PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (36)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
author:("Wilk, jimma B")
1.  Association between adiponectin and heart failure risk in the Physicians' Health Study 
Obesity (Silver Spring, Md.)  2013;21(4):831-834.
Limited data are available on the association between adiponectin and incident heart failure. In the current ancillary study to the Physicians' Health Study, we used a prospective nested-case control design to examine whether plasma adiponectin concentration was related to the risk of heart failure. We selected 787 incident heart failure cases and 787 matched controls for the current analysis. Each control was selected using a risk set sampling technique at the time of the occurrence of the index case and matched on year of birth, age at blood collection, and race. Adiponectin was measured using ELISA. Heart failure occurrence was self-reported in annual follow-up questionnaire. Validation of self-reported heart failure in this cohort has been published. The mean age was 58.7 years. In a conditional logistic regression adjusting for age, race, time of blood collection, year of birth, hypertension, atrial fibrillation, smoking, alcohol intake, and exercise, estimates of the relative risk (95% confidence interval) were 1.0 (ref), 0.74 (0.53–1.04), 0.67 (0.48–0.94), 0.70 (0.50–0.99), and 0.92 (0.65–1.30) from the lowest to the highest quintile of adiponectin, respectively, p for quadratic trend 0.004. Additional adjustment for potential mediating factors including diabetes, C-reactive protein, and body mass index led to the attenuation of the estimate of effect [1.0 (ref), 0.81 (0.57–1.15), 0.75 (0.53–1.06), 0.83 (0.58–1.18), and 1.26 (0.87–1.81) across consecutive quintiles of adiponectin]. Our data are consistent with a J-shaped association between total adiponectin and the risk of heart failure among US male physicians.
doi:10.1002/oby.20260
PMCID: PMC3479315  PMID: 23712986
Adiponectin; epidemiology; heart failure; risk factors
2.  Genome-wide association study of lung function decline in adults with and without asthma 
Background
Genome-wide association studies (GWAS) have identified determinants of chronic obstructive pulmonary disease, asthma and lung function level, however none addressed decline in lung function.
Aim
We conducted the first GWAS on age-related decline in forced expiratory volume in the first second (FEV1) and in its ratio to forced vital capacity (FVC) stratified a priori by asthma status.
Methods
Discovery cohorts included adults of European ancestry (1441 asthmatics, 2677 non-asthmatics; Epidemiological Study on the Genetics and Environment of Asthma (EGEA); Swiss Cohort Study on Air Pollution And Lung And Heart Disease In Adults (SAPALDIA); European Community Respiratory Health Survey (ECRHS)). The associations of FEV1 and FEV1/FVC decline with 2.5 million single nucleotide polymorphisms (SNPs) were estimated. Thirty loci were followed-up by in silico replication (1160 asthmatics, 10858 non-asthmatics: Atherosclerosis Risk in Communities (ARIC); Framingham Heart Study (FHS); British 1958 Birth Cohort (B58C); Dutch asthma study).
Results
Main signals identified differed between asthmatics and non-asthmatics. None of the SNPs reached genome-wide significance. The association between the height related gene DLEU7 and FEV1 decline suggested for non-asthmatics in the discovery phase was replicated (discovery P=4.8×10−6; replication P=0.03) and additional sensitivity analyses point to a relation to growth. The top ranking signal, TUSC3, associated with FEV1/FVC decline in asthmatics (P=5.3×10−8) did not replicate. SNPs previously associated with cross-sectional lung function were not prominently associated with decline.
Conclusions
Genetic heterogeneity of lung function may be extensive. Our results suggest that genetic determinants of longitudinal and cross-sectional lung function differ and vary by asthma status.
doi:10.1016/j.jaci.2012.01.074
PMCID: PMC3340499  PMID: 22424883
Asthma; cohort studies; genome-wide association; lung function decline; heterogeneity
3.  Genome-Wide Association Studies Identify CHRNA5/3 and HTR4 in the Development of Airflow Obstruction 
Wilk, Jemma B. | Shrine, Nick R. G. | Loehr, Laura R. | Zhao, Jing Hua | Manichaikul, Ani | Lopez, Lorna M. | Smith, Albert Vernon | Heckbert, Susan R. | Smolonska, Joanna | Tang, Wenbo | Loth, Daan W. | Curjuric, Ivan | Hui, Jennie | Cho, Michael H. | Latourelle, Jeanne C. | Henry, Amanda P. | Aldrich, Melinda | Bakke, Per | Beaty, Terri H. | Bentley, Amy R. | Borecki, Ingrid B. | Brusselle, Guy G. | Burkart, Kristin M. | Chen, Ting-hsu | Couper, David | Crapo, James D. | Davies, Gail | Dupuis, Josée | Franceschini, Nora | Gulsvik, Amund | Hancock, Dana B. | Harris, Tamara B. | Hofman, Albert | Imboden, Medea | James, Alan L. | Khaw, Kay-Tee | Lahousse, Lies | Launer, Lenore J. | Litonjua, Augusto | Liu, Yongmei | Lohman, Kurt K. | Lomas, David A. | Lumley, Thomas | Marciante, Kristin D. | McArdle, Wendy L. | Meibohm, Bernd | Morrison, Alanna C. | Musk, Arthur W. | Myers, Richard H. | North, Kari E. | Postma, Dirkje S. | Psaty, Bruce M. | Rich, Stephen S. | Rivadeneira, Fernando | Rochat, Thierry | Rotter, Jerome I. | Artigas, María Soler | Starr, John M. | Uitterlinden, André G. | Wareham, Nicholas J. | Wijmenga, Cisca | Zanen, Pieter | Province, Michael A. | Silverman, Edwin K. | Deary, Ian J. | Palmer, Lyle J. | Cassano, Patricia A. | Gudnason, Vilmundur | Barr, R. Graham | Loos, Ruth J. F. | Strachan, David P. | London, Stephanie J. | Boezen, H. Marike | Probst-Hensch, Nicole | Gharib, Sina A. | Hall, Ian P. | O’Connor, George T. | Tobin, Martin D. | Stricker, Bruno H.
Rationale: Genome-wide association studies (GWAS) have identified loci influencing lung function, but fewer genes influencing chronic obstructive pulmonary disease (COPD) are known.
Objectives: Perform meta-analyses of GWAS for airflow obstruction, a key pathophysiologic characteristic of COPD assessed by spirometry, in population-based cohorts examining all participants, ever smokers, never smokers, asthma-free participants, and more severe cases.
Methods: Fifteen cohorts were studied for discovery (3,368 affected; 29,507 unaffected), and a population-based family study and a meta-analysis of case-control studies were used for replication and regional follow-up (3,837 cases; 4,479 control subjects). Airflow obstruction was defined as FEV1 and its ratio to FVC (FEV1/FVC) both less than their respective lower limits of normal as determined by published reference equations.
Measurements and Main Results: The discovery meta-analyses identified one region on chromosome 15q25.1 meeting genome-wide significance in ever smokers that includes AGPHD1, IREB2, and CHRNA5/CHRNA3 genes. The region was also modestly associated among never smokers. Gene expression studies confirmed the presence of CHRNA5/3 in lung, airway smooth muscle, and bronchial epithelial cells. A single-nucleotide polymorphism in HTR4, a gene previously related to FEV1/FVC, achieved genome-wide statistical significance in combined meta-analysis. Top single-nucleotide polymorphisms in ADAM19, RARB, PPAP2B, and ADAMTS19 were nominally replicated in the COPD meta-analysis.
Conclusions: These results suggest an important role for the CHRNA5/3 region as a genetic risk factor for airflow obstruction that may be independent of smoking and implicate the HTR4 gene in the etiology of airflow obstruction.
doi:10.1164/rccm.201202-0366OC
PMCID: PMC3480517  PMID: 22837378
chronic obstructive pulmonary disease; single-nucleotide polymorphism; genes
4.  A Genome Wide Association Study of Plasma Total IgE Concentration in the Framingham Heart Study 
Background
Atopy and plasma IgE concentration are genetically complex traits, and the specific genetic risk factors that lead to IgE dysregulation and clinical atopy are an area of active investigation.
Objective
To ascertain the genetic risk factors which lead to IgE dysregulation.
Methods
A genome wide association study (GWAS) was performed in 6,819 participants from the Framingham Heart Study (FHS). Seventy of the top SNPs were selected based on p-values and linkage disequilibrium among neighboring SNPs and evaluated in a meta-analysis with five independent populations from the KORA, B58C, and CAMP cohorts.
Results
Thirteen SNPs located in the region of three genes, FCER1A, STAT6, and IL-13, were found to have genome-wide significance in the FHS GWAS. The most significant SNPs from the three regions were rs2251746 (FCER1A, p-value 2.11×10-12), rs1059513 (STAT6, p-value 2.87×10-08), and rs1295686 (IL-13, p-value 3.55×10-08). Four additional gene regions - HLA-G, HLA-DQA2, HLA-A, and DARC - reached genome-wide statistical significance in meta-analysis combining FHS and replication cohorts, although the DARC association did not appear independent of SNPs in the nearby FCER1A gene.
Conclusion
This GWAS of the FHS has identified genetic loci in HLA genes that may have a role in the pathogenesis of IgE dysregulation and atopy. It also confirmed the association of known susceptibility loci, FCER1A, STAT6, and IL-13, for the dysregulation of total IgE.
doi:10.1016/j.jaci.2011.09.029
PMCID: PMC3293994  PMID: 22075330
total IgE; atopy; asthma; GWAS
5.  Genomewide linkage study of modifiers of LRRK2-related Parkinson’s disease 
Movement Disorders  2011;26(11):2039-2044.
Background
Mutations in the leucine-rich repeat kinase 2 gene (LRRK2), located at 12q12, are the most common known genetic causes of Parkinson’s disease (PD). Studies of LRRK2 mutation carriers have shown incomplete and age-dependent penetrance and previous studies have suggested that inherited susceptibility factors may modify the penetrance of LRRK2 mutations.
Methods
Genomewide linkage to age of onset of LRRK2-related PD was evaluated in a sample of 113 LRRK2 mutation carriers from 64 families using single nucleotide polymorphism data from the Illumina HumanCNV370 genotyping array. Association between onset age and SNPs located under suggestive linkage peaks was also evaluated.
Results
The top LOD-score for onset age (LOD-score=2.43) was located in the chromosome 1q32.1 region. Moderate linkage to onset was also identified at 16q12.1 (LOD-score=1.58). Examination of single nucleotide polymorphism association to PD onset under the linkage peaks revealed no statistically significant SNP associations.
Conclusions
The two novel genomic regions identified may harbor modifiers of LRRK2-related PD onset age or penetrance and further study of these regions may provide important insight into LRRK2-related PD.
doi:10.1002/mds.23781
PMCID: PMC3346677  PMID: 21661047
Parkinson’s Disease; LRRK2; Linkage
6.  Cyclin-G-associated kinase modifies α-synuclein expression levels and toxicity in Parkinson's disease: results from the GenePD Study 
Human Molecular Genetics  2011;20(8):1478-1487.
Although family history is a well-established risk factor for Parkinson's disease (PD), fewer than 5% of PD cases can be attributed to known genetic mutations. The etiology for the remainder of PD cases is unclear; however, neuronal accumulation of the protein α-synuclein is common to nearly all patients, implicating pathways that influence α-synuclein in PD pathogenesis. We report a genome-wide significant association (P = 3.97 × 10−8) between a polymorphism, rs1564282, in the cyclin-G-associated kinase (GAK) gene and increased PD risk, with a meta-analysis odds ratio of 1.48. This association result is based on the meta-analysis of three publicly available PD case–control genome-wide association study and genotyping from a new, independent Italian cohort. Microarray expression analysis of post-mortem frontal cortex from PD and control brains demonstrates a significant association between rs1564282 and higher α-synuclein expression, a known cause of early onset PD. Functional knockdown of GAK in cell culture causes a significant increase in toxicity when α-synuclein is over-expressed. Furthermore, knockdown of GAK in rat primary neurons expressing the A53T mutation of α-synuclein, a well-established model for PD, decreases cell viability. These observations provide evidence that GAK is associated with PD risk and suggest that GAK and α-synuclein interact in a pathway involved in PD pathogenesis. The GAK protein, a serine/threonine kinase, belongs to a family of proteins commonly targeted for drug development. This, combined with GAK's observed relationship to the levels of α-synuclein expression and toxicity, suggests that the protein is an attractive therapeutic target for the treatment of PD.
doi:10.1093/hmg/ddr026
PMCID: PMC3063983  PMID: 21258085
7.  Postmortem Interval Influences α-Synuclein Expression in Parkinson Disease Brain 
Parkinson's Disease  2012;2012:614212.
Duplications and triplications of the α-synuclein (SNCA) gene increase risk for PD, suggesting increased expression levels of the gene to be associated with increased PD risk. However, past SNCA expression studies in brain tissue report inconsistent results. We examined expression of the full-length SNCA transcript (140 amino acid protein isoform), as well as total SNCA mRNA levels in 165 frontal cortex samples (101 PD, 64 control) using quantitative real-time polymerase chain reaction. Additionally, we evaluated the relationship of eight SNPs in both 5′ and 3′ regions of SNCA with the gene expression levels. The association between postmortem interval (PMI) and SNCA expression was different for PD and control samples: SNCA expression decreased with increasing PMI in cases, while staying relatively constant in controls. For short PMI, SNCA expression was increased in PD relative to control samples, whereas for long PMI, SNCA expression in PD was decreased relative to control samples.
doi:10.1155/2012/614212
PMCID: PMC3317023  PMID: 22530163
8.  Genetic Signatures of Exceptional Longevity in Humans 
PLoS ONE  2012;7(1):e29848.
Like most complex phenotypes, exceptional longevity is thought to reflect a combined influence of environmental (e.g., lifestyle choices, where we live) and genetic factors. To explore the genetic contribution, we undertook a genome-wide association study of exceptional longevity in 801 centenarians (median age at death 104 years) and 914 genetically matched healthy controls. Using these data, we built a genetic model that includes 281 single nucleotide polymorphisms (SNPs) and discriminated between cases and controls of the discovery set with 89% sensitivity and specificity, and with 58% specificity and 60% sensitivity in an independent cohort of 341 controls and 253 genetically matched nonagenarians and centenarians (median age 100 years). Consistent with the hypothesis that the genetic contribution is largest with the oldest ages, the sensitivity of the model increased in the independent cohort with older and older ages (71% to classify subjects with an age at death>102 and 85% to classify subjects with an age at death>105). For further validation, we applied the model to an additional, unmatched 60 centenarians (median age 107 years) resulting in 78% sensitivity, and 2863 unmatched controls with 61% specificity. The 281 SNPs include the SNP rs2075650 in TOMM40/APOE that reached irrefutable genome wide significance (posterior probability of association = 1) and replicated in the independent cohort. Removal of this SNP from the model reduced the accuracy by only 1%. Further in-silico analysis suggests that 90% of centenarians can be grouped into clusters characterized by different “genetic signatures” of varying predictive values for exceptional longevity. The correlation between 3 signatures and 3 different life spans was replicated in the combined replication sets. The different signatures may help dissect this complex phenotype into sub-phenotypes of exceptional longevity.
doi:10.1371/journal.pone.0029848
PMCID: PMC3261167  PMID: 22279548
9.  Thymic stromal lymphopoietin (TSLP) is associated with allergic rhinitis in children with asthma 
Background
Allergic rhinitis (AR) affects up to 80% of children with asthma and increases asthma severity. Thymic stromal lymphopoietin (TSLP) is a key mediator of allergic inflammation. The role of the TSLP gene (TSLP) in the pathogenesis of AR has not been studied.
Objective
To test for associations between variants in TSLP, TSLP-related genes, and AR in children with asthma.
Methods
We genotyped 15 single nucleotide polymorphisms (SNPs) in TSLP, OX40L, IL7R, and RXRα in three independent cohorts: 592 asthmatic Costa Rican children and their parents, 422 nuclear families of North American children with asthma, and 239 Swedish children with asthma. We tested for associations between these SNPs and AR. As we previously reported sex-specific effects for TSLP, we performed overall and sex-stratified analyses. We additionally performed secondary analyses for gene-by-gene interactions.
Results
Across the three cohorts, the T allele of TSLP SNP rs1837253 was undertransmitted in boys with AR and asthma as compared to boys with asthma alone. The SNP was associated with reduced odds for AR (odds ratios ranging from 0.56 to 0.63, with corresponding Fisher's combined P value of 1.2 × 10-4). Our findings were significant after accounting for multiple comparisons. SNPs in OX40L, IL7R, and RXRα were not consistently associated with AR in children with asthma. There were nominally significant interactions between gene pairs.
Conclusions
TSLP SNP rs1837253 is associated with reduced odds for AR in boys with asthma. Our findings support a role for TSLP in the pathogenesis of AR in children with asthma.
doi:10.1186/1476-7961-9-1
PMCID: PMC3032752  PMID: 21244681
10.  TSLP Polymorphisms are Associated with Asthma in a Sex-Specific Fashion 
Allergy  2010;65(12):1566-1575.
Background
Single nucleotide polymorphisms (SNPs) in thymic stromal lymphopoietin (TSLP) have been associated with IgE (in girls) and asthma (in general). We sought to determine whether TSLP SNPs are associated with asthma in a sex-specific fashion.
Methods
We conducted regular and sex-stratified analyses of association between SNPs in TSLP and asthma in families of asthmatic children in Costa Rica. Significant findings were replicated in white and African-American participants in the Childhood Asthma Management Program, in African Americans in the Genomic Research on Asthma in the African Diaspora study, in whites and Hispanics in the Children’s Health Study, and in whites in the Framingham Heart Study (FHS).
Main Results
Two SNPs in TSLP (rs1837253 and rs2289276) were significantly associated with a reduced risk of asthma in combined analyses of all cohorts (p values of 2×10−5 and 1×10−5, respectively). In a sex-stratified analysis, the T allele of rs1837253 was significantly associated with a reduced risk of asthma in males only (p= 3×10−6). Alternately, the T allele of rs2289276 was significantly associated with a reduced risk of asthma in females only (p= 2×10−4). Findings for rs2289276 were consistent in all cohorts except the FHS.
Conclusions
TSLP variants are associated with asthma in a sex-specific fashion.
doi:10.1111/j.1398-9995.2010.02415.x
PMCID: PMC2970693  PMID: 20560908
asthma; genetic association; sex-specific; thymic stromal lymphopoietin; TSLP
11.  Asthma-susceptibility variants identified using probands in case-control and family-based analyses 
BMC Medical Genetics  2010;11:122.
Background
Asthma is a chronic respiratory disease whose genetic basis has been explored for over two decades, most recently via genome-wide association studies. We sought to find asthma-susceptibility variants by using probands from a single population in both family-based and case-control association designs.
Methods
We used probands from the Childhood Asthma Management Program (CAMP) in two primary genome-wide association study designs: (1) probands were combined with publicly available population controls in a case-control design, and (2) probands and their parents were used in a family-based design. We followed a two-stage replication process utilizing three independent populations to validate our primary findings.
Results
We found that single nucleotide polymorphisms with similar case-control and family-based association results were more likely to replicate in the independent populations, than those with the smallest p-values in either the case-control or family-based design alone. The single nucleotide polymorphism that showed the strongest evidence for association to asthma was rs17572584, which replicated in 2/3 independent populations with an overall p-value among replication populations of 3.5E-05. This variant is near a gene that encodes an enzyme that has been implicated to act coordinately with modulators of Th2 cell differentiation and is expressed in human lung.
Conclusions
Our results suggest that using probands from family-based studies in case-control designs, and combining results of both family-based and case-control approaches, may be a way to augment our ability to find SNPs associated with asthma and other complex diseases.
doi:10.1186/1471-2350-11-122
PMCID: PMC2927535  PMID: 20698975
12.  Meta-analyses of genome-wide association studies identify multiple novel loci associated with pulmonary function 
Nature genetics  2009;42(1):45-52.
Measurements of lung function by spirometry are heritable traits that reflect respiratory health and predict morbidity and mortality. We meta-analyzed genome-wide association studies for two clinically important measures, forced expiratory volume in the first second (FEV1) and its ratio to forced vital capacity (FEV1/FVC), an indicator of airflow obstruction. This meta-analysis included 20,890 participants of European ancestry from four CHARGE consortium studies: Atherosclerosis Risk in Communities (ARIC), Cardiovascular Health Study (CHS), Framingham Heart Study (FHS), and Rotterdam Study (RS). We identified eight loci associated with FEV1/FVC (HHIP, GPR126, ADAM19, AGER-PPT2, FAM13A, PTCH1, PID1, and HTR4) and one locus associated with FEV1 (INTS12-GSTCD-NPNT) at or near genome-wide significance (P<5×10−8) in CHARGE; all but 3 loci (FAM13A, PTCH1, and PID1) replicated with the SpiroMeta consortium. Our findings of novel loci influencing pulmonary function may offer insights into chronic lung disease pathogenesis.
doi:10.1038/ng.500
PMCID: PMC2832852  PMID: 20010835
13.  Leptin Is Associated With Blood Pressure and Hypertension in Women From the National Heart, Lung, and Blood Institute Family Heart Study 
Hypertension  2009;53(3):473-479.
Leptin is a key neuroendocrine hormone regulating food intake, metabolism, and fat accumulation, and it may also affect blood pressure and contribute to hypertension through sympathetic activation in the vasculature or at the renal level. Although previous studies have shown that the distribution of leptin is significantly different between males and females, as is the risk of hypertension between males and females, results regarding the role of leptin in the gender-specific regulation of blood pressure are controversial. Thus, we performed family-based association analyses in the National Heart, Lung, and Blood Institute Family Heart Study to test the hypothesis that LEPTIN gene variants and the plasma leptin level influence variability in blood pressure and the risk of hypertension differently by gender. We identified significant associations between LEPTIN single nucleotide polymorphisms with blood pressure and hypertension, but in postmenopausal women only. We also identified significant associations between plasma leptin levels and both blood pressure and hypertension in women. The current study supports a role for LEPTIN and plasma leptin levels in blood pressure regulation in women. It also provides insight into the gender differences in hypertension, as well as the differential distribution and activity of leptin in men and women.
doi:10.1161/HYPERTENSIONAHA.108.118133
PMCID: PMC2668693  PMID: 19204185
leptin; blood pressure; hypertension; association; gender
14.  Genomewide association study for susceptibility genes contributing to familial Parkinson disease 
Human genetics  2008;124(6):593-605.
Five genes have been identified that contribute to Mendelian forms of Parkinson disease (PD); however, mutations have been found in fewer than 5% of patients, suggesting that additional genes contribute to disease risk. Unlike previous studies that focused primarily on sporadic PD, we have performed the first genomewide association study (GWAS) in familial PD. Genotyping was performed with the Illumina HumanCNV370Duo array in 857 familial PD cases and 867 controls. A logistic model was employed to test for association under additive and recessive modes of inheritance after adjusting for gender and age. No result met genomewide significance based on a conservative Bonferroni correction. The strongest association result was with SNPs in the GAK/DGKQ region on chromosome 4 (additive model: p = 3.4 × 10−6; OR = 1.69). Consistent evidence of association was also observed to the chromosomal regions containing SNCA (additive model: p = 5.5 × 10−5; OR = 1.35) and MAPT (recessive model: p = 2.0 × 10−5; OR = 0.56). Both of these genes have been implicated previously in PD susceptibility; however, neither was identified in previous GWAS studies of PD. Meta-analysis was performed using data from a previous case–control GWAS, and yielded improved p values for several regions, including GAK/DGKQ (additive model: p = 2.5 × 10−7) and the MAPT region (recessive model: p = 9.8 × 10−6; additive model: p = 4.8 × 10−5). These data suggest the identification of new susceptibility alleles for PD in the GAK/DGKQ region, and also provide further support for the role of SNCA and MAPT in PD susceptibility.
doi:10.1007/s00439-008-0582-9
PMCID: PMC2627511  PMID: 18985386
15.  On the Analysis of Genome-Wide Association Studies in Family-Based Designs: A Universal, Robust Analysis Approach and an Application to Four Genome-Wide Association Studies 
PLoS Genetics  2009;5(11):e1000741.
For genome-wide association studies in family-based designs, we propose a new, universally applicable approach. The new test statistic exploits all available information about the association, while, by virtue of its design, it maintains the same robustness against population admixture as traditional family-based approaches that are based exclusively on the within-family information. The approach is suitable for the analysis of almost any trait type, e.g. binary, continuous, time-to-onset, multivariate, etc., and combinations of those. We use simulation studies to verify all theoretically derived properties of the approach, estimate its power, and compare it with other standard approaches. We illustrate the practical implications of the new analysis method by an application to a lung-function phenotype, forced expiratory volume in one second (FEV1) in 4 genome-wide association studies.
Author Summary
In genome-wide association studies, the multiple testing problem and confounding due to population stratification have been intractable issues. Family-based designs have considered only the transmission of genotypes from founder to nonfounder to prevent sensitivity to the population stratification, which leads to the loss of information. Here we propose a novel analysis approach that combines mutually independent FBAT and screening statistics in a robust way. The proposed method is more powerful than any other, while it preserves the complete robustness of family-based association tests, which only achieves much smaller power level. Furthermore, the proposed method is virtually as powerful as population-based approaches/designs, even in the absence of population stratification. By nature of the proposed method, it is always robust as long as FBAT is valid, and the proposed method achieves the optimal efficiency if our linear model for screening test reasonably explains the observed data in terms of covariance structure and population admixture. We illustrate the practical relevance of the approach by an application in 4 genome-wide association studies.
doi:10.1371/journal.pgen.1000741
PMCID: PMC2777973  PMID: 19956679
16.  Genomewide association study for onset age in Parkinson disease 
BMC Medical Genetics  2009;10:98.
Background
Age at onset in Parkinson disease (PD) is a highly heritable quantitative trait for which a significant genetic influence is supported by multiple segregation analyses. Because genes associated with onset age may represent invaluable therapeutic targets to delay the disease, we sought to identify such genetic modifiers using a genomewide association study in familial PD. There have been previous genomewide association studies (GWAS) to identify genes influencing PD susceptibility, but this is the first to identify genes contributing to the variation in onset age.
Methods
Initial analyses were performed using genotypes generated with the Illumina HumanCNV370Duo array in a sample of 857 unrelated, familial PD cases. Subsequently, a meta-analysis of imputed SNPs was performed combining the familial PD data with that from a previous GWAS of 440 idiopathic PD cases. The SNPs from the meta-analysis with the lowest p-values and consistency in the direction of effect for onset age were then genotyped in a replication sample of 747 idiopathic PD cases from the Parkinson Institute Biobank of Milan, Italy.
Results
Meta-analysis across the three studies detected consistent association (p < 1 × 10-5) with five SNPs, none of which reached genomewide significance. On chromosome 11, the SNP with the lowest p-value (rs10767971; p = 5.4 × 10-7) lies between the genes QSER1 and PRRG4. Near the PARK3 linkage region on chromosome 2p13, association was observed with a SNP (rs7577851; p = 8.7 × 10-6) which lies in an intron of the AAK1 gene. This gene is closely related to GAK, identified as a possible PD susceptibility gene in the GWAS of the familial PD cases.
Conclusion
Taken together, these results suggest an influence of genes involved in endocytosis and lysosomal sorting in PD pathogenesis.
doi:10.1186/1471-2350-10-98
PMCID: PMC2758866  PMID: 19772629
17.  HaploBuild: an algorithm to construct non-contiguous associated haplotypes in family based genetic studies 
Bioinformatics (Oxford, England)  2007;23(16):2190-2192.
Summary
We have created a program that searches densely genotyped regions for associated non-contiguous haplotypes using a standard family based haplotype association test. This program was designed to expand upon the ‘sliding window’ methodologies commonly used for haplotype construction by allowing the association of subsets of single nucleotide polymorphisms (SNPs) to drive the construction of the haplotype. This strategy permits HaploBuild to construct more biologically relevant haplotypes that are not constrained by arbitrary length and contiguous orientation.
doi:10.1093/bioinformatics/btm316
PMCID: PMC2665175  PMID: 17586827
18.  A Genome-Wide Association Study of Pulmonary Function Measures in the Framingham Heart Study 
PLoS Genetics  2009;5(3):e1000429.
The ratio of forced expiratory volume in one second to forced vital capacity (FEV1/FVC) is a measure used to diagnose airflow obstruction and is highly heritable. We performed a genome-wide association study in 7,691 Framingham Heart Study participants to identify single-nucleotide polymorphisms (SNPs) associated with the FEV1/FVC ratio, analyzed as a percent of the predicted value. Identified SNPs were examined in an independent set of 835 Family Heart Study participants enriched for airflow obstruction. Four SNPs in tight linkage disequilibrium on chromosome 4q31 were associated with the percent predicted FEV1/FVC ratio with p-values of genome-wide significance in the Framingham sample (best p-value = 3.6e-09). One of the four chromosome 4q31 SNPs (rs13147758; p-value 2.3e-08 in Framingham) was genotyped in the Family Heart Study and produced evidence of association with the same phenotype, percent predicted FEV1/FVC (p-value = 2.0e-04). The effect estimates for association in the Framingham and Family Heart studies were in the same direction, with the minor allele (G) associated with higher FEV1/FVC ratio levels. Results from the Family Heart Study demonstrated that the association extended to FEV1 and dichotomous airflow obstruction phenotypes, particularly among smokers. The SNP rs13147758 was associated with the percent predicted FEV1/FVC ratio in independent samples from the Framingham and Family Heart Studies producing a combined p-value of 8.3e-11, and this region of chromosome 4 around 145.68 megabases was associated with COPD in three additional populations reported in the accompanying manuscript. The associated SNPs do not lie within a gene transcript but are near the hedgehog-interacting protein (HHIP) gene and several expressed sequence tags cloned from fetal lung. Though it is unclear what gene or regulatory effect explains the association, the region warrants further investigation.
Author Summary
Cigarette smoking is the primary risk factor for impaired lung function, yet only 20% of smokers develop chronic obstructive pulmonary disease (COPD). This observation, along with family studies of lung function and COPD, suggests that genetic factors influence susceptibility to cigarette smoke. We examined the relationship between common genetic variants and measures of lung function in a sample of 7,691 participants from the Framingham Heart Study and confirmed our observations in 835 participants from the Family Heart Study selected to include cases of airflow obstruction. We identified a variant on chromosome 4 that was strongly associated with FEV1/FVC in the Framingham Study and confirmed the association in the Family Heart Study. The accompanying manuscript identified the same region to be associated with COPD. Several interesting genes are present in the region that we identified, including a gene (HHIP) interacting with a biological pathway involved in lung development, but it is not yet clear which gene in the region explains the association. Our results identified a region of chromosome 4 that warrants further study to understand the genetic effects influencing lung function.
doi:10.1371/journal.pgen.1000429
PMCID: PMC2652834  PMID: 19300500
19.  Polymorphisms near EXOC4 and LRGUK on chromosome 7q32 are associated with Type 2 Diabetes and fasting glucose; The NHLBI Family Heart Study 
BMC Medical Genetics  2008;9:46.
Background
The chromosome 7q32 region is linked to metabolic syndrome and obesity related traits in the Family Heart Study. As part of a fine mapping study of the region, we evaluated the relationship of polymorphisms to fasting glucose levels and Type 2 diabetes.
Methods
Thirty-nine HapMap defined tag SNPs in a 1.08 Mb region and a novel deletion polymorphism were genotyped in 2,603 participants of the NHLBI Family Heart Study (FHS). Regression modeling, adjusting for BMI, age, sex, smoking and the TCF7L2 polymorphism, was used to evaluate the association of these polymorphisms with T2D and fasting glucoses levels.
Results
The deletion polymorphism confers a protective effect for T2D, with homozygous deletion carriers having a 53% reduced risk compared to non-deleted carriers. Among non-diabetics, the deletion was significantly associated with lower fasting glucose levels in men (p = 0.038) but not women (p = 0.118). In addition, seven SNPs near the deletion were significantly associated (p < 0.01) to diabetes.
Conclusion
Chromosome 7q32 contains both SNPs and a deletion that were associated to T2D. Although the deletion region contains several islands of strongly conserved sequence, it is not known to contain a transcribed gene. The closest nearby gene, EXOC4, is involved in insulin-stimulated glucose transport and may be a candidate for this association. Further work is needed to determine if the deletion represents a functional variant or may be in linkage disequilibrium with a functional mutation influencing EXOC4 or another nearby gene.
doi:10.1186/1471-2350-9-46
PMCID: PMC2409301  PMID: 18498660
20.  Sepiapterin reductase expression is increased in Parkinson’s disease brain tissue. 
Brain research  2007;1139:42-47.
The PARK3 locus on chromosome 2p13 has shown linkage to both the development and age of onset of Parkinson’s disease (PD). One candidate gene at this locus is sepiapterin reductase (SPR). Sepiapterin reductase catalyzes the final step in the biosynthetic pathway of tetrahydrobiopterin (BH4), an essential cofactor for aromatic amino acid hydrolases including tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. The expression of SPR was assayed using semiquantitative real-time RT-PCR in human post-mortem cerebellar tissue from neuropathologically confirmed PD cases and neurologically normal controls. The expression of other enzymes involved in BH4 biosynthesis, including aldose reductase (AKR1B1), carbonyl reductase (CBR1 and CBR3), GTP-cyclohydrolase I (GCH1), and 6-pyruvoyltetrahydrobiopterin (PTS), was also examined. Single-nucleotide polymorphisms around the SPR gene that have been previously reported to show association to PD affection and onset age were genotyped in these samples. Expression of SPR showed a significant 4-fold increase in PD cases relative to controls, while the expression of AKR1B1 and PTS was significantly decreased in PD cases. No difference in expression was detected for CBR1, CBR3, and GCH1. Genetic variants did not show a significant effect on SPR expression, however, this is likely due to the low frequency of rare genotypes in the sample. While the association of SPR to PD is not strong enough to support that this is the PARK3 gene, this study further implicates a role for SPR in idiopathic PD.
doi:10.1016/j.brainres.2007.01.001
PMCID: PMC1868471  PMID: 17270157
Parkinson’s disease; PARK3; sepiapterin reductase; RT-PCR; human; tetrahydrobiopterin
21.  Secreted Modular Calcium-binding Protein 2 Haplotypes Are Associated with Pulmonary Function 
Rationale: Previously reported linkage to FEV1 (LOD score = 5.0) on 6q27 in the Framingham Heart Study (FHS) led us to explore a candidate gene, SMOC2, at 168.6 Mb.
Objectives: We tested association between SMOC2 polymorphisms and FEV1 and FVC in unrelated FHS participants.
Methods: Twenty single-nucleotide polymorphisms (SNPs) around SMOC2 were genotyped in 1,734 subjects.
Measurements and Main Results: SNP data were analyzed using multiple linear regression models incorporating sex, age, body mass index, height, and smoking history as covariates, and analyses were repeated within strata of ever- and never-smokers. The minor allele of SNP rs1402 was associated with higher mean FEV1 (p = 0.003) and FVC (p = 0.02) measures. In never-smoking subjects, association with higher measures was observed with the minor allele of rs747995 (FEV1, p = 0.0006; FVC, p = 0.0008). These two SNPs lie in different haplotype blocks and reside in intron 4 of SMOC2. Haplotype analysis revealed a common G-T haplotype (rs747995–rs1402) with 77% frequency in never-smoking FHS subjects. The G-T haplotype was associated with reduction of 126 ml for FEV1 (p = 0.0002) and 157 ml for FVC (p = 0.0002). The G-T haplotype was similarly associated in a set of never-smoking subjects from the Family Heart Study (FEV1, p = 0.03; FVC, p = 0.03).
Conclusions: The replication of the association in two populations supports the possibility that SMOC2 might play an important role in the determination of FEV1 and FVC.
doi:10.1164/rccm.200601-110OC
PMCID: PMC1899283  PMID: 17204727
FEV1; FVC; genetics; single-nucleotide polymorphism
22.  Genome-wide association of sleep and circadian phenotypes 
BMC Medical Genetics  2007;8(Suppl 1):S9.
Background
Numerous studies suggest genetic influences on sleepiness and circadian rhythms. The Sleep Heart Health Study collected questionnaire data on sleep habits and sleepiness from 2848 Framingham Heart Study Offspring Cohort participants. More than 700 participants were genotyped using the Affymetrix 100K SNP GeneChip, providing a unique opportunity to assess genetic linkage and association of these traits.
Methods
Sleepiness (defined as the Epworth Sleepiness Scale score), usual bedtime and usual sleep duration were assessed by self-completion questionnaire. Standardized residual measures adjusted for age, sex and BMI were analyzed. Multipoint variance components linkage analysis was performed. Association of SNPs to sleep phenotypes was analyzed with both population-based and family-based association tests, with analysis limited to 70,987 autosomal SNPs with minor allele frequency ≥10%, call rate ≥80%, and no significant deviation from Hardy-Weinberg equilibrium (p ≥ 0.001).
Results
Heritability of sleepiness was 0.29, bedtime 0.22, and sleep duration 0.17. Both genotype and sleep phenotype data were available for 749 subjects. Linkage analysis revealed five linkage peaks of LOD >2: four to usual bedtime, one to sleep duration. These peaks include several candidate sleep-related genes, including CSNK2A2, encoding a known component of the circadian molecular clock, and PROK2, encoding a putative transmitter of the behavioral circadian rhythm from the suprachiasmatic nucleus. Association tests identified an association of usual bedtime with a non-synonymous coding SNP in NPSR1 that has been shown to encode a gain of function mutation of the neuropeptide S receptor, whose endogenous ligand is a potent promoter of wakefulness. Each copy of the minor allele of this SNP was associated with a 15 minute later mean bedtime. The lowest p value was for association of sleepiness with a SNP located in an intron of PDE4D, which encodes a cAMP-specific phosphodiesterase widely expressed in human brain. Full association results are posted at .
Conclusion
This analysis confirms prior reports of significant heritability of sleepiness, usual bedtime, and usual sleep duration. Several genetic loci with suggestive linkage to these traits are identified, including linkage peaks containing circadian clock-related genes. Association tests identify NPSR1 and PDE4D as possible mediators of bedtime and sleepiness.
doi:10.1186/1471-2350-8-S1-S9
PMCID: PMC1995620  PMID: 17903308
23.  Framingham Heart Study genome-wide association: results for pulmonary function measures 
BMC Medical Genetics  2007;8(Suppl 1):S8.
Background
Pulmonary function measures obtained by spirometry are used to diagnose chronic obstructive pulmonary disease (COPD) and are highly heritable. We conducted genome-wide association (GWA) analyses (Affymetrix 100K SNP GeneChip) for measures of lung function in the Framingham Heart Study.
Methods
Ten spirometry phenotypes including percent of predicted measures, mean spirometry measures over two examinations, and rates of change based on forced expiratory volume in one second (FEV1), forced vital capacity (FVC), forced expiratory flow from the 25th to 75th percentile (FEF25–75), the FEV1/FVC ratio, and the FEF25–75/FVC ratio were examined. Percent predicted phenotypes were created using each participant's latest exam with spirometry. Predicted lung function was estimated using models defined in the set of healthy never-smokers, and standardized residuals of percent predicted measures were created adjusting for smoking status, pack-years, and body mass index (BMI). All modeling was performed stratified by sex and cohort. Mean spirometry phenotypes were created using data from two examinations and adjusting for age, BMI, height, smoking and pack-years. Change in pulmonary function over time was studied using two to four examinations with spirometry to calculate slopes, which were then adjusted for age, height, smoking and pack-years.
Results
Analyses were restricted to 70,987 autosomal SNPs with minor allele frequency ≥ 10%, genotype call rate ≥ 80%, and Hardy-Weinberg equilibrium p-value ≥ 0.001. A SNP in the interleukin 6 receptor (IL6R) on chromosome 1 was among the best results for percent predicted FEF25–75. A non-synonymous coding SNP in glutathione S-transferase omega 2 (GSTO2) on chromosome 10 had top-ranked results studying the mean FEV1 and FVC measurements from two examinations. SNPs nearby the SOD3 and vitamin D binding protein genes, candidate genes for COPD, exhibited association to percent predicted phenotypes.
Conclusion
GSTO2 and IL6R are credible candidate genes for association to pulmonary function identified by GWA. These and other observed associations warrant replication studies. This resource of GWA results for pulmonary function measures is publicly available at .
doi:10.1186/1471-2350-8-S1-S8
PMCID: PMC1995616  PMID: 17903307
24.  Risk factor studies of age-at-onset in a sample ascertained for Parkinson disease affected sibling pairs: a cautionary tale 
An association between exposure to a risk factor and age-at-onset of disease may reflect an effect on the rate of disease occurrence or an acceleration of the disease process. The difference in age-at-onset arising from case-only studies, however, may also reflect secular trends in the prevalence of exposure to the risk factor. Comparisons of age-at-onset associated with risk factors are commonly performed in case series enrolled for genetic linkage analysis of late onset diseases. We describe how the results of age-at-onset studies of environmental risk factors reflect the underlying structure of the source population, rather than an association with age-at-onset, by contrasting the effects of coffee drinking and cigarette smoking on Parkinson disease age-at-onset with the effects on age-at-enrollment in a population based study sample. Despite earlier evidence to suggest a protective association of coffee drinking and cigarette smoking with Parkinson disease risk, the age-at-onset results are comparable to the patterns observed in the population sample, and thus a causal inference from the age-at-onset effect may not be justified. Protective effects of multivitamin use on PD age-at-onset are also shown to be subject to a bias from the relationship between age and multivitamin initiation. Case-only studies of age-at-onset must be performed with an appreciation for the association between risk factors and age and ageing in the source population.
doi:10.1186/1742-7622-4-1
PMCID: PMC1855322  PMID: 17408493
25.  Evidence for a gene influencing heart rate on chromosome 5p13-14 in a meta-analysis of genome-wide scans from the NHLBI Family Blood Pressure Program 
BMC Medical Genetics  2006;7:17.
Background
Elevated resting heart rate has been shown in multiple studies to be a strong predictor of cardiovascular disease. Previous family studies have shown a significant heritable component to heart rate with several groups conducting genomic linkage scans to identify quantitative trait loci.
Methods
We performed a genome-wide linkage scan to identify quantitative trait loci influencing resting heart rate among 3,282 Caucasians and 3,989 African-Americans in three independent networks comprising the Family Blood Pressure Program (FBPP) using 368 microsatellite markers. Mean heart rate measurements were used in a regression model including covariates for age, body mass index, pack-years, currently drinking alcohol (yes/no), hypertension status and medication usage to create a standardized residual for each gender/ethnic group within each study network. This residual was used in a nonparametric variance component model to generate a LOD score and a corresponding P value for each ethnic group within each study network. P values from each ethnic group and study network were merged using an adjusted Fisher's combining P values method and the resulting P values were converted to LOD scores. The entire analysis was redone after individuals currently taking beta-blocker medication were removed.
Results
We identified significant evidence of linkage (LOD = 4.62) to chromosome 10 near 142.78 cM in the Caucasian group of HyperGEN. Between race and network groups we identified a LOD score of 1.86 on chromosome 5 (between 39.99 and 45.34 cM) in African-Americans in the GENOA network and the same region produced a LOD score of 1.12 among Caucasians within a different network (HyperGEN). Combining all network and race groups we identified a LOD score of 1.92 (P = 0.0013) on chromosome 5p13-14. We assessed heterogeneity for this locus between networks and ethnic groups and found significant evidence for low heterogeneity (P ≤ 0.05).
Conclusion
We found replication (LOD > 1) between ethnic groups and between study networks with low heterogeneity on chromosome 5p13-14 suggesting that a gene in this region influences resting heart rate.
doi:10.1186/1471-2350-7-17
PMCID: PMC1413518  PMID: 16509988

Results 1-25 (36)