PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (34)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Genome-wide association analysis identifies six new loci associated with forced vital capacity 
Loth, Daan W. | Artigas, María Soler | Gharib, Sina A. | Wain, Louise V. | Franceschini, Nora | Koch, Beate | Pottinger, Tess | Smith, Albert Vernon | Duan, Qing | Oldmeadow, Chris | Lee, Mi Kyeong | Strachan, David P. | James, Alan L. | Huffman, Jennifer E. | Vitart, Veronique | Ramasamy, Adaikalavan | Wareham, Nicholas J. | Kaprio, Jaakko | Wang, Xin-Qun | Trochet, Holly | Kähönen, Mika | Flexeder, Claudia | Albrecht, Eva | Lopez, Lorna M. | de Jong, Kim | Thyagarajan, Bharat | Alves, Alexessander Couto | Enroth, Stefan | Omenaas, Ernst | Joshi, Peter K. | Fall, Tove | Viňuela, Ana | Launer, Lenore J. | Loehr, Laura R. | Fornage, Myriam | Li, Guo | Wilk, Jemma B. | Tang, Wenbo | Manichaikul, Ani | Lahousse, Lies | Harris, Tamara B. | North, Kari E. | Rudnicka, Alicja R. | Hui, Jennie | Gu, Xiangjun | Lumley, Thomas | Wright, Alan F. | Hastie, Nicholas D. | Campbell, Susan | Kumar, Rajesh | Pin, Isabelle | Scott, Robert A. | Pietiläinen, Kirsi H. | Surakka, Ida | Liu, Yongmei | Holliday, Elizabeth G. | Schulz, Holger | Heinrich, Joachim | Davies, Gail | Vonk, Judith M. | Wojczynski, Mary | Pouta, Anneli | Johansson, Åsa | Wild, Sarah H. | Ingelsson, Erik | Rivadeneira, Fernando | Völzke, Henry | Hysi, Pirro G. | Eiriksdottir, Gudny | Morrison, Alanna C. | Rotter, Jerome I. | Gao, Wei | Postma, Dirkje S. | White, Wendy B. | Rich, Stephen S. | Hofman, Albert | Aspelund, Thor | Couper, David | Smith, Lewis J. | Psaty, Bruce M. | Lohman, Kurt | Burchard, Esteban G. | Uitterlinden, André G. | Garcia, Melissa | Joubert, Bonnie R. | McArdle, Wendy L. | Musk, A. Bill | Hansel, Nadia | Heckbert, Susan R. | Zgaga, Lina | van Meurs, Joyce B.J. | Navarro, Pau | Rudan, Igor | Oh, Yeon-Mok | Redline, Susan | Jarvis, Deborah | Zhao, Jing Hua | Rantanen, Taina | O’Connor, George T. | Ripatti, Samuli | Scott, Rodney J. | Karrasch, Stefan | Grallert, Harald | Gaddis, Nathan C. | Starr, John M. | Wijmenga, Cisca | Minster, Ryan L. | Lederer, David J. | Pekkanen, Juha | Gyllensten, Ulf | Campbell, Harry | Morris, Andrew P. | Gläser, Sven | Hammond, Christopher J. | Burkart, Kristin M. | Beilby, John | Kritchevsky, Stephen B. | Gudnason, Vilmundur | Hancock, Dana B. | Williams, O. Dale | Polasek, Ozren | Zemunik, Tatijana | Kolcic, Ivana | Petrini, Marcy F. | Wjst, Matthias | Kim, Woo Jin | Porteous, David J. | Scotland, Generation | Smith, Blair H. | Viljanen, Anne | Heliövaara, Markku | Attia, John R. | Sayers, Ian | Hampel, Regina | Gieger, Christian | Deary, Ian J. | Boezen, H. Marike | Newman, Anne | Jarvelin, Marjo-Riitta | Wilson, James F. | Lind, Lars | Stricker, Bruno H. | Teumer, Alexander | Spector, Timothy D. | Melén, Erik | Peters, Marjolein J. | Lange, Leslie A. | Barr, R. Graham | Bracke, Ken R. | Verhamme, Fien M. | Sung, Joohon | Hiemstra, Pieter S. | Cassano, Patricia A. | Sood, Akshay | Hayward, Caroline | Dupuis, Josée | Hall, Ian P. | Brusselle, Guy G. | Tobin, Martin D. | London, Stephanie J.
Nature genetics  2014;46(7):669-677.
Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10−8) with FVC in or near EFEMP1, BMP6, MIR-129-2/HSD17B12, PRDM11, WWOX, and KCNJ2. Two (GSTCD and PTCH1) loci previously associated with spirometric measures were related to FVC. Newly implicated regions were followed-up in samples of African American, Korean, Chinese, and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and pathogenesis of restrictive lung disease.
doi:10.1038/ng.3011
PMCID: PMC4140093  PMID: 24929828
2.  Copy Number Variation of the Beta-Defensin Genes in Europeans: No Supporting Evidence for Association with Lung Function, Chronic Obstructive Pulmonary Disease or Asthma 
PLoS ONE  2014;9(1):e84192.
Lung function measures are heritable, predict mortality and are relevant in diagnosis of chronic obstructive pulmonary disease (COPD). COPD and asthma are diseases of the airways with major public health impacts and each have a heritable component. Genome-wide association studies of SNPs have revealed novel genetic associations with both diseases but only account for a small proportion of the heritability. Complex copy number variation may account for some of the missing heritability. A well-characterised genomic region of complex copy number variation contains beta-defensin genes (DEFB103, DEFB104 and DEFB4), which have a role in the innate immune response. Previous studies have implicated these and related genes as being associated with asthma or COPD. We hypothesised that copy number variation of these genes may play a role in lung function in the general population and in COPD and asthma risk. We undertook copy number typing of this locus in 1149 adult and 689 children using a paralogue ratio test and investigated association with COPD, asthma and lung function. Replication of findings was assessed in a larger independent sample of COPD cases and smoking controls. We found evidence for an association of beta-defensin copy number with COPD in the adult cohort (OR = 1.4, 95%CI:1.02–1.92, P = 0.039) but this finding, and findings from a previous study, were not replicated in a larger follow-up sample(OR = 0.89, 95%CI:0.72–1.07, P = 0.217). No robust evidence of association with asthma in children was observed. We found no evidence for association between beta-defensin copy number and lung function in the general populations. Our findings suggest that previous reports of association of beta-defensin copy number with COPD should be viewed with caution. Suboptimal measurement of copy number can lead to spurious associations. Further beta-defensin copy number measurement in larger sample sizes of COPD cases and children with asthma are needed.
doi:10.1371/journal.pone.0084192
PMCID: PMC3880289  PMID: 24404154
3.  Common Genetic Determinants of Lung Function, Subclinical Atherosclerosis and Risk of Coronary Artery Disease 
PLoS ONE  2014;9(8):e104082.
Chronic obstructive pulmonary disease (COPD) independently associates with an increased risk of coronary artery disease (CAD), but it has not been fully investigated whether this co-morbidity involves shared pathophysiological mechanisms. To identify potential common pathways across the two diseases, we tested all recently published single nucleotide polymorphisms (SNPs) associated with human lung function (spirometry) for association with carotid intima-media thickness (cIMT) in 3,378 subjects with multiple CAD risk factors, and for association with CAD in a case-control study of 5,775 CAD cases and 7,265 controls. SNPs rs2865531, located in the CFDP1 gene, and rs9978142, located in the KCNE2 gene, were significantly associated with CAD. In addition, SNP rs9978142 and SNP rs3995090 located in the HTR4 gene, were associated with average and maximal cIMT measures. Genetic risk scores combining the most robustly spirometry–associated SNPs from the literature were modestly associated with CAD, (odds ratio (OR) (95% confidence interval (CI95) = 1.06 (1.03, 1.09); P-value = 1.5×10−4, per allele). In conclusion, our study suggests that some genetic loci implicated in determining human lung function also influence cIMT and susceptibility to CAD. The present results should help elucidate the molecular underpinnings of the co-morbidity observed across COPD and CAD.
doi:10.1371/journal.pone.0104082
PMCID: PMC4122436  PMID: 25093840
4.  Understanding the impact of pre-analytic variation in haematological and clinical chemistry analytes on the power of association studies 
Background: Errors, introduced through poor assessment of physical measurement or because of inconsistent or inappropriate standard operating procedures for collecting, processing, storing or analysing haematological and biochemistry analytes, have a negative impact on the power of association studies using the collected data. A dataset from UK Biobank was used to evaluate the impact of pre-analytical variability on the power of association studies.
Methods: First, we estimated the proportion of the variance in analyte concentration that may be attributed to delay in processing using variance component analysis. Then, we captured the proportion of heterogeneity between subjects that is due to variability in the rate of degradation of analytes, by fitting a mixed model. Finally, we evaluated the impact of delay in processing on the power of a nested case-control study using a power calculator that we developed and which takes into account uncertainty in outcome and explanatory variables measurements.
Results: The results showed that (i) the majority of the analytes investigated in our analysis, were stable over a period of 36 h and (ii) some analytes were unstable and the resulting pre-analytical variation substantially decreased the power of the study, under the settings we investigated.
Conclusions: It is important to specify a limited delay in processing for analytes that are very sensitive to delayed assay. If the rate of degradation of an analyte varies between individuals, any delay introduces a bias which increases with increasing delay. If pre-analytical variation occurring due to delays in sample processing is ignored, it affects adversely the power of the studies that use the data.
doi:10.1093/ije/dyu127
PMCID: PMC4190517  PMID: 25085103
Biobank; Pre-analytical variation; Biosamples; Statistical power
5.  GSTCD and INTS12 Regulation and Expression in the Human Lung 
PLoS ONE  2013;8(9):e74630.
Genome-Wide Association Study (GWAS) meta-analyses have identified a strong association signal for lung function, which maps to a region on 4q24 containing two oppositely transcribed genes: glutathione S-transferase, C-terminal domain containing (GSTCD) and integrator complex subunit 12 (INTS12). Both genes were found to be expressed in a range of human airway cell types. The promoter regions and transcription start sites were determined in mRNA from human lung and a novel splice variant was identified for each gene. We obtained the following evidence for GSTCD and INTS12 co-regulation and expression: (i) correlated mRNA expression was observed both via Q-PCR and in a lung expression quantitative trait loci (eQTL) study, (ii) induction of both GSTCD and INTS12 mRNA expression in human airway smooth muscle cells was seen in response to TGFβ1, (iii) a lung eQTL study revealed that both GSTCD and INTS12 mRNA levels positively correlate with percent predicted FEV1, and (iv) FEV1 GWAS associated SNPs in 4q24 were found to act as an eQTL for INTS12 in a number of tissues. In fixed sections of human lung tissue, GSTCD protein expression was ubiquitous, whereas INTS12 expression was predominantly in epithelial cells and pneumocytes. During human fetal lung development, GSTCD protein expression was observed to be highest at the earlier pseudoglandular stage (10-12 weeks) compared with the later canalicular stage (17-19 weeks), whereas INTS12 expression levels did not alter throughout these stages. Knowledge of the transcriptional and translational regulation and expression of GSTCD and INTS12 provides important insights into the potential role of these genes in determining lung function. Future work is warranted to fully define the functions of INTS12 and GSTCD.
doi:10.1371/journal.pone.0074630
PMCID: PMC3776747  PMID: 24058608
6.  Large-Scale Genome-Wide Association Studies and Meta-Analyses of Longitudinal Change in Adult Lung Function 
Tang, Wenbo | Kowgier, Matthew | Loth, Daan W. | Soler Artigas, María | Joubert, Bonnie R. | Hodge, Emily | Gharib, Sina A. | Smith, Albert V. | Ruczinski, Ingo | Gudnason, Vilmundur | Mathias, Rasika A. | Harris, Tamara B. | Hansel, Nadia N. | Launer, Lenore J. | Barnes, Kathleen C. | Hansen, Joyanna G. | Albrecht, Eva | Aldrich, Melinda C. | Allerhand, Michael | Barr, R. Graham | Brusselle, Guy G. | Couper, David J. | Curjuric, Ivan | Davies, Gail | Deary, Ian J. | Dupuis, Josée | Fall, Tove | Foy, Millennia | Franceschini, Nora | Gao, Wei | Gläser, Sven | Gu, Xiangjun | Hancock, Dana B. | Heinrich, Joachim | Hofman, Albert | Imboden, Medea | Ingelsson, Erik | James, Alan | Karrasch, Stefan | Koch, Beate | Kritchevsky, Stephen B. | Kumar, Ashish | Lahousse, Lies | Li, Guo | Lind, Lars | Lindgren, Cecilia | Liu, Yongmei | Lohman, Kurt | Lumley, Thomas | McArdle, Wendy L. | Meibohm, Bernd | Morris, Andrew P. | Morrison, Alanna C. | Musk, Bill | North, Kari E. | Palmer, Lyle J. | Probst-Hensch, Nicole M. | Psaty, Bruce M. | Rivadeneira, Fernando | Rotter, Jerome I. | Schulz, Holger | Smith, Lewis J. | Sood, Akshay | Starr, John M. | Strachan, David P. | Teumer, Alexander | Uitterlinden, André G. | Völzke, Henry | Voorman, Arend | Wain, Louise V. | Wells, Martin T. | Wilk, Jemma B. | Williams, O. Dale | Heckbert, Susan R. | Stricker, Bruno H. | London, Stephanie J. | Fornage, Myriam | Tobin, Martin D. | O′Connor, George T. | Hall, Ian P. | Cassano, Patricia A.
PLoS ONE  2014;9(7):e100776.
Background
Genome-wide association studies (GWAS) have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function.
Methods
We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1) in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis.
Results
The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P  =  5.71 × 10-7). In addition, meta-analysis using the five cohorts with ≥3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P  =  2.18 × 10-8) at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively.
Conclusions
In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function.
doi:10.1371/journal.pone.0100776
PMCID: PMC4077649  PMID: 24983941
7.  APOM and High-Density Lipoprotein are associated with Lung Function and Percent Emphysema 
The European respiratory journal  2013;43(4):1003-1017.
Chronic obstructive pulmonary disease (COPD) is linked to cardiovascular disease; however, there are few studies on the associations of cardiovascular genes with COPD.
We assessed the association of lung function with 2,100 genes selected for cardiovascular diseases among 20,077 European-Americans and 6,900 African-Americans. We performed replication of significant loci in the other racial group and an independent consortium of Europeans, tested the associations of significant loci with percent emphysema, and examined gene expression in an independent sample. We then tested the association of a related lipid biomarker with FEV1/FVC and percent emphysema.
We identified one new polymorphism for FEV1/FVC (rs805301) in European-Americans (p=1.3×10−6) and a second (rs707974) in the combined European-American and African-American analysis (p=1.38×10−7). Both SNPs flank the gene for apolipoprotein M (apoM), a component of HDL. Both replicated in an independent cohort. SNPs in a second gene related to apoM and HDL, PCSK9, were associated with FEV1/FVC among African-Americans. rs707974 was associated with percent emphysema among European-Americans and African-Americans, and APOM expression was related to FEV1/FVC and percent emphysema. Higher HDL levels were associated with lower FEV1/FVC and greater percent emphysema.
These findings suggest a novel role for the APOM/HDL pathway in the pathogenesis of COPD and emphysema.
doi:10.1183/09031936.00147612
PMCID: PMC4041087  PMID: 23900982
Apolipoproteins; Cholesterol; Percent Emphysema; Polymorphism, Single Nucleotide; Pulmonary Disease, Chronic Obstructive
8.  Identification of seven loci affecting mean telomere length and their association with disease 
Codd, Veryan | Nelson, Christopher P. | Albrecht, Eva | Mangino, Massimo | Deelen, Joris | Buxton, Jessica L. | Jan Hottenga, Jouke | Fischer, Krista | Esko, Tõnu | Surakka, Ida | Broer, Linda | Nyholt, Dale R. | Mateo Leach, Irene | Salo, Perttu | Hägg, Sara | Matthews, Mary K. | Palmen, Jutta | Norata, Giuseppe D. | O’Reilly, Paul F. | Saleheen, Danish | Amin, Najaf | Balmforth, Anthony J. | Beekman, Marian | de Boer, Rudolf A. | Böhringer, Stefan | Braund, Peter S. | Burton, Paul R. | de Craen, Anton J. M. | Denniff, Matthew | Dong, Yanbin | Douroudis, Konstantinos | Dubinina, Elena | Eriksson, Johan G. | Garlaschelli, Katia | Guo, Dehuang | Hartikainen, Anna-Liisa | Henders, Anjali K. | Houwing-Duistermaat, Jeanine J. | Kananen, Laura | Karssen, Lennart C. | Kettunen, Johannes | Klopp, Norman | Lagou, Vasiliki | van Leeuwen, Elisabeth M. | Madden, Pamela A. | Mägi, Reedik | Magnusson, Patrik K.E. | Männistö, Satu | McCarthy, Mark I. | Medland, Sarah E. | Mihailov, Evelin | Montgomery, Grant W. | Oostra, Ben A. | Palotie, Aarno | Peters, Annette | Pollard, Helen | Pouta, Anneli | Prokopenko, Inga | Ripatti, Samuli | Salomaa, Veikko | Suchiman, H. Eka D. | Valdes, Ana M. | Verweij, Niek | Viñuela, Ana | Wang, Xiaoling | Wichmann, H.-Erich | Widen, Elisabeth | Willemsen, Gonneke | Wright, Margaret J. | Xia, Kai | Xiao, Xiangjun | van Veldhuisen, Dirk J. | Catapano, Alberico L. | Tobin, Martin D. | Hall, Alistair S. | Blakemore, Alexandra I.F. | van Gilst, Wiek H. | Zhu, Haidong | Erdmann, Jeanette | Reilly, Muredach P. | Kathiresan, Sekar | Schunkert, Heribert | Talmud, Philippa J. | Pedersen, Nancy L. | Perola, Markus | Ouwehand, Willem | Kaprio, Jaakko | Martin, Nicholas G. | van Duijn, Cornelia M. | Hovatta, Iiris | Gieger, Christian | Metspalu, Andres | Boomsma, Dorret I. | Jarvelin, Marjo-Riitta | Slagboom, P. Eline | Thompson, John R. | Spector, Tim D. | van der Harst, Pim | Samani, Nilesh J.
Nature genetics  2013;45(4):422-427e2.
Inter-individual variation in mean leukocyte telomere length (LTL) is associated with cancer and several age-associated diseases. Here, in a genome-wide meta-analysis of 37,684 individuals with replication of selected variants in a further 10,739 individuals, we identified seven loci, including five novel loci, associated with mean LTL (P<5x10−8). Five of the loci contain genes (TERC, TERT, NAF1, OBFC1, RTEL1) that are known to be involved in telomere biology. Lead SNPs at two loci (TERC and TERT) associate with several cancers and other diseases, including idiopathic pulmonary fibrosis. Moreover, a genetic risk score analysis combining lead variants at all seven loci in 22,233 coronary artery disease cases and 64,762 controls showed an association of the alleles associated with shorter LTL with increased risk of CAD (21% (95% CI: 5–35%) per standard deviation in LTL, p=0.014). Our findings support a causal role of telomere length variation in some age-related diseases.
doi:10.1038/ng.2528
PMCID: PMC4006270  PMID: 23535734
9.  Whole Exome Re-Sequencing Implicates CCDC38 and Cilia Structure and Function in Resistance to Smoking Related Airflow Obstruction 
PLoS Genetics  2014;10(5):e1004314.
Chronic obstructive pulmonary disease (COPD) is a leading cause of global morbidity and mortality and, whilst smoking remains the single most important risk factor, COPD risk is heritable. Of 26 independent genomic regions showing association with lung function in genome-wide association studies, eleven have been reported to show association with airflow obstruction. Although the main risk factor for COPD is smoking, some individuals are observed to have a high forced expired volume in 1 second (FEV1) despite many years of heavy smoking. We hypothesised that these “resistant smokers” may harbour variants which protect against lung function decline caused by smoking and provide insight into the genetic determinants of lung health. We undertook whole exome re-sequencing of 100 heavy smokers who had healthy lung function given their age, sex, height and smoking history and applied three complementary approaches to explore the genetic architecture of smoking resistance. Firstly, we identified novel functional variants in the “resistant smokers” and looked for enrichment of these novel variants within biological pathways. Secondly, we undertook association testing of all exonic variants individually with two independent control sets. Thirdly, we undertook gene-based association testing of all exonic variants. Our strongest signal of association with smoking resistance for a non-synonymous SNP was for rs10859974 (P = 2.34×10−4) in CCDC38, a gene which has previously been reported to show association with FEV1/FVC, and we demonstrate moderate expression of CCDC38 in bronchial epithelial cells. We identified an enrichment of novel putatively functional variants in genes related to cilia structure and function in resistant smokers. Ciliary function abnormalities are known to be associated with both smoking and reduced mucociliary clearance in patients with COPD. We suggest that genetic influences on the development or function of cilia in the bronchial epithelium may affect growth of cilia or the extent of damage caused by tobacco smoke.
Author Summary
Very large genome-wide association studies in general population cohorts have successfully identified at least 26 genes or gene regions associated with lung function and a number of these also show association with chronic obstructive pulmonary disease (COPD). However, these findings explain a small proportion of the heritability of lung function. Although the main risk factor for COPD is smoking, some individuals have normal or good lung function despite many years of heavy smoking. We hypothesised that studying these individuals might tell us more about the genetics of lung health. Re-sequencing of exomes, where all of the variation in the protein-coding portion of the genome can be measured, is a recent approach for the study of low frequency and rare variants. We undertook re-sequencing of the exomes of “resistant smokers” and used publicly available exome data for comparisons. Our findings implicate CCDC38, a gene which has previously shown association with lung function in the general population, and genes involved in cilia structure and lung function as having a role in resistance to smoking.
doi:10.1371/journal.pgen.1004314
PMCID: PMC4006731  PMID: 24786987
10.  Detection of mutations in KLHL3 and CUL3 in families with FHHt (familial hyperkalaemic hypertension or Gordon's syndrome) 
Clinical Science (London, England : 1979)  2014;126(Pt 10):721-726.
The study of families with rare inherited forms of hypo- and hyper-tension has been one of the most successful strategies to probe the molecular pathophysiology of blood pressure control and has revealed dysregulation of distal nephron Na+ reabsorption to be a common mechanism. FHHt (familial hyperkalaemic hypertension; also known as Gordon's syndrome) is a salt-dependent form of hypertension caused by mutations in the regulators of the thiazide-sensitive Na+–Cl− co-transporter NCC [also known as SLC12A3 (solute carrier family 12 member 3)] and is effectively treated by thiazide diuretics and/or dietary salt restriction. Variation in at least four genes can cause FHHt, including WNK1 [With No lysine (=K) 1] and WNK4, KLHL3 (kelch-like family member 3), and CUL3 (cullin 3). In the present study we have identified novel disease-causing variants in CUL3 and KLHL3 segregating in 63% of the pedigrees with previously unexplained FHHt, confirming the importance of these recently described FHHt genes. We have demonstrated conclusively, in two unrelated affected individuals, that rare intronic variants in CUL3 cause the skipping of exon 9 as has been proposed previously. KLHL3 variants all occur in kelch-repeat domains and so probably disrupt WNK complex binding. We have found no evidence of any plausible disease-causing variants within SLC4A8 (an alternative thiazide-sensitive sodium transporter) in this population. The results of the present study support the existing evidence that the CUL3 and KLHL3 gene products are physiologically important regulators of thiazide-sensitive distal nephron NaCl reabsorption, and hence potentially interesting novel anti-hypertensive drug targets. As a third of our non-WNK FHHt families do not have plausible CUL3 or KLHL3 variants, there are probably additional, as yet undiscovered, regulators of the thiazide-sensitive pathways.
The present study has found new mutations in the CUL3 and KLHL3 genes of patients with Gordon's syndrome. CUL3 mutations were shown to cause a defect in the splicing of exon 9. One-third of families with Gordon's syndrome remain without a genetic diagnosis.
doi:10.1042/CS20130326
PMCID: PMC3963521  PMID: 24266877
diuretic; Gordon's syndrome; hypertension; hyperkalaemia; pseudohypoaldosteronism; thiazide; CUL3, cullin 3; FHHt, familial hyperkalaemic hypertension; GAN, gigaxonin; IBD, identity by descent; KLHL3, kelch-like family member 3; NCC, Na+–Cl− co-transporter; NGS, next-generation sequencing; SLC, solute carrier; SNP, single nucleotide polymorphism; SPAK, STE20/SPS1-related proline/alanine-rich kinase; STE20, sterile 20; WNK, With No lysine (=K)
11.  Secretory Phospholipase A2-IIA and Cardiovascular Disease 
Holmes, Michael V. | Simon, Tabassome | Exeter, Holly J. | Folkersen, Lasse | Asselbergs, Folkert W. | Guardiola, Montse | Cooper, Jackie A. | Palmen, Jutta | Hubacek, Jaroslav A. | Carruthers, Kathryn F. | Horne, Benjamin D. | Brunisholz, Kimberly D. | Mega, Jessica L. | van Iperen, Erik P.A. | Li, Mingyao | Leusink, Maarten | Trompet, Stella | Verschuren, Jeffrey J.W. | Hovingh, G. Kees | Dehghan, Abbas | Nelson, Christopher P. | Kotti, Salma | Danchin, Nicolas | Scholz, Markus | Haase, Christiane L. | Rothenbacher, Dietrich | Swerdlow, Daniel I. | Kuchenbaecker, Karoline B. | Staines-Urias, Eleonora | Goel, Anuj | van 't Hooft, Ferdinand | Gertow, Karl | de Faire, Ulf | Panayiotou, Andrie G. | Tremoli, Elena | Baldassarre, Damiano | Veglia, Fabrizio | Holdt, Lesca M. | Beutner, Frank | Gansevoort, Ron T. | Navis, Gerjan J. | Mateo Leach, Irene | Breitling, Lutz P. | Brenner, Hermann | Thiery, Joachim | Dallmeier, Dhayana | Franco-Cereceda, Anders | Boer, Jolanda M.A. | Stephens, Jeffrey W. | Hofker, Marten H. | Tedgui, Alain | Hofman, Albert | Uitterlinden, André G. | Adamkova, Vera | Pitha, Jan | Onland-Moret, N. Charlotte | Cramer, Maarten J. | Nathoe, Hendrik M. | Spiering, Wilko | Klungel, Olaf H. | Kumari, Meena | Whincup, Peter H. | Morrow, David A. | Braund, Peter S. | Hall, Alistair S. | Olsson, Anders G. | Doevendans, Pieter A. | Trip, Mieke D. | Tobin, Martin D. | Hamsten, Anders | Watkins, Hugh | Koenig, Wolfgang | Nicolaides, Andrew N. | Teupser, Daniel | Day, Ian N.M. | Carlquist, John F. | Gaunt, Tom R. | Ford, Ian | Sattar, Naveed | Tsimikas, Sotirios | Schwartz, Gregory G. | Lawlor, Debbie A. | Morris, Richard W. | Sandhu, Manjinder S. | Poledne, Rudolf | Maitland-van der Zee, Anke H. | Khaw, Kay-Tee | Keating, Brendan J. | van der Harst, Pim | Price, Jackie F. | Mehta, Shamir R. | Yusuf, Salim | Witteman, Jaqueline C.M. | Franco, Oscar H. | Jukema, J. Wouter | de Knijff, Peter | Tybjaerg-Hansen, Anne | Rader, Daniel J. | Farrall, Martin | Samani, Nilesh J. | Kivimaki, Mika | Fox, Keith A.A. | Humphries, Steve E. | Anderson, Jeffrey L. | Boekholdt, S. Matthijs | Palmer, Tom M. | Eriksson, Per | Paré, Guillaume | Hingorani, Aroon D. | Sabatine, Marc S. | Mallat, Ziad | Casas, Juan P. | Talmud, Philippa J.
Objectives
This study sought to investigate the role of secretory phospholipase A2 (sPLA2)-IIA in cardiovascular disease.
Background
Higher circulating levels of sPLA2-IIA mass or sPLA2 enzyme activity have been associated with increased risk of cardiovascular events. However, it is not clear if this association is causal. A recent phase III clinical trial of an sPLA2 inhibitor (varespladib) was stopped prematurely for lack of efficacy.
Methods
We conducted a Mendelian randomization meta-analysis of 19 general population studies (8,021 incident, 7,513 prevalent major vascular events [MVE] in 74,683 individuals) and 10 acute coronary syndrome (ACS) cohorts (2,520 recurrent MVE in 18,355 individuals) using rs11573156, a variant in PLA2G2A encoding the sPLA2-IIA isoenzyme, as an instrumental variable.
Results
PLA2G2A rs11573156 C allele associated with lower circulating sPLA2-IIA mass (38% to 44%) and sPLA2 enzyme activity (3% to 23%) per C allele. The odds ratio (OR) for MVE per rs11573156 C allele was 1.02 (95% confidence interval [CI]: 0.98 to 1.06) in general populations and 0.96 (95% CI: 0.90 to 1.03) in ACS cohorts. In the general population studies, the OR derived from the genetic instrumental variable analysis for MVE for a 1-log unit lower sPLA2-IIA mass was 1.04 (95% CI: 0.96 to 1.13), and differed from the non-genetic observational estimate (OR: 0.69; 95% CI: 0.61 to 0.79). In the ACS cohorts, both the genetic instrumental variable and observational ORs showed a null association with MVE. Instrumental variable analysis failed to show associations between sPLA2 enzyme activity and MVE.
Conclusions
Reducing sPLA2-IIA mass is unlikely to be a useful therapeutic goal for preventing cardiovascular events.
doi:10.1016/j.jacc.2013.06.044
PMCID: PMC3826105  PMID: 23916927
cardiovascular diseases; drug development; epidemiology; genetics; Mendelian randomization; ACS, acute coronary syndrome(s); CI, confidence interval; LDL-C, low-density lipoprotein cholesterol; MI, myocardial infarction; MVE, major vascular events; OR, odds ratio; RCT, randomized clinical trial; SNP, single-nucleotide polymorphism; sPLA2, secretory phospholipase A2
12.  Effect of Five Genetic Variants Associated with Lung Function on the Risk of Chronic Obstructive Lung Disease, and Their Joint Effects on Lung Function 
Rationale: Genomic loci are associated with FEV1 or the ratio of FEV1 to FVC in population samples, but their association with chronic obstructive pulmonary disease (COPD) has not yet been proven, nor have their combined effects on lung function and COPD been studied.
Objectives: To test association with COPD of variants at five loci (TNS1, GSTCD, HTR4, AGER, and THSD4) and to evaluate joint effects on lung function and COPD of these single-nucleotide polymorphisms (SNPs), and variants at the previously reported locus near HHIP.
Methods: By sampling from 12 population-based studies (n = 31,422), we obtained genotype data on 3,284 COPD case subjects and 17,538 control subjects for sentinel SNPs in TNS1, GSTCD, HTR4, AGER, and THSD4. In 24,648 individuals (including 2,890 COPD case subjects and 13,862 control subjects), we additionally obtained genotypes for rs12504628 near HHIP. Each allele associated with lung function decline at these six SNPs contributed to a risk score. We studied the association of the risk score to lung function and COPD.
Measurements and Main Results: Association with COPD was significant for three loci (TNS1, GSTCD, and HTR4) and the previously reported HHIP locus, and suggestive and directionally consistent for AGER and TSHD4. Compared with the baseline group (7 risk alleles), carrying 10–12 risk alleles was associated with a reduction in FEV1 (β = –72.21 ml, P = 3.90 × 10−4) and FEV1/FVC (β = –1.53%, P = 6.35 × 10−6), and with COPD (odds ratio = 1.63, P = 1.46 × 10−5).
Conclusions: Variants in TNS1, GSTCD, and HTR4 are associated with COPD. Our highest risk score category was associated with a 1.6-fold higher COPD risk than the population average score.
doi:10.1164/rccm.201102-0192OC
PMCID: PMC3398416  PMID: 21965014
FEV1; FVC; genome-wide association study; modeling risk
13.  Variants near TERC are associated with mean telomere length. 
Nature genetics  2010;42(3):197-199.
We conducted genome-wide association analyses of mean leukocyte telomere length in 2,917 subjects and follow-up replication analyses in 9,492 and identified a locus on 3q26 encompassing the telomerase RNA component TERC, with compelling evidence for association (rs12696304, combined P value 3.72×10−14). Each copy of the minor allele of rs12696304 was associated with ≈75 base pairs shorter mean telomere length equivalent to ≈3.6 years of age-related attrition of mean telomere length.
doi:10.1038/ng.532
PMCID: PMC3773906  PMID: 20139977
14.  Causal and Synthetic Associations of Variants in the SERPINA Gene Cluster with Alpha1-antitrypsin Serum Levels 
PLoS Genetics  2013;9(8):e1003585.
Several infrequent genetic polymorphisms in the SERPINA1 gene are known to substantially reduce concentration of alpha1-antitrypsin (AAT) in the blood. Since low AAT serum levels fail to protect pulmonary tissue from enzymatic degradation, these polymorphisms also increase the risk for early onset chronic obstructive pulmonary disease (COPD). The role of more common SERPINA1 single nucleotide polymorphisms (SNPs) in respiratory health remains poorly understood.
We present here an agnostic investigation of genetic determinants of circulating AAT levels in a general population sample by performing a genome-wide association study (GWAS) in 1392 individuals of the SAPALDIA cohort.
Five common SNPs, defined by showing minor allele frequencies (MAFs) >5%, reached genome-wide significance, all located in the SERPINA gene cluster at 14q32.13. The top-ranking genotyped SNP rs4905179 was associated with an estimated effect of β = −0.068 g/L per minor allele (P = 1.20*10−12). But denser SERPINA1 locus genotyping in 5569 participants with subsequent stepwise conditional analysis, as well as exon-sequencing in a subsample (N = 410), suggested that AAT serum level is causally determined at this locus by rare (MAF<1%) and low-frequent (MAF 1–5%) variants only, in particular by the well-documented protein inhibitor S and Z (PI S, PI Z) variants. Replication of the association of rs4905179 with AAT serum levels in the Copenhagen City Heart Study (N = 8273) was successful (P<0.0001), as was the replication of its synthetic nature (the effect disappeared after adjusting for PI S and Z, P = 0.57). Extending the analysis to lung function revealed a more complex situation. Only in individuals with severely compromised pulmonary health (N = 397), associations of common SNPs at this locus with lung function were driven by rarer PI S or Z variants. Overall, our meta-analysis of lung function in ever-smokers does not support a functional role of common SNPs in the SERPINA gene cluster in the general population.
Author Summary
Low levels of alpha1-antitrypsin (AAT) in the blood are a well-established risk factor for accelerated loss in lung function and chronic obstructive pulmonary disease. While a few infrequent genetic polymorphisms are known to influence the serum levels of this enzyme, the role of common genetic variants has not been examined so far. The present genome-wide scan for associated variants in approximately 1400 Swiss inhabitants revealed a chromosomal locus containing the functionally established variants of AAT deficiency and variants previously associated with lung function and emphysema. We used dense genotyping of this genetic region in more than 5500 individuals and subsequent conditional analyses to unravel which of these associated variants contribute independently to the phenotype's variability. All associations of common variants could be attributed to the rarer functionally established variants, a result which was then replicated in an independent population-based Danish cohort. Hence, this locus represents a textbook example of how a large part of a trait's heritability can be hidden in infrequent genetic polymorphisms. The attempt to transfer these results to lung function furthermore suggests that effects of common variants in this genetic region in ever-smokers may also be explained by rarer variants, but only in individuals with hampered pulmonary health.
doi:10.1371/journal.pgen.1003585
PMCID: PMC3749935  PMID: 23990791
16.  The Role of Adiposity in Cardiometabolic Traits: A Mendelian Randomization Analysis 
Fall, Tove | Hägg, Sara | Mägi, Reedik | Ploner, Alexander | Fischer, Krista | Horikoshi, Momoko | Sarin, Antti-Pekka | Thorleifsson, Gudmar | Ladenvall, Claes | Kals, Mart | Kuningas, Maris | Draisma, Harmen H. M. | Ried, Janina S. | van Zuydam, Natalie R. | Huikari, Ville | Mangino, Massimo | Sonestedt, Emily | Benyamin, Beben | Nelson, Christopher P. | Rivera, Natalia V. | Kristiansson, Kati | Shen, Huei-yi | Havulinna, Aki S. | Dehghan, Abbas | Donnelly, Louise A. | Kaakinen, Marika | Nuotio, Marja-Liisa | Robertson, Neil | de Bruijn, Renée F. A. G. | Ikram, M. Arfan | Amin, Najaf | Balmforth, Anthony J. | Braund, Peter S. | Doney, Alexander S. F. | Döring, Angela | Elliott, Paul | Esko, Tõnu | Franco, Oscar H. | Gretarsdottir, Solveig | Hartikainen, Anna-Liisa | Heikkilä, Kauko | Herzig, Karl-Heinz | Holm, Hilma | Hottenga, Jouke Jan | Hyppönen, Elina | Illig, Thomas | Isaacs, Aaron | Isomaa, Bo | Karssen, Lennart C. | Kettunen, Johannes | Koenig, Wolfgang | Kuulasmaa, Kari | Laatikainen, Tiina | Laitinen, Jaana | Lindgren, Cecilia | Lyssenko, Valeriya | Läärä, Esa | Rayner, Nigel W. | Männistö, Satu | Pouta, Anneli | Rathmann, Wolfgang | Rivadeneira, Fernando | Ruokonen, Aimo | Savolainen, Markku J. | Sijbrands, Eric J. G. | Small, Kerrin S. | Smit, Jan H. | Steinthorsdottir, Valgerdur | Syvänen, Ann-Christine | Taanila, Anja | Tobin, Martin D. | Uitterlinden, Andre G. | Willems, Sara M. | Willemsen, Gonneke | Witteman, Jacqueline | Perola, Markus | Evans, Alun | Ferrières, Jean | Virtamo, Jarmo | Kee, Frank | Tregouet, David-Alexandre | Arveiler, Dominique | Amouyel, Philippe | Ferrario, Marco M. | Brambilla, Paolo | Hall, Alistair S. | Heath, Andrew C. | Madden, Pamela A. F. | Martin, Nicholas G. | Montgomery, Grant W. | Whitfield, John B. | Jula, Antti | Knekt, Paul | Oostra, Ben | van Duijn, Cornelia M. | Penninx, Brenda W. J. H. | Davey Smith, George | Kaprio, Jaakko | Samani, Nilesh J. | Gieger, Christian | Peters, Annette | Wichmann, H.-Erich | Boomsma, Dorret I. | de Geus, Eco J. C. | Tuomi, TiinaMaija | Power, Chris | Hammond, Christopher J. | Spector, Tim D. | Lind, Lars | Orho-Melander, Marju | Palmer, Colin Neil Alexander | Morris, Andrew D. | Groop, Leif | Järvelin, Marjo-Riitta | Salomaa, Veikko | Vartiainen, Erkki | Hofman, Albert | Ripatti, Samuli | Metspalu, Andres | Thorsteinsdottir, Unnur | Stefansson, Kari | Pedersen, Nancy L. | McCarthy, Mark I. | Ingelsson, Erik | Prokopenko, Inga
PLoS Medicine  2013;10(6):e1001474.
In this study, Prokopenko and colleagues provide novel evidence for causal relationship between adiposity and heart failure and increased liver enzymes using a Mendelian randomization study design.
Please see later in the article for the Editors' Summary
Background
The association between adiposity and cardiometabolic traits is well known from epidemiological studies. Whilst the causal relationship is clear for some of these traits, for others it is not. We aimed to determine whether adiposity is causally related to various cardiometabolic traits using the Mendelian randomization approach.
Methods and Findings
We used the adiposity-associated variant rs9939609 at the FTO locus as an instrumental variable (IV) for body mass index (BMI) in a Mendelian randomization design. Thirty-six population-based studies of individuals of European descent contributed to the analyses.
Age- and sex-adjusted regression models were fitted to test for association between (i) rs9939609 and BMI (n = 198,502), (ii) rs9939609 and 24 traits, and (iii) BMI and 24 traits. The causal effect of BMI on the outcome measures was quantified by IV estimators. The estimators were compared to the BMI–trait associations derived from the same individuals. In the IV analysis, we demonstrated novel evidence for a causal relationship between adiposity and incident heart failure (hazard ratio, 1.19 per BMI-unit increase; 95% CI, 1.03–1.39) and replicated earlier reports of a causal association with type 2 diabetes, metabolic syndrome, dyslipidemia, and hypertension (odds ratio for IV estimator, 1.1–1.4; all p<0.05). For quantitative traits, our results provide novel evidence for a causal effect of adiposity on the liver enzymes alanine aminotransferase and gamma-glutamyl transferase and confirm previous reports of a causal effect of adiposity on systolic and diastolic blood pressure, fasting insulin, 2-h post-load glucose from the oral glucose tolerance test, C-reactive protein, triglycerides, and high-density lipoprotein cholesterol levels (all p<0.05). The estimated causal effects were in agreement with traditional observational measures in all instances except for type 2 diabetes, where the causal estimate was larger than the observational estimate (p = 0.001).
Conclusions
We provide novel evidence for a causal relationship between adiposity and heart failure as well as between adiposity and increased liver enzymes.
Please see later in the article for the Editors' Summary
Editors' Summary
Cardiovascular disease (CVD)—disease that affects the heart and/or the blood vessels—is a major cause of illness and death worldwide. In the US, for example, coronary heart disease—a CVD in which narrowing of the heart's blood vessels by fatty deposits slows the blood supply to the heart and may eventually cause a heart attack—is the leading cause of death, and stroke—a CVD in which the brain's blood supply is interrupted—is the fourth leading cause of death. Globally, both the incidence of CVD (the number of new cases in a population every year) and its prevalence (the proportion of the population with CVD) are increasing, particularly in low- and middle-income countries. This increasing burden of CVD is occurring in parallel with a global increase in the incidence and prevalence of obesity—having an unhealthy amount of body fat (adiposity)—and of metabolic diseases—conditions such as diabetes in which metabolism (the processes that the body uses to make energy from food) is disrupted, with resulting high blood sugar and damage to the blood vessels.
Why Was This Study Done?
Epidemiological studies—investigations that record the patterns and causes of disease in populations—have reported an association between adiposity (indicated by an increased body mass index [BMI], which is calculated by dividing body weight in kilograms by height in meters squared) and cardiometabolic traits such as coronary heart disease, stroke, heart failure (a condition in which the heart is incapable of pumping sufficient amounts of blood around the body), diabetes, high blood pressure (hypertension), and high blood cholesterol (dyslipidemia). However, observational studies cannot prove that adiposity causes any particular cardiometabolic trait because overweight individuals may share other characteristics (confounding factors) that are the real causes of both obesity and the cardiometabolic disease. Moreover, it is possible that having CVD or a metabolic disease causes obesity (reverse causation). For example, individuals with heart failure cannot do much exercise, so heart failure may cause obesity rather than vice versa. Here, the researchers use “Mendelian randomization” to examine whether adiposity is causally related to various cardiometabolic traits. Because gene variants are inherited randomly, they are not prone to confounding and are free from reverse causation. It is known that a genetic variant (rs9939609) within the genome region that encodes the fat-mass- and obesity-associated gene (FTO) is associated with increased BMI. Thus, an investigation of the associations between rs9939609 and cardiometabolic traits can indicate whether obesity is causally related to these traits.
What Did the Researchers Do and Find?
The researchers analyzed the association between rs9939609 (the “instrumental variable,” or IV) and BMI, between rs9939609 and 24 cardiometabolic traits, and between BMI and the same traits using genetic and health data collected in 36 population-based studies of nearly 200,000 individuals of European descent. They then quantified the strength of the causal association between BMI and the cardiometabolic traits by calculating “IV estimators.” Higher BMI showed a causal relationship with heart failure, metabolic syndrome (a combination of medical disorders that increases the risk of developing CVD), type 2 diabetes, dyslipidemia, hypertension, increased blood levels of liver enzymes (an indicator of liver damage; some metabolic disorders involve liver damage), and several other cardiometabolic traits. All the IV estimators were similar to the BMI–cardiovascular trait associations (observational estimates) derived from the same individuals, with the exception of diabetes, where the causal estimate was higher than the observational estimate, probably because the observational estimate is based on a single BMI measurement, whereas the causal estimate considers lifetime changes in BMI.
What Do These Findings Mean?
Like all Mendelian randomization studies, the reliability of the causal associations reported here depends on several assumptions made by the researchers. Nevertheless, these findings provide support for many previously suspected and biologically plausible causal relationships, such as that between adiposity and hypertension. They also provide new insights into the causal effect of obesity on liver enzyme levels and on heart failure. In the latter case, these findings suggest that a one-unit increase in BMI might increase the incidence of heart failure by 17%. In the US, this corresponds to 113,000 additional cases of heart failure for every unit increase in BMI at the population level. Although additional studies are needed to confirm and extend these findings, these results suggest that global efforts to reduce the burden of obesity will likely also reduce the occurrence of CVD and metabolic disorders.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001474.
The American Heart Association provides information on all aspects of cardiovascular disease and tips on keeping the heart healthy, including weight management (in several languages); its website includes personal stories about stroke and heart attacks
The US Centers for Disease Control and Prevention has information on heart disease, stroke, and all aspects of overweight and obesity (in English and Spanish)
The UK National Health Service Choices website provides information about cardiovascular disease and obesity, including a personal story about losing weight
The World Health Organization provides information on obesity (in several languages)
The International Obesity Taskforce provides information about the global obesity epidemic
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
MedlinePlus provides links to other sources of information on heart disease, on vascular disease, on obesity, and on metabolic disorders (in English and Spanish)
The International Association for the Study of Obesity provides maps and information about obesity worldwide
The International Diabetes Federation has a web page that describes types, complications, and risk factors of diabetes
doi:10.1371/journal.pmed.1001474
PMCID: PMC3692470  PMID: 23824655
17.  Genome-Wide Association Studies Identify CHRNA5/3 and HTR4 in the Development of Airflow Obstruction 
Wilk, Jemma B. | Shrine, Nick R. G. | Loehr, Laura R. | Zhao, Jing Hua | Manichaikul, Ani | Lopez, Lorna M. | Smith, Albert Vernon | Heckbert, Susan R. | Smolonska, Joanna | Tang, Wenbo | Loth, Daan W. | Curjuric, Ivan | Hui, Jennie | Cho, Michael H. | Latourelle, Jeanne C. | Henry, Amanda P. | Aldrich, Melinda | Bakke, Per | Beaty, Terri H. | Bentley, Amy R. | Borecki, Ingrid B. | Brusselle, Guy G. | Burkart, Kristin M. | Chen, Ting-hsu | Couper, David | Crapo, James D. | Davies, Gail | Dupuis, Josée | Franceschini, Nora | Gulsvik, Amund | Hancock, Dana B. | Harris, Tamara B. | Hofman, Albert | Imboden, Medea | James, Alan L. | Khaw, Kay-Tee | Lahousse, Lies | Launer, Lenore J. | Litonjua, Augusto | Liu, Yongmei | Lohman, Kurt K. | Lomas, David A. | Lumley, Thomas | Marciante, Kristin D. | McArdle, Wendy L. | Meibohm, Bernd | Morrison, Alanna C. | Musk, Arthur W. | Myers, Richard H. | North, Kari E. | Postma, Dirkje S. | Psaty, Bruce M. | Rich, Stephen S. | Rivadeneira, Fernando | Rochat, Thierry | Rotter, Jerome I. | Artigas, María Soler | Starr, John M. | Uitterlinden, André G. | Wareham, Nicholas J. | Wijmenga, Cisca | Zanen, Pieter | Province, Michael A. | Silverman, Edwin K. | Deary, Ian J. | Palmer, Lyle J. | Cassano, Patricia A. | Gudnason, Vilmundur | Barr, R. Graham | Loos, Ruth J. F. | Strachan, David P. | London, Stephanie J. | Boezen, H. Marike | Probst-Hensch, Nicole | Gharib, Sina A. | Hall, Ian P. | O’Connor, George T. | Tobin, Martin D. | Stricker, Bruno H.
Rationale: Genome-wide association studies (GWAS) have identified loci influencing lung function, but fewer genes influencing chronic obstructive pulmonary disease (COPD) are known.
Objectives: Perform meta-analyses of GWAS for airflow obstruction, a key pathophysiologic characteristic of COPD assessed by spirometry, in population-based cohorts examining all participants, ever smokers, never smokers, asthma-free participants, and more severe cases.
Methods: Fifteen cohorts were studied for discovery (3,368 affected; 29,507 unaffected), and a population-based family study and a meta-analysis of case-control studies were used for replication and regional follow-up (3,837 cases; 4,479 control subjects). Airflow obstruction was defined as FEV1 and its ratio to FVC (FEV1/FVC) both less than their respective lower limits of normal as determined by published reference equations.
Measurements and Main Results: The discovery meta-analyses identified one region on chromosome 15q25.1 meeting genome-wide significance in ever smokers that includes AGPHD1, IREB2, and CHRNA5/CHRNA3 genes. The region was also modestly associated among never smokers. Gene expression studies confirmed the presence of CHRNA5/3 in lung, airway smooth muscle, and bronchial epithelial cells. A single-nucleotide polymorphism in HTR4, a gene previously related to FEV1/FVC, achieved genome-wide statistical significance in combined meta-analysis. Top single-nucleotide polymorphisms in ADAM19, RARB, PPAP2B, and ADAMTS19 were nominally replicated in the COPD meta-analysis.
Conclusions: These results suggest an important role for the CHRNA5/3 region as a genetic risk factor for airflow obstruction that may be independent of smoking and implicate the HTR4 gene in the etiology of airflow obstruction.
doi:10.1164/rccm.201202-0366OC
PMCID: PMC3480517  PMID: 22837378
chronic obstructive pulmonary disease; single-nucleotide polymorphism; genes
18.  Pedigree and genotyping quality analyses of over 10,000 DNA samples from the Generation Scotland: Scottish Family Health Study 
BMC Medical Genetics  2013;14:38.
Background
Generation Scotland: Scottish Family Health Study (GS:SFHS) is a family-based biobank of 24,000 participants with rich phenotype and DNA available for genetic research. This paper describes the laboratory results from genotyping 32 single nucleotide polymorphisms (SNPs) on DNA from over 10,000 participants who attended GS:SFHS research clinics. The analysis described here was undertaken to test the quality of genetic information available to researchers. The success rate of each marker genotyped (call rate), minor allele frequency and adherence to Mendelian inheritance are presented. The few deviations in marker transmission in the 925 parent-child trios analysed were assessed as to whether they were likely to be miscalled genotypes, data or sample handling errors, or pedigree inaccuracies including non-paternity.
Methods
The first 10,450 GS:SFHS clinic participants who had spirometry and smoking data available and DNA extracted were selected. 32 SNPs were assayed, chosen as part of a replication experiment from a Genome-Wide Association Study meta-analysis of lung function.
Results
In total 325,336 genotypes were returned. The overall project pass rate (32 SNPs on 10,450 samples) was 97.29%. A total of 925 parent-child trios were assessed for transmission of the SNP markers, with 16 trios indicating evidence of inconsistency in the recorded pedigrees.
Conclusions
The Generation Scotland: Scottish Family Health Study used well-validated study methods and can produce good quality genetic data, with a low error rate. The GS:SFHS DNA samples are of high quality and the family groups were recorded and processed with accuracy during collection of the cohort.
doi:10.1186/1471-2350-14-38
PMCID: PMC3614907  PMID: 23521772
Genetics; SNP Genotyping; Parent-child trios; Error rate; Non paternity; Generation Scotland; Biobank
19.  Genome-Wide Joint Meta-Analysis of SNP and SNP-by-Smoking Interaction Identifies Novel Loci for Pulmonary Function 
Hancock, Dana B. | Artigas, María Soler | Gharib, Sina A. | Henry, Amanda | Manichaikul, Ani | Ramasamy, Adaikalavan | Loth, Daan W. | Imboden, Medea | Koch, Beate | McArdle, Wendy L. | Smith, Albert V. | Smolonska, Joanna | Sood, Akshay | Tang, Wenbo | Wilk, Jemma B. | Zhai, Guangju | Zhao, Jing Hua | Aschard, Hugues | Burkart, Kristin M. | Curjuric, Ivan | Eijgelsheim, Mark | Elliott, Paul | Gu, Xiangjun | Harris, Tamara B. | Janson, Christer | Homuth, Georg | Hysi, Pirro G. | Liu, Jason Z. | Loehr, Laura R. | Lohman, Kurt | Loos, Ruth J. F. | Manning, Alisa K. | Marciante, Kristin D. | Obeidat, Ma'en | Postma, Dirkje S. | Aldrich, Melinda C. | Brusselle, Guy G. | Chen, Ting-hsu | Eiriksdottir, Gudny | Franceschini, Nora | Heinrich, Joachim | Rotter, Jerome I. | Wijmenga, Cisca | Williams, O. Dale | Bentley, Amy R. | Hofman, Albert | Laurie, Cathy C. | Lumley, Thomas | Morrison, Alanna C. | Joubert, Bonnie R. | Rivadeneira, Fernando | Couper, David J. | Kritchevsky, Stephen B. | Liu, Yongmei | Wjst, Matthias | Wain, Louise V. | Vonk, Judith M. | Uitterlinden, André G. | Rochat, Thierry | Rich, Stephen S. | Psaty, Bruce M. | O'Connor, George T. | North, Kari E. | Mirel, Daniel B. | Meibohm, Bernd | Launer, Lenore J. | Khaw, Kay-Tee | Hartikainen, Anna-Liisa | Hammond, Christopher J. | Gläser, Sven | Marchini, Jonathan | Kraft, Peter | Wareham, Nicholas J. | Völzke, Henry | Stricker, Bruno H. C. | Spector, Timothy D. | Probst-Hensch, Nicole M. | Jarvis, Deborah | Jarvelin, Marjo-Riitta | Heckbert, Susan R. | Gudnason, Vilmundur | Boezen, H. Marike | Barr, R. Graham | Cassano, Patricia A. | Strachan, David P. | Fornage, Myriam | Hall, Ian P. | Dupuis, Josée | Tobin, Martin D. | London, Stephanie J.
PLoS Genetics  2012;8(12):e1003098.
Genome-wide association studies have identified numerous genetic loci for spirometic measures of pulmonary function, forced expiratory volume in one second (FEV1), and its ratio to forced vital capacity (FEV1/FVC). Given that cigarette smoking adversely affects pulmonary function, we conducted genome-wide joint meta-analyses (JMA) of single nucleotide polymorphism (SNP) and SNP-by-smoking (ever-smoking or pack-years) associations on FEV1 and FEV1/FVC across 19 studies (total N = 50,047). We identified three novel loci not previously associated with pulmonary function. SNPs in or near DNER (smallest PJMA = 5.00×10−11), HLA-DQB1 and HLA-DQA2 (smallest PJMA = 4.35×10−9), and KCNJ2 and SOX9 (smallest PJMA = 1.28×10−8) were associated with FEV1/FVC or FEV1 in meta-analysis models including SNP main effects, smoking main effects, and SNP-by-smoking (ever-smoking or pack-years) interaction. The HLA region has been widely implicated for autoimmune and lung phenotypes, unlike the other novel loci, which have not been widely implicated. We evaluated DNER, KCNJ2, and SOX9 and found them to be expressed in human lung tissue. DNER and SOX9 further showed evidence of differential expression in human airway epithelium in smokers compared to non-smokers. Our findings demonstrated that joint testing of SNP and SNP-by-environment interaction identified novel loci associated with complex traits that are missed when considering only the genetic main effects.
Author Summary
Measures of pulmonary function provide important clinical tools for evaluating lung disease and its progression. Genome-wide association studies have identified numerous genetic risk factors for pulmonary function but have not considered interaction with cigarette smoking, which has consistently been shown to adversely impact pulmonary function. In over 50,000 study participants of European descent, we applied a recently developed joint meta-analysis method to simultaneously test associations of gene and gene-by-smoking interactions in relation to two major clinical measures of pulmonary function. Using this joint method to incorporate genetic main effects plus gene-by-smoking interaction, we identified three novel gene regions not previously related to pulmonary function: (1) DNER, (2) HLA-DQB1 and HLA-DQA2, and (3) KCNJ2 and SOX9. Expression analyses in human lung tissue from ours or prior studies indicate that these regions contain genes that are plausibly involved in pulmonary function. This work highlights the utility of employing novel methods for incorporating environmental interaction in genome-wide association studies to identify novel genetic regions.
doi:10.1371/journal.pgen.1003098
PMCID: PMC3527213  PMID: 23284291
20.  Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure 
Wain, Louise V | Verwoert, Germaine C | O’Reilly, Paul F | Shi, Gang | Johnson, Toby | Johnson, Andrew D | Bochud, Murielle | Rice, Kenneth M | Henneman, Peter | Smith, Albert V | Ehret, Georg B | Amin, Najaf | Larson, Martin G | Mooser, Vincent | Hadley, David | Dörr, Marcus | Bis, Joshua C | Aspelund, Thor | Esko, Tõnu | Janssens, A Cecile JW | Zhao, Jing Hua | Heath, Simon | Laan, Maris | Fu, Jingyuan | Pistis, Giorgio | Luan, Jian’an | Arora, Pankaj | Lucas, Gavin | Pirastu, Nicola | Pichler, Irene | Jackson, Anne U | Webster, Rebecca J | Zhang, Feng | Peden, John F | Schmidt, Helena | Tanaka, Toshiko | Campbell, Harry | Igl, Wilmar | Milaneschi, Yuri | Hotteng, Jouke-Jan | Vitart, Veronique | Chasman, Daniel I | Trompet, Stella | Bragg-Gresham, Jennifer L | Alizadeh, Behrooz Z | Chambers, John C | Guo, Xiuqing | Lehtimäki, Terho | Kühnel, Brigitte | Lopez, Lorna M | Polašek, Ozren | Boban, Mladen | Nelson, Christopher P | Morrison, Alanna C | Pihur, Vasyl | Ganesh, Santhi K | Hofman, Albert | Kundu, Suman | Mattace-Raso, Francesco US | Rivadeneira, Fernando | Sijbrands, Eric JG | Uitterlinden, Andre G | Hwang, Shih-Jen | Vasan, Ramachandran S | Wang, Thomas J | Bergmann, Sven | Vollenweider, Peter | Waeber, Gérard | Laitinen, Jaana | Pouta, Anneli | Zitting, Paavo | McArdle, Wendy L | Kroemer, Heyo K | Völker, Uwe | Völzke, Henry | Glazer, Nicole L | Taylor, Kent D | Harris, Tamara B | Alavere, Helene | Haller, Toomas | Keis, Aime | Tammesoo, Mari-Liis | Aulchenko, Yurii | Barroso, Inês | Khaw, Kay-Tee | Galan, Pilar | Hercberg, Serge | Lathrop, Mark | Eyheramendy, Susana | Org, Elin | Sõber, Siim | Lu, Xiaowen | Nolte, Ilja M | Penninx, Brenda W | Corre, Tanguy | Masciullo, Corrado | Sala, Cinzia | Groop, Leif | Voight, Benjamin F | Melander, Olle | O’Donnell, Christopher J | Salomaa, Veikko | d’Adamo, Adamo Pio | Fabretto, Antonella | Faletra, Flavio | Ulivi, Sheila | Del Greco, M Fabiola | Facheris, Maurizio | Collins, Francis S | Bergman, Richard N | Beilby, John P | Hung, Joseph | Musk, A William | Mangino, Massimo | Shin, So-Youn | Soranzo, Nicole | Watkins, Hugh | Goel, Anuj | Hamsten, Anders | Gider, Pierre | Loitfelder, Marisa | Zeginigg, Marion | Hernandez, Dena | Najjar, Samer S | Navarro, Pau | Wild, Sarah H | Corsi, Anna Maria | Singleton, Andrew | de Geus, Eco JC | Willemsen, Gonneke | Parker, Alex N | Rose, Lynda M | Buckley, Brendan | Stott, David | Orru, Marco | Uda, Manuela | van der Klauw, Melanie M | Zhang, Weihua | Li, Xinzhong | Scott, James | Chen, Yii-Der Ida | Burke, Gregory L | Kähönen, Mika | Viikari, Jorma | Döring, Angela | Meitinger, Thomas | Davies, Gail | Starr, John M | Emilsson, Valur | Plump, Andrew | Lindeman, Jan H | ’t Hoen, Peter AC | König, Inke R | Felix, Janine F | Clarke, Robert | Hopewell, Jemma C | Ongen, Halit | Breteler, Monique | Debette, Stéphanie | DeStefano, Anita L | Fornage, Myriam | Mitchell, Gary F | Smith, Nicholas L | Holm, Hilma | Stefansson, Kari | Thorleifsson, Gudmar | Thorsteinsdottir, Unnur | Samani, Nilesh J | Preuss, Michael | Rudan, Igor | Hayward, Caroline | Deary, Ian J | Wichmann, H-Erich | Raitakari, Olli T | Palmas, Walter | Kooner, Jaspal S | Stolk, Ronald P | Jukema, J Wouter | Wright, Alan F | Boomsma, Dorret I | Bandinelli, Stefania | Gyllensten, Ulf B | Wilson, James F | Ferrucci, Luigi | Schmidt, Reinhold | Farrall, Martin | Spector, Tim D | Palmer, Lyle J | Tuomilehto, Jaakko | Pfeufer, Arne | Gasparini, Paolo | Siscovick, David | Altshuler, David | Loos, Ruth JF | Toniolo, Daniela | Snieder, Harold | Gieger, Christian | Meneton, Pierre | Wareham, Nicholas J | Oostra, Ben A | Metspalu, Andres | Launer, Lenore | Rettig, Rainer | Strachan, David P | Beckmann, Jacques S | Witteman, Jacqueline CM | Erdmann, Jeanette | van Dijk, Ko Willems | Boerwinkle, Eric | Boehnke, Michael | Ridker, Paul M | Jarvelin, Marjo-Riitta | Chakravarti, Aravinda | Abecasis, Goncalo R | Gudnason, Vilmundur | Newton-Cheh, Christopher | Levy, Daniel | Munroe, Patricia B | Psaty, Bruce M | Caulfield, Mark J | Rao, Dabeeru C | Tobin, Martin D | Elliott, Paul | van Duijn, Cornelia M
Nature genetics  2011;43(10):1005-1011.
Numerous genetic loci influence systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans 1-3. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N=74,064) and follow-up studies (N=48,607), we identified at genome-wide significance (P= 2.7×10-8 to P=2.3×10-13) four novel PP loci (at 4q12 near CHIC2/PDGFRAI, 7q22.3 near PIK3CG, 8q24.12 in NOV, 11q24.3 near ADAMTS-8), two novel MAP loci (3p21.31 in MAP4, 10q25.3 near ADRB1) and one locus associated with both traits (2q24.3 near FIGN) which has recently been associated with SBP in east Asians. For three of the novel PP signals, the estimated effect for SBP was opposite to that for DBP, in contrast to the majority of common SBP- and DBP-associated variants which show concordant effects on both traits. These findings indicate novel genetic mechanisms underlying blood pressure variation, including pathways that may differentially influence SBP and DBP.
doi:10.1038/ng.922
PMCID: PMC3445021  PMID: 21909110
21.  Genome-wide association and large scale follow-up identifies 16 new loci influencing lung function 
Artigas, María Soler | Loth, Daan W | Wain, Louise V | Gharib, Sina A | Obeidat, Ma’en | Tang, Wenbo | Zhai, Guangju | Zhao, Jing Hua | Smith, Albert Vernon | Huffman, Jennifer E | Albrecht, Eva | Jackson, Catherine M | Evans, David M | Cadby, Gemma | Fornage, Myriam | Manichaikul, Ani | Lopez, Lorna M | Johnson, Toby | Aldrich, Melinda C | Aspelund, Thor | Barroso, Inês | Campbell, Harry | Cassano, Patricia A | Couper, David J | Eiriksdottir, Gudny | Franceschini, Nora | Garcia, Melissa | Gieger, Christian | Gislason, Gauti Kjartan | Grkovic, Ivica | Hammond, Christopher J | Hancock, Dana B | Harris, Tamara B | Ramasamy, Adaikalavan | Heckbert, Susan R | Heliövaara, Markku | Homuth, Georg | Hysi, Pirro G | James, Alan L | Jankovic, Stipan | Joubert, Bonnie R | Karrasch, Stefan | Klopp, Norman | Koch, Beate | Kritchevsky, Stephen B | Launer, Lenore J | Liu, Yongmei | Loehr, Laura R | Lohman, Kurt | Loos, Ruth JF | Lumley, Thomas | Al Balushi, Khalid A | Ang, Wei Q | Barr, R Graham | Beilby, John | Blakey, John D | Boban, Mladen | Boraska, Vesna | Brisman, Jonas | Britton, John R | Brusselle, Guy G | Cooper, Cyrus | Curjuric, Ivan | Dahgam, Santosh | Deary, Ian J | Ebrahim, Shah | Eijgelsheim, Mark | Francks, Clyde | Gaysina, Darya | Granell, Raquel | Gu, Xiangjun | Hankinson, John L | Hardy, Rebecca | Harris, Sarah E | Henderson, John | Henry, Amanda | Hingorani, Aroon D | Hofman, Albert | Holt, Patrick G | Hui, Jennie | Hunter, Michael L | Imboden, Medea | Jameson, Karen A | Kerr, Shona M | Kolcic, Ivana | Kronenberg, Florian | Liu, Jason Z | Marchini, Jonathan | McKeever, Tricia | Morris, Andrew D | Olin, Anna-Carin | Porteous, David J | Postma, Dirkje S | Rich, Stephen S | Ring, Susan M | Rivadeneira, Fernando | Rochat, Thierry | Sayer, Avan Aihie | Sayers, Ian | Sly, Peter D | Smith, George Davey | Sood, Akshay | Starr, John M | Uitterlinden, André G | Vonk, Judith M | Wannamethee, S Goya | Whincup, Peter H | Wijmenga, Cisca | Williams, O Dale | Wong, Andrew | Mangino, Massimo | Marciante, Kristin D | McArdle, Wendy L | Meibohm, Bernd | Morrison, Alanna C | North, Kari E | Omenaas, Ernst | Palmer, Lyle J | Pietiläinen, Kirsi H | Pin, Isabelle | Polašek, Ozren | Pouta, Anneli | Psaty, Bruce M | Hartikainen, Anna-Liisa | Rantanen, Taina | Ripatti, Samuli | Rotter, Jerome I | Rudan, Igor | Rudnicka, Alicja R | Schulz, Holger | Shin, So-Youn | Spector, Tim D | Surakka, Ida | Vitart, Veronique | Völzke, Henry | Wareham, Nicholas J | Warrington, Nicole M | Wichmann, H-Erich | Wild, Sarah H | Wilk, Jemma B | Wjst, Matthias | Wright, Alan F | Zgaga, Lina | Zemunik, Tatijana | Pennell, Craig E | Nyberg, Fredrik | Kuh, Diana | Holloway, John W | Boezen, H Marike | Lawlor, Debbie A | Morris, Richard W | Probst-Hensch, Nicole | Kaprio, Jaakko | Wilson, James F | Hayward, Caroline | Kähönen, Mika | Heinrich, Joachim | Musk, Arthur W | Jarvis, Deborah L | Gläser, Sven | Järvelin, Marjo-Riitta | Stricker, Bruno H Ch | Elliott, Paul | O’Connor, George T | Strachan, David P | London, Stephanie J | Hall, Ian P | Gudnason, Vilmundur | Tobin, Martin D
Nature Genetics  2011;43(11):1082-1090.
Pulmonary function measures reflect respiratory health and predict mortality, and are used in the diagnosis of chronic obstructive pulmonary disease (COPD). We tested genome-wide association with the forced expiratory volume in 1 second (FEV1) and the ratio of FEV1 to forced vital capacity (FVC) in 48,201 individuals of European ancestry, with follow-up of top associations in up to an additional 46,411 individuals. We identified new regions showing association (combined P<5×10−8) with pulmonary function, in or near MFAP2, TGFB2, HDAC4, RARB, MECOM (EVI1), SPATA9, ARMC2, NCR3, ZKSCAN3, CDC123, C10orf11, LRP1, CCDC38, MMP15, CFDP1, and KCNE2. Identification of these 16 new loci may provide insight into the molecular mechanisms regulating pulmonary function and into molecular targets for future therapy to alleviate reduced lung function.
doi:10.1038/ng.941
PMCID: PMC3267376  PMID: 21946350
22.  Dense Genotyping of Candidate Gene Loci Identifies Variants Associated with High-Density Lipoprotein Cholesterol 
Background
Plasma levels of high density lipoprotein cholesterol (HDL-C) are known to be heritable, but only a fraction of the heritability is explained. We used a high density genotyping array containing SNPs from HDL-C candidate genes selected on known biology of HDL-C metabolism, mouse genetic studies, and human genetic association studies. SNP selection was based on tagging-SNPs but also included low-frequency nonsynonymous SNPs.
Methods and Results
Association analysis in a cohort containing extremes of HDL-C (case-control, n=1733) provided a discovery phase, with replication in three additional populations for a total meta-analysis in 7,857 individuals. We replicated the majority of loci identified through genome wide association studies and present on the array (including ABCA1, APOA1/C3/A4/A5, APOB, APOE/C1/C2, CETP, CTCF-PRMT8, FADS1/2/3, GALNT2, LCAT, LILRA3, LIPC, LIPG, LPL, LRP4, SCARB1, TRIB1, ZNF664), and provide evidence suggestive of association in several previously unreported candidate gene loci (including ABCG1, GPR109A/B/81, NFKB1, PON1/2/3/4). There was evidence for multiple, independent association signals in five loci, including association with low frequency nonsynonymous variants.
Conclusions
Genetic loci associated with HDL-C are likely to harbor multiple, independent causative variants, frequently with opposite effects on the HDL-C phenotype. Cohorts composed of extreme individuals may be efficiently used in a case-control discovery of quantitative traits.
doi:10.1161/CIRCGENETICS.110.957563
PMCID: PMC3319351  PMID: 21303902
lipids; genetic association; HDL cholesterol; cardiovascular diseases
23.  GENETIC ARCHITECTURE OF AMBULATORY BLOOD PRESSURE IN THE GENERAL POPULATION – INSIGHTS FROM CARDIOVASCULAR GENE-CENTRIC ARRAY 
Hypertension  2010;56(6):1069-1076.
Genetic determinants of blood pressure are poorly defined. We undertook a large-scale gene-centric analysis to identify loci and pathways associated with ambulatory systolic and diastolic blood pressure.
We measured 24-hour ambulatory BP in 2020 individuals from 520 white European nuclear families (the GRAPHIC Study) and genotyped their DNA using the Illumina HumanCVD BeadChip array which contains approximately 50000 single nucleotide polymorphisms in >2000 cardiovascular candidate loci. We found a strong association between rs13306560 polymorphism in the promoter region of MTHFR and CLCN6 and mean 24-hour diastolic blood pressure - each minor allele copy of rs13306560 was associated with 2.6 mmHg lower mean 24-hour diastolic blood pressure (P=1.2×10−8). rs13306560 was also associated with clinic diastolic blood pressure in a combined analysis of 8129 subjects from the GRAPHIC Study, the CoLaus Study and the Silesian Cardiovascular Study (P=5.4×10−6). Additional analysis of associations between variants in Gene Ontology-defined pathways and mean 24-hour blood pressure in the GRAPHIC Study showed that cell survival control signalling cascades could play a role in blood pressure regulation. There was also a significant over-representation of rare variants (minor allele frequency <0.05) amongst polymorphisms showing at least nominal association with mean 24-hour blood pressure indicating that a considerable proportion of its heritability may be explained by uncommon alleles.
Through a large scale gene-centric analysis of ambulatory blood pressure, we identified an association of a novel variant at the MTHFR/CLNC6 locus with diastolic blood pressure and provided new insights into the genetic architecture of blood pressure.
doi:10.1161/HYPERTENSIONAHA.110.155721
PMCID: PMC3035934  PMID: 21060006
gene; genetics; blood pressure; single nucleotide polymorphism; association; heritability
24.  A Comprehensive Evaluation of Potential Lung Function Associated Genes in the SpiroMeta General Population Sample 
PLoS ONE  2011;6(5):e19382.
Rationale
Lung function measures are heritable traits that predict population morbidity and mortality and are essential for the diagnosis of chronic obstructive pulmonary disease (COPD). Variations in many genes have been reported to affect these traits, but attempts at replication have provided conflicting results. Recently, we undertook a meta-analysis of Genome Wide Association Study (GWAS) results for lung function measures in 20,288 individuals from the general population (the SpiroMeta consortium).
Objectives
To comprehensively analyse previously reported genetic associations with lung function measures, and to investigate whether single nucleotide polymorphisms (SNPs) in these genomic regions are associated with lung function in a large population sample.
Methods
We analysed association for SNPs tagging 130 genes and 48 intergenic regions (+/−10 kb), after conducting a systematic review of the literature in the PubMed database for genetic association studies reporting lung function associations.
Results
The analysis included 16,936 genotyped and imputed SNPs. No loci showed overall significant association for FEV1 or FEV1/FVC traits using a carefully defined significance threshold of 1.3×10−5. The most significant loci associated with FEV1 include SNPs tagging MACROD2 (P = 6.81×10−5), CNTN5 (P = 4.37×10−4), and TRPV4 (P = 1.58×10−3). Among ever-smokers, SERPINA1 showed the most significant association with FEV1 (P = 8.41×10−5), followed by PDE4D (P = 1.22×10−4). The strongest association with FEV1/FVC ratio was observed with ABCC1 (P = 4.38×10−4), and ESR1 (P = 5.42×10−4) among ever-smokers.
Conclusions
Polymorphisms spanning previously associated lung function genes did not show strong evidence for association with lung function measures in the SpiroMeta consortium population. Common SERPINA1 polymorphisms may affect FEV1 among smokers in the general population.
doi:10.1371/journal.pone.0019382
PMCID: PMC3098839  PMID: 21625484
25.  Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study 
Fox, Ervin R. | Young, J. Hunter | Li, Yali | Dreisbach, Albert W. | Keating, Brendan J. | Musani, Solomon K. | Liu, Kiang | Morrison, Alanna C. | Ganesh, Santhi | Kutlar, Abdullah | Ramachandran, Vasan S. | Polak, Josef F. | Fabsitz, Richard R. | Dries, Daniel L. | Farlow, Deborah N. | Redline, Susan | Adeyemo, Adebowale | Hirschorn, Joel N. | Sun, Yan V. | Wyatt, Sharon B. | Penman, Alan D. | Palmas, Walter | Rotter, Jerome I. | Townsend, Raymond R. | Doumatey, Ayo P. | Tayo, Bamidele O. | Mosley, Thomas H. | Lyon, Helen N. | Kang, Sun J. | Rotimi, Charles N. | Cooper, Richard S. | Franceschini, Nora | Curb, J. David | Martin, Lisa W. | Eaton, Charles B. | Kardia, Sharon L.R. | Taylor, Herman A. | Caulfield, Mark J. | Ehret, Georg B. | Johnson, Toby | Chakravarti, Aravinda | Zhu, Xiaofeng | Levy, Daniel | Munroe, Patricia B. | Rice, Kenneth M. | Bochud, Murielle | Johnson, Andrew D. | Chasman, Daniel I. | Smith, Albert V. | Tobin, Martin D. | Verwoert, Germaine C. | Hwang, Shih-Jen | Pihur, Vasyl | Vollenweider, Peter | O'Reilly, Paul F. | Amin, Najaf | Bragg-Gresham, Jennifer L. | Teumer, Alexander | Glazer, Nicole L. | Launer, Lenore | Zhao, Jing Hua | Aulchenko, Yurii | Heath, Simon | Sõber, Siim | Parsa, Afshin | Luan, Jian'an | Arora, Pankaj | Dehghan, Abbas | Zhang, Feng | Lucas, Gavin | Hicks, Andrew A. | Jackson, Anne U. | Peden, John F. | Tanaka, Toshiko | Wild, Sarah H. | Rudan, Igor | Igl, Wilmar | Milaneschi, Yuri | Parker, Alex N. | Fava, Cristiano | Chambers, John C. | Kumari, Meena | JinGo, Min | van der Harst, Pim | Kao, Wen Hong Linda | Sjögren, Marketa | Vinay, D.G. | Alexander, Myriam | Tabara, Yasuharu | Shaw-Hawkins, Sue | Whincup, Peter H. | Liu, Yongmei | Shi, Gang | Kuusisto, Johanna | Seielstad, Mark | Sim, Xueling | Nguyen, Khanh-Dung Hoang | Lehtimäki, Terho | Matullo, Giuseppe | Wu, Ying | Gaunt, Tom R. | Charlotte Onland-Moret, N. | Cooper, Matthew N. | Platou, Carl G.P. | Org, Elin | Hardy, Rebecca | Dahgam, Santosh | Palmen, Jutta | Vitart, Veronique | Braund, Peter S. | Kuznetsova, Tatiana | Uiterwaal, Cuno S.P.M. | Campbell, Harry | Ludwig, Barbara | Tomaszewski, Maciej | Tzoulaki, Ioanna | Palmer, Nicholette D. | Aspelund, Thor | Garcia, Melissa | Chang, Yen-Pei C. | O'Connell, Jeffrey R. | Steinle, Nanette I. | Grobbee, Diederick E. | Arking, Dan E. | Hernandez, Dena | Najjar, Samer | McArdle, Wendy L. | Hadley, David | Brown, Morris J. | Connell, John M. | Hingorani, Aroon D. | Day, Ian N.M. | Lawlor, Debbie A. | Beilby, John P. | Lawrence, Robert W. | Clarke, Robert | Collins, Rory | Hopewell, Jemma C. | Ongen, Halit | Bis, Joshua C. | Kähönen, Mika | Viikari, Jorma | Adair, Linda S. | Lee, Nanette R. | Chen, Ming-Huei | Olden, Matthias | Pattaro, Cristian | Hoffman Bolton, Judith A. | Köttgen, Anna | Bergmann, Sven | Mooser, Vincent | Chaturvedi, Nish | Frayling, Timothy M. | Islam, Muhammad | Jafar, Tazeen H. | Erdmann, Jeanette | Kulkarni, Smita R. | Bornstein, Stefan R. | Grässler, Jürgen | Groop, Leif | Voight, Benjamin F. | Kettunen, Johannes | Howard, Philip | Taylor, Andrew | Guarrera, Simonetta | Ricceri, Fulvio | Emilsson, Valur | Plump, Andrew | Barroso, Inês | Khaw, Kay-Tee | Weder, Alan B. | Hunt, Steven C. | Bergman, Richard N. | Collins, Francis S. | Bonnycastle, Lori L. | Scott, Laura J. | Stringham, Heather M. | Peltonen, Leena | Perola, Markus | Vartiainen, Erkki | Brand, Stefan-Martin | Staessen, Jan A. | Wang, Thomas J. | Burton, Paul R. | SolerArtigas, Maria | Dong, Yanbin | Snieder, Harold | Wang, Xiaoling | Zhu, Haidong | Lohman, Kurt K. | Rudock, Megan E. | Heckbert, Susan R. | Smith, Nicholas L. | Wiggins, Kerri L. | Shriner, Daniel | Veldre, Gudrun | Viigimaa, Margus | Kinra, Sanjay | Prabhakaran, Dorairajan | Tripathy, Vikal | Langefeld, Carl D. | Rosengren, Annika | Thelle, Dag S. | MariaCorsi, Anna | Singleton, Andrew | Forrester, Terrence | Hilton, Gina | McKenzie, Colin A. | Salako, Tunde | Iwai, Naoharu | Kita, Yoshikuni | Ogihara, Toshio | Ohkubo, Takayoshi | Okamura, Tomonori | Ueshima, Hirotsugu | Umemura, Satoshi | Eyheramendy, Susana | Meitinger, Thomas | Wichmann, H.-Erich | Cho, Yoon Shin | Kim, Hyung-Lae | Lee, Jong-Young | Scott, James | Sehmi, Joban S. | Zhang, Weihua | Hedblad, Bo | Nilsson, Peter | Smith, George Davey | Wong, Andrew | Narisu, Narisu | Stančáková, Alena | Raffel, Leslie J. | Yao, Jie | Kathiresan, Sekar | O'Donnell, Chris | Schwartz, Steven M. | Arfan Ikram, M. | Longstreth, Will T. | Seshadri, Sudha | Shrine, Nick R.G. | Wain, Louise V. | Morken, Mario A. | Swift, Amy J. | Laitinen, Jaana | Prokopenko, Inga | Zitting, Paavo | Cooper, Jackie A. | Humphries, Steve E. | Danesh, John | Rasheed, Asif | Goel, Anuj | Hamsten, Anders | Watkins, Hugh | Bakker, Stephan J.L. | van Gilst, Wiek H. | Janipalli, Charles S. | Radha Mani, K. | Yajnik, Chittaranjan S. | Hofman, Albert | Mattace-Raso, Francesco U.S. | Oostra, Ben A. | Demirkan, Ayse | Isaacs, Aaron | Rivadeneira, Fernando | Lakatta, Edward G. | Orru, Marco | Scuteri, Angelo | Ala-Korpela, Mika | Kangas, Antti J. | Lyytikäinen, Leo-Pekka | Soininen, Pasi | Tukiainen, Taru | Würz, Peter | Twee-Hee Ong, Rick | Dörr, Marcus | Kroemer, Heyo K. | Völker, Uwe | Völzke, Henry | Galan, Pilar | Hercberg, Serge | Lathrop, Mark | Zelenika, Diana | Deloukas, Panos | Mangino, Massimo | Spector, Tim D. | Zhai, Guangju | Meschia, James F. | Nalls, Michael A. | Sharma, Pankaj | Terzic, Janos | Kranthi Kumar, M.J. | Denniff, Matthew | Zukowska-Szczechowska, Ewa | Wagenknecht, Lynne E. | Fowkes, Gerald R. | Charchar, Fadi J. | Schwarz, Peter E.H. | Hayward, Caroline | Guo, Xiuqing | Bots, Michiel L. | Brand, Eva | Samani, Nilesh J. | Polasek, Ozren | Talmud, Philippa J. | Nyberg, Fredrik | Kuh, Diana | Laan, Maris | Hveem, Kristian | Palmer, Lyle J. | van der Schouw, Yvonne T. | Casas, Juan P. | Mohlke, Karen L. | Vineis, Paolo | Raitakari, Olli | Wong, Tien Y. | Shyong Tai, E. | Laakso, Markku | Rao, Dabeeru C. | Harris, Tamara B. | Morris, Richard W. | Dominiczak, Anna F. | Kivimaki, Mika | Marmot, Michael G. | Miki, Tetsuro | Saleheen, Danish | Chandak, Giriraj R. | Coresh, Josef | Navis, Gerjan | Salomaa, Veikko | Han, Bok-Ghee | Kooner, Jaspal S. | Melander, Olle | Ridker, Paul M. | Bandinelli, Stefania | Gyllensten, Ulf B. | Wright, Alan F. | Wilson, James F. | Ferrucci, Luigi | Farrall, Martin | Tuomilehto, Jaakko | Pramstaller, Peter P. | Elosua, Roberto | Soranzo, Nicole | Sijbrands, Eric J.G. | Altshuler, David | Loos, Ruth J.F. | Shuldiner, Alan R. | Gieger, Christian | Meneton, Pierre | Uitterlinden, Andre G. | Wareham, Nicholas J. | Gudnason, Vilmundur | Rettig, Rainer | Uda, Manuela | Strachan, David P. | Witteman, Jacqueline C.M. | Hartikainen, Anna-Liisa | Beckmann, Jacques S. | Boerwinkle, Eric | Boehnke, Michael | Larson, Martin G. | Järvelin, Marjo-Riitta | Psaty, Bruce M. | Abecasis, Gonçalo R. | Elliott, Paul | van Duijn , Cornelia M. | Newton-Cheh, Christopher
Human Molecular Genetics  2011;20(11):2273-2284.
The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10−8) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10−8). The top IBC association for SBP was rs2012318 (P= 6.4 × 10−6) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10−6) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexity.
doi:10.1093/hmg/ddr092
PMCID: PMC3090190  PMID: 21378095

Results 1-25 (34)