopolysaccharide (LPS), which resulted in an increase of small sputum macrophages from 18% ± 19% to 64% ± 25%. The pattern of chemokine expression was, however, different with an upregulation for CCL2 and CCL7, while CCL13 was downregulated three-fold in the LPS-induced small macrophages. These data demonstrate that sputum macrophages in COPD show induction of a specific set of CCL chemokines, which is distinct from what can be induced by LPS.
PMCID: PMC3146610  PMID: 21327296
4.  Ultrafine carbon particles down-regulate CYP1B1 expression in human monocytes 
Cytochrome P450 monoxygenases play an important role in the defence against inhaled toxic compounds and in metabolizing a wide range of xenobiotics and environmental contaminants. In ambient aerosol the ultrafine particle fraction which penetrates deeply into the lungs is considered to be a major factor for adverse health effects. The cells mainly affected by inhaled particles are lung epithelial cells and cells of the monocyte/macrophage lineage.
In this study we have analyzed the effect of a mixture of fine TiO2 and ultrafine carbon black Printex 90 particles (P90) on the expression of cytochrome P450 1B1 (CYP1B1) in human monocytes, macrophages, bronchial epithelial cells and epithelial cell lines. CYP1B1 expression is strongly down-regulated by P90 in monocytes with a maximum after P90 treatment for 3 h while fine and ultrafine TiO2 had no effect. CYP1B1 was down-regulated up to 130-fold and in addition CYP1A1 mRNA was decreased 13-fold. In vitro generated monocyte-derived macrophages (MDM), epithelial cell lines, and primary bronchial epithelial cells also showed reduced CYP1B1 mRNA levels. Benzo[a]pyrene (BaP) is inducing CYB1B1 but ultrafine P90 can still down-regulate gene expression at 0.1 μM of BaP. The P90-induced reduction of CYP1B1 was also demonstrated at the protein level using Western blot analysis.
These data suggest that the P90-induced reduction of CYP gene expression may interfere with the activation and/or detoxification capabilities of inhaled toxic compounds.
PMCID: PMC2770025  PMID: 19835593
5.  Tolerance induced via TLR2 and TLR4 in human dendritic cells: role of IRAK-1 
BMC Immunology  2008;9:69.
While dendritic cells (DCs) can induce tolerance in T cells, little is known about tolerance induction in DCs themselves. We have analysed tolerance induced in human in-vitro generated DCs by repeated stimulation with ligands for TLR4 and TLR2.
DCs stimulated with the TLR4 ligand LPS did show a rapid and pronounced expression of TNF mRNA and protein. When DCs were pre-cultured for 2 days with 5 ng LPS/ml then the subsequent response to stimulation with a high dose of LPS (500 ng/ml) was strongly reduced for both TNF mRNA and protein. At the promoter level there was a reduced transactivation by the -1173 bp TNF promoter and by a construct with a tetrameric NF-κB motif. Within the signalling cascade leading to NF-κB activation we found an ablation of the IRAK-1 adaptor protein in LPS-tolerant DCs. Pre-culture of DCs with the TLR2 ligand Pam3Cys also led to tolerance with respect to TNF gene expression and IRAK-1 protein was ablated in such tolerant cells as well, while IRAK-4 protein levels were unchanged.
These data show that TLR-ligands can render DCs tolerant with respect to TNF gene expression by a mechanism that likely involves blockade of signal transduction at the level of IRAK-1.
PMCID: PMC2628880  PMID: 19025640

Results 1-5 (5)