PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-19 (19)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Comparison of serum, EDTA plasma and P100 plasma for luminex-based biomarker multiplex assays in patients with chronic obstructive pulmonary disease in the SPIROMICS study 
Background
As a part of the longitudinal Chronic Obstructive Pulmonary Disease (COPD) study, Subpopulations and Intermediate Outcome Measures in COPD study (SPIROMICS), blood samples are being collected from 3200 subjects with the goal of identifying blood biomarkers for sub-phenotyping patients and predicting disease progression. To determine the most reliable sample type for measuring specific blood analytes in the cohort, a pilot study was performed from a subset of 24 subjects comparing serum, Ethylenediaminetetraacetic acid (EDTA) plasma, and EDTA plasma with proteinase inhibitors (P100™).
Methods
105 analytes, chosen for potential relevance to COPD, arranged in 12 multiplex and one simplex platform (Myriad-RBM) were evaluated in duplicate from the three sample types from 24 subjects. The reliability coefficient and the coefficient of variation (CV) were calculated. The performance of each analyte and mean analyte levels were evaluated across sample types.
Results
20% of analytes were not consistently detectable in any sample type. Higher reliability and/or smaller CV were determined for 12 analytes in EDTA plasma compared to serum, and for 11 analytes in serum compared to EDTA plasma. While reliability measures were similar for EDTA plasma and P100 plasma for a majority of analytes, CV was modestly increased in P100 plasma for eight analytes. Each analyte within a multiplex produced independent measurement characteristics, complicating selection of sample type for individual multiplexes.
Conclusions
There were notable detectability and measurability differences between serum and plasma. Multiplexing may not be ideal if large reliability differences exist across analytes measured within the multiplex, especially if values differ based on sample type. For some analytes, the large CV should be considered during experimental design, and the use of duplicate and/or triplicate samples may be necessary. These results should prove useful for studies evaluating selection of samples for evaluation of potential blood biomarkers.
doi:10.1186/1479-5876-12-9
PMCID: PMC3928911  PMID: 24397870
Chronic obstructive pulmonary disease; COPD; SPIROMICS; Biomarkers; Blood analytes; Multiplex assays; P100 plasma; Serum; EDTA plasma; Pilot study
2.  Genome-Wide Association Analysis of Blood Biomarkers in Chronic Obstructive Pulmonary Disease 
Rationale: A genome-wide association study (GWAS) for circulating chronic obstructive pulmonary disease (COPD) biomarkers could identify genetic determinants of biomarker levels and COPD susceptibility.
Objectives: To identify genetic variants of circulating protein biomarkers and novel genetic determinants of COPD.
Methods: GWAS was performed for two pneumoproteins, Clara cell secretory protein (CC16) and surfactant protein D (SP-D), and five systemic inflammatory markers (C-reactive protein, fibrinogen, IL-6, IL-8, and tumor necrosis factor-α) in 1,951 subjects with COPD. For genome-wide significant single nucleotide polymorphisms (SNPs) (P < 1 × 10−8), association with COPD susceptibility was tested in 2,939 cases with COPD and 1,380 smoking control subjects. The association of candidate SNPs with mRNA expression in induced sputum was also elucidated.
Measurements and Main Results: Genome-wide significant susceptibility loci affecting biomarker levels were found only for the two pneumoproteins. Two discrete loci affecting CC16, one region near the CC16 coding gene (SCGB1A1) on chromosome 11 and another locus approximately 25 Mb away from SCGB1A1, were identified, whereas multiple SNPs on chromosomes 6 and 16, in addition to SNPs near SFTPD, had genome-wide significant associations with SP-D levels. Several SNPs affecting circulating CC16 levels were significantly associated with sputum mRNA expression of SCGB1A1 (P = 0.009–0.03). Several SNPs highly associated with CC16 or SP-D levels were nominally associated with COPD in a collaborative GWAS (P = 0.001–0.049), although these COPD associations were not replicated in two additional cohorts.
Conclusions: Distant genetic loci and biomarker-coding genes affect circulating levels of COPD-related pneumoproteins. A subset of these protein quantitative trait loci may influence their gene expression in the lung and/or COPD susceptibility.
Clinical trial registered with www.clinicaltrials.gov (NCT 00292552).
doi:10.1164/rccm.201206-1013OC
PMCID: PMC3622441  PMID: 23144326
biomarker; chronic obstructive pulmonary disease; genome-wide association study
3.  A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13 
Human Molecular Genetics  2011;21(4):947-957.
The genetic risk factors for chronic obstructive pulmonary disease (COPD) are still largely unknown. To date, genome-wide association studies (GWASs) of limited size have identified several novel risk loci for COPD at CHRNA3/CHRNA5/IREB2, HHIP and FAM13A; additional loci may be identified through larger studies. We performed a GWAS using a total of 3499 cases and 1922 control subjects from four cohorts: the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE); the Normative Aging Study (NAS) and National Emphysema Treatment Trial (NETT); Bergen, Norway (GenKOLS); and the COPDGene study. Genotyping was performed on Illumina platforms with additional markers imputed using 1000 Genomes data; results were summarized using fixed-effect meta-analysis. We identified a new genome-wide significant locus on chromosome 19q13 (rs7937, OR = 0.74, P = 2.9 × 10−9). Genotyping this single nucleotide polymorphism (SNP) and another nearby SNP in linkage disequilibrium (rs2604894) in 2859 subjects from the family-based International COPD Genetics Network study (ICGN) demonstrated supportive evidence for association for COPD (P = 0.28 and 0.11 for rs7937 and rs2604894), pre-bronchodilator FEV1 (P = 0.08 and 0.04) and severe (GOLD 3&4) COPD (P = 0.09 and 0.017). This region includes RAB4B, EGLN2, MIA and CYP2A6, and has previously been identified in association with cigarette smoking behavior.
doi:10.1093/hmg/ddr524
PMCID: PMC3298111  PMID: 22080838
4.  Persistent Systemic Inflammation is Associated with Poor Clinical Outcomes in COPD: A Novel Phenotype 
PLoS ONE  2012;7(5):e37483.
Background
Because chronic obstructive pulmonary disease (COPD) is a heterogeneous condition, the identification of specific clinical phenotypes is key to developing more effective therapies. To explore if the persistence of systemic inflammation is associated with poor clinical outcomes in COPD we assessed patients recruited to the well-characterized ECLIPSE cohort (NCT00292552).
Methods and Findings
Six inflammatory biomarkers in peripheral blood (white blood cells (WBC) count and CRP, IL-6, IL-8, fibrinogen and TNF-α levels) were quantified in 1,755 COPD patients, 297 smokers with normal spirometry and 202 non-smoker controls that were followed-up for three years. We found that, at baseline, 30% of COPD patients did not show evidence of systemic inflammation whereas 16% had persistent systemic inflammation. Even though pulmonary abnormalities were similar in these two groups, persistently inflamed patients during follow-up had significantly increased all-cause mortality (13% vs. 2%, p<0.001) and exacerbation frequency (1.5 (1.5) vs. 0.9 (1.1) per year, p<0.001) compared to non-inflamed ones. As a descriptive study our results show associations but do not prove causality. Besides this, the inflammatory response is complex and we studied only a limited panel of biomarkers, albeit they are those investigated by the majority of previous studies and are often and easily measured in clinical practice.
Conclusions
Overall, these results identify a novel systemic inflammatory COPD phenotype that may be the target of specific research and treatment.
doi:10.1371/journal.pone.0037483
PMCID: PMC3356313  PMID: 22624038
5.  Serum PARC/CCL-18 Concentrations and Health Outcomes in Chronic Obstructive Pulmonary Disease 
Rationale: There are no accepted blood-based biomarkers in chronic obstructive pulmonary disease (COPD). Pulmonary and activation-regulated chemokine (PARC/CCL-18) is a lung-predominant inflammatory protein that is found in serum.
Objectives: To determine whether PARC/CCL-18 levels are elevated and modifiable in COPD and to determine their relationship to clinical end points of hospitalization and mortality.
Methods: PARC/CCL-18 was measured in serum samples from individuals who participated in the ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) and LHS (Lung Health Study) studies and a prednisolone intervention study.
Measurements and Main Results: Serum PARC/CCL-18 levels were higher in subjects with COPD than in smokers or lifetime nonsmokers without COPD (105 vs. 81 vs. 80 ng/ml, respectively; P < 0.0001). Elevated PARC/CCL-18 levels were associated with increased risk of cardiovascular hospitalization or mortality in the LHS cohort and with total mortality in the ECLIPSE cohort.
Conclusions: Serum PARC/CCL-18 levels are elevated in COPD and track clinical outcomes. PARC/CCL-18, a lung-predominant chemokine, could be a useful blood biomarker in COPD.
Clinical trial registered with www.clinicaltrials.gov (NCT 00292552).
doi:10.1164/rccm.201008-1220OC
PMCID: PMC3114051  PMID: 21216880
biomarker; chronic obstructive pulmonary disease; PARC/CCL-18; chemokine
6.  Fibrinogen, chronic obstructive pulmonary disease (COPD) and outcomes in two United States cohorts 
Background
Fibrinogen is a marker of systemic inflammation and may be important in the pathogenesis and progression of chronic obstructive pulmonary disease (COPD).
Methods
We used baseline data from Atherosclerosis Risk in Communities and Cardiovascular Health Studies to determine the relation between fibrinogen levels and COPD and to examine how fibrinogen levels at baseline affected outcomes of death, development of COPD, lung function decline, and COPD-hospitalizations.
Results
Our study sample included 20,192 subjects, of whom 2995 died during the follow-up period. The mean fibrinogen level was 307.6 mg/dL and 10% of the sample had levels >393.0 mg/dL. Subjects with Stage 3 or 4 COPD were more likely to have a fibrinogen level >393.0 mg/dL (odds ratio 2.28, 95% confidence interval [CI]: 1.79–2.95). In the longitudinal adjusted models, fibrinogen levels >393 mg/dL predicted mortality (hazards ratio 1.54, 95% CI: 1.39–1.70), COPD-related hospitalization (hazards ratio 1.45, 95% CI: 1.27–1.67), and incident Stage 2 COPD (odds ratio 1.36, 95% CI: 1.07–1.74). Similar findings were seen with continuous fibrinogen levels.
Conclusion
In the Atherosclerosis Risk in Communities/Cardiovascular Health Studies cohort data, higher fibrinogen levels are predictors of mortality, COPD-related hospitalizations, and incident Stage 2 COPD.
doi:10.2147/COPD.S29892
PMCID: PMC3299546  PMID: 22419864
COPD; fibrinogen; epidemiology; mortality; hospitalization
7.  Polymorphisms in Surfactant Protein–D Are Associated with Chronic Obstructive Pulmonary Disease 
Chronic obstructive pulmonary disease (COPD) is characterized by alveolar destruction and abnormal inflammatory responses to noxious stimuli. Surfactant protein–D (SFTPD) is immunomodulatory and essential to host defense. We hypothesized that polymorphisms in SFTPD could influence the susceptibility to COPD. We genotyped six single-nucleotide polymorphisms (SNPs) in surfactant protein D in 389 patients with COPD in the National Emphysema Treatment Trial (NETT) and 472 smoking control subjects from the Normative Aging Study (NAS). Case-control association analysis was performed using Cochran–Armitage trend tests and multivariate logistic regression. The replication of significant associations was attempted in the Boston Early-Onset COPD Study, the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) Study, and the Bergen Cohort. We also correlated SFTPD genotypes with serum concentrations of surfactant protein–D (SP-D) in the ECLIPSE Study. In the NETT–NAS case-control analysis, four SFTPD SNPs were associated with susceptibility to COPD: rs2245121 (P = 0.01), rs911887 (P = 0.006), rs6413520 (P = 0.004), and rs721917 (P = 0.006). In the family-based analysis of the Boston Early-Onset COPD Study, rs911887 was associated with prebronchodilator and postbronchodilator FEV1 (P = 0.003 and P = 0.02, respectively). An intronic SNP in SFTPD, rs7078012, was associated with COPD in the ECLIPSE Study and the Bergen Cohort. Multiple SFTPD SNPs were associated with serum SP-D concentrations in the ECLIPSE Study. We demonstrated an association of polymorphisms in SFTPD with COPD in multiple populations. We demonstrated a correlation between SFTPD SNPs and SP-D protein concentrations. The SNPs associated with COPD and SP-D concentrations differed, suggesting distinct genetic influences on susceptibility to COPD and SP-D concentrations.
doi:10.1165/rcmb.2009-0360OC
PMCID: PMC3095932  PMID: 20448057
COPD; surfactant protein–D; single-nucleotide polymorphisms; genetics
8.  COPD association and repeatability of blood biomarkers in the ECLIPSE cohort 
Respiratory Research  2011;12(1):146.
Background
There is a need for biomarkers to better characterise individuals with COPD and to aid with the development of therapeutic interventions. A panel of putative blood biomarkers was assessed in a subgroup of the Evaluation of COPD Longitudinally to Identify Surrogate Endpoints (ECLIPSE) cohort.
Methods
Thirty-four blood biomarkers were assessed in 201 subjects with COPD, 37 ex-smoker controls with normal lung function and 37 healthy non-smokers selected from the ECLIPSE cohort. Biomarker repeatability was assessed using baseline and 3-month samples. Intergroup comparisons were made using analysis of variance, repeatability was assessed through Bland-Altman plots, and correlations between biomarkers and clinical characteristics were assessed using Spearman correlation coefficients.
Results
Fifteen biomarkers were significantly different in individuals with COPD when compared to former or non-smoker controls. Some biomarkers, including tumor necrosis factor-α and interferon-γ, were measurable in only a minority of subjects whilst others such as C-reactive protein showed wide variability over the 3-month replication period. Fibrinogen was the most repeatable biomarker and exhibited a weak correlation with 6-minute walk distance, exacerbation rate, BODE index and MRC dyspnoea score in COPD subjects. 33% (66/201) of the COPD subjects reported at least 1 exacerbation over the 3 month study with 18% (36/201) reporting the exacerbation within 30 days of the 3-month visit. CRP, fibrinogen interleukin-6 and surfactant protein-D were significantly elevated in those COPD subjects with exacerbations within 30 days of the 3-month visit compared with those individuals that did not exacerbate or whose exacerbations had resolved.
Conclusions
Only a few of the biomarkers assessed may be useful in diagnosis or management of COPD where the diagnosis is based on airflow obstruction (GOLD). Further analysis of more promising biomarkers may reveal utility in subsets of patients. Fibrinogen in particular has emerged as a potentially useful biomarker from this cohort and requires further investigation.
Trial Registration
SCO104960, clinicaltrials.gov identifier NCT00292552
doi:10.1186/1465-9921-12-146
PMCID: PMC3247194  PMID: 22054035
Biomarkers; Chronic Obstructive Pulmonary Disease (COPD); Evaluation of COPD Longitudinally to Identify Surrogate Endpoints (ECLIPSE); Inflammation
9.  Genetics of Sputum Gene Expression in Chronic Obstructive Pulmonary Disease 
PLoS ONE  2011;6(9):e24395.
Previous expression quantitative trait loci (eQTL) studies have performed genetic association studies for gene expression, but most of these studies examined lymphoblastoid cell lines from non-diseased individuals. We examined the genetics of gene expression in a relevant disease tissue from chronic obstructive pulmonary disease (COPD) patients to identify functional effects of known susceptibility genes and to find novel disease genes. By combining gene expression profiling on induced sputum samples from 131 COPD cases from the ECLIPSE Study with genomewide single nucleotide polymorphism (SNP) data, we found 4315 significant cis-eQTL SNP-probe set associations (3309 unique SNPs). The 3309 SNPs were tested for association with COPD in a genomewide association study (GWAS) dataset, which included 2940 COPD cases and 1380 controls. Adjusting for 3309 tests (p<1.5e-5), the two SNPs which were significantly associated with COPD were located in two separate genes in a known COPD locus on chromosome 15: CHRNA5 and IREB2. Detailed analysis of chromosome 15 demonstrated additional eQTLs for IREB2 mapping to that gene. eQTL SNPs for CHRNA5 mapped to multiple linkage disequilibrium (LD) bins. The eQTLs for IREB2 and CHRNA5 were not in LD. Seventy-four additional eQTL SNPs were associated with COPD at p<0.01. These were genotyped in two COPD populations, finding replicated associations with a SNP in PSORS1C1, in the HLA-C region on chromosome 6. Integrative analysis of GWAS and gene expression data from relevant tissue from diseased subjects has located potential functional variants in two known COPD genes and has identified a novel COPD susceptibility locus.
doi:10.1371/journal.pone.0024395
PMCID: PMC3174957  PMID: 21949713
10.  Characterisation of COPD heterogeneity in the ECLIPSE cohort 
Respiratory Research  2010;11(1):122.
Background
Chronic obstructive pulmonary disease (COPD) is a complex condition with pulmonary and extra-pulmonary manifestations. This study describes the heterogeneity of COPD in a large and well characterised and controlled COPD cohort (ECLIPSE).
Methods
We studied 2164 clinically stable COPD patients, 337 smokers with normal lung function and 245 never smokers. In these individuals, we measured clinical parameters, nutritional status, spirometry, exercise tolerance, and amount of emphysema by computed tomography.
Results
COPD patients were slightly older than controls and had more pack years of smoking than smokers with normal lung function. Co-morbidities were more prevalent in COPD patients than in controls, and occurred to the same extent irrespective of the GOLD stage. The severity of airflow limitation in COPD patients was poorly related to the degree of breathlessness, health status, presence of co-morbidity, exercise capacity and number of exacerbations reported in the year before the study. The distribution of these variables within each GOLD stage was wide. Even in subjects with severe airflow obstruction, a substantial proportion did not report symptoms, exacerbations or exercise limitation. The amount of emphysema increased with GOLD severity. The prevalence of bronchiectasis was low (4%) but also increased with GOLD stage. Some gender differences were also identified.
Conclusions
The clinical manifestations of COPD are highly variable and the degree of airflow limitation does not capture the heterogeneity of the disease.
doi:10.1186/1465-9921-11-122
PMCID: PMC2944278  PMID: 20831787
11.  Variants in FAM13A are associated with chronic obstructive pulmonary disease 
Nature genetics  2010;42(3):200-202.
Substantial evidence suggests that there is genetic susceptibility to chronic obstructive pulmonary disease (COPD). To identify common genetic risk variants, we performed a genome-wide association study in 2940 cases and 1380 smoking controls with normal lung function. We demonstrate a novel susceptibility locus at 4q22.1 in FAM13A (rs7671167, OR=0.76, P=8.6×10−8) and provide evidence of replication in one case-control and two family-based cohorts (for all studies, combined P=1.2×10−11).
doi:10.1038/ng.535
PMCID: PMC2828499  PMID: 20173748
12.  Sputum neutrophils as a biomarker in COPD: findings from the ECLIPSE study 
Respiratory Research  2010;11(1):77.
Introduction
The percentage of neutrophils in sputum are increased in COPD patients, and may therefore be a biomarker of airway inflammation. We studied the relationships between sputum neutrophils and FEV1, health status, exacerbation rates, systemic inflammation and emphysema, and long term variability at 1 year.
Methods
Sputum samples were obtained from 488 COPD patients within the ECLIPSE cohort. 359 samples were obtained at baseline, and 297 after 1 year. 168 subjects provided samples at both visits. Serum interleukin-6 (IL-6), IL-8, surfactant protein D and C-reactive protein levels were measured by immunoassays. Low-dose CT scans evaluated emphysema.
Results
Sputum neutrophil % increased with GOLD stage. There was a weak association between % sputum neutrophils and FEV1 % predicted (univariate r2 = 0.025 and 0.094 at baseline and year 1 respectively, p < 0.05 after multivariate regression). Similar weak but significant associations were observed between neutrophil % and health status measured using the St Georges Respiratory Questionairre. There were no associations between neutrophils and exacerbation rates or emphysema. Associations between sputum neutrophils and systemic biomarkers were non-significant or similarly weak. The mean change over 1 year in neutrophil % was an increase of 3.5%.
Conclusions
Sputum neutrophil measurements in COPD are associated weakly with FEV1 % predicted and health status. Sputum neutrophil measurements were dissociated from exacerbation rates, emphysema and systemic inflammation.
doi:10.1186/1465-9921-11-77
PMCID: PMC2904285  PMID: 20550701
13.  Fluticasone Propionate Protects against Ozone-Induced Airway Inflammation and Modified Immune Cell Activation Markers in Healthy Volunteers 
Environmental Health Perspectives  2008;116(6):799-805.
Background
Ozone exposure induces airway neutrophilia and modifies innate immune monocytic cell-surface phenotypes in healthy individuals. High-dose inhaled corticosteroids can reduce O3-induced airway inflammation, but their effect on innate immune activation is unknown.
Objectives
We used a human O3 inhalation challenge model to examine the effectiveness of clinically relevant doses of inhaled corticosteroids on airway inflammation and markers of innate immune activation in healthy volunteers.
Methods
Seventeen O3-responsive subjects [> 10% increase in the percentage of polymorphonuclear leukocytes (PMNs) in sputum, PMNs per milligram vs. baseline sputum] received placebo, or either a single therapeutic dose (0.5 mg) or a high dose (2 mg) of inhaled fluticasone proprionate (FP) 1 hr before a 3-hr O3 challenge (0.25 ppm) on three separate occasions at least 2 weeks apart. Lung function, exhaled nitric oxide, sputum, and systemic biomarkers were assessed 1–5 hr after the O3 challenge. To determine the effect of FP on cellular function, we assessed sputum cells from seven subjects by flow cytometry for cell-surface marker activation.
Results
FP had no effect on O3-induced lung function decline. Compared with placebo, 0.5 mg and 2 mg FP reduced O3-induced sputum neutrophilia by 18% and 35%, respectively. A similar effect was observed on the airway-specific serum biomarker Clara cell protein 16 (CCP16). Furthermore, FP pretreatment significantly reduced O3-induced modification of CD11b, mCD14, CD64, CD16, HLA-DR, and CD86 on sputum monocytes in a dose-dependent manner.
Conclusions
This study confirmed and extended data demonstrating the protective effect of FP against O3-induced airway inflammation and immune cell activation.
doi:10.1289/ehp.10981
PMCID: PMC2430237  PMID: 18560537
inhaled corticosteroids; innate immune markers; ozone; sputum neutrophils
14.  Chronic obstructive pulmonary disease and inhaled steroids alter surfactant protein D (SP-D) levels: a cross-sectional study 
Respiratory Research  2008;9(1):13.
Background
Surfactant protein D (SP-D), an innate immune molecule, plays an important protective role during airway inflammation. Deficiency of this molecule induces emphysematous changes in murine lungs, but its significance in human COPD remains unclear.
Methods
We collected bronchoalveolar lavage fluid from 20 subjects with varying degrees of COPD (8 former smokers and 12 current smokers) and 15 asymptomatic healthy control subjects (5 never smokers, 3 remote former smokers, and 7 current smokers). All subjects underwent a complete medical history and pulmonary function testing. SP-D was measured by Enzyme-Linked ImmunoSorbent Assay. Statistical analysis was performed using nonparametric methods and multivariable linear regression for control of confounding. The effect of corticosteroid treatment on SP-D synthesis was studied in vitro using an established model of isolated type II alveolar epithelial cell culture.
Results
Among former smokers, those with COPD had significantly lower SP-D levels than healthy subjects (median 502 and 1067 ng/mL, respectively, p = 0.01). In a multivariable linear regression model controlling for age, sex, race, and pack-years of tobacco, COPD was independently associated with lower SP-D levels (model coefficient -539, p = 0.04) and inhaled corticosteroid use was independently associated with higher SP-D levels (398, p = 0.046). To support the hypothesis that corticosteroids increase SP-D production we used type II alveolar epithelial cells isolated from adult rat lungs. These cells responded to dexamethasone treatment by a significant increase of SP-D mRNA (p = 0.041) and protein (p = 0.037) production after 4 days of culture.
Conclusion
Among former smokers, COPD is associated with lower levels of SP-D and inhaled corticosteroid use is associated with higher levels of SP-D in the lung. Dexamethasone induced SP-D mRNA and protein expression in isolated epithelial cells in vitro. Given the importance of this molecule as a modulator of innate immunity and inflammation in the lung, low levels may play a role in the pathogenesis and/or progression of COPD. Further, we speculate that inhaled steroids may induce SP-D expression and that this mechanism may contribute to their beneficial effects in COPD. Larger, prospective studies are warranted to further elucidate the role of surfactant protein D in modulating pulmonary inflammation and COPD pathogenesis.
doi:10.1186/1465-9921-9-13
PMCID: PMC2249580  PMID: 18226251
15.  Effect of Famciclovir on Herpes Simplex Virus Type 1 Corneal Disease and Establishment of Latency in Rabbits 
Famciclovir (FCV) is efficacious in the treatment of acute herpes zoster and recurrent genital infections but has not been used to treat ocular herpes simplex virus (HSV) infections. We evaluated the efficacy of orally administered FCV in treating HSV-1 epithelial keratitis and determined its effects on the establishment of latency and subsequent reactivation. Rabbits were inoculated with HSV-1 strain 17 syn+ and treated twice daily with increasing concentrations of FCV (60 to 500 mg/kg of body weight). This resulted in a significant, dose-dependent improvement in keratitis scores, as well as prolonged survival. Regardless of the dose of drug used, all groups exhibited the high rates of spontaneous and induced reactivation characteristic of 17syn+. The efficacy of 250 mg of FCV per kg was also compared to topical treatment with 1% trifluorothymidine (TFT). Although TFT treatment was more effective at reducing eye disease, FCV-treated rabbits had a better survival rate. Real-time quantitative PCR analysis of rabbit trigeminal ganglia (TG) demonstrated that FCV significantly reduced the HSV-1 copy number compared to that after treatment with TFT or the placebo but not in a dose-dependent manner. In summary, oral FCV treatment significantly reduces the severity of corneal lesions, reduces the number of HSV-1 genomes in the TG, improves survival, and therefore may be beneficial in reducing the morbidity of HSV keratitis in the clinic.
doi:10.1128/AAC.45.7.2044-2053.2001
PMCID: PMC90598  PMID: 11408221
16.  Analysis of Individual Human Trigeminal Ganglia for Latent Herpes Simplex Virus Type 1 and Varicella-Zoster Virus Nucleic Acids Using Real-Time PCR 
Journal of Virology  2000;74(24):11464-11471.
Herpes simplex virus type 1 (HSV-1) and varicella-zoster virus (VZV) establish latent infections in the peripheral nervous system following primary infection. During latency both virus genomes exhibit limited transcription, with the HSV-1 LATs and at least four VZV transcripts consistently detected in latently infected human ganglia. In this study we used real-time PCR quantitation to determine the viral DNA copy number in individual trigeminal ganglia (TG) from 17 subjects. The number of HSV-1 genomes was not significantly different between the left and right TG from the same individual and varied per subject from 42.9 to 677.9 copies per 100 ng of DNA. The number of VZV genomes was also not significantly different between left and right TG from the same individual and varied per subject from 37.0 to 3,560.5 copies per 100 ng of DNA. HSV-1 LAT transcripts were consistently detected in ganglia containing latent HSV-1 and varied in relative expression by >500-fold. Of the three VZV transcripts analyzed, only transcripts mapping to gene 63 were consistently detected in latently infected ganglia and varied in relative expression by >2,000-fold. Thus, it appears that, similar to LAT transcription in HSV-1 latently infected ganglia, VZV gene 63 transcription is a hallmark of VZV latency.
PMCID: PMC112425  PMID: 11090142
17.  Herpes Simplex Virus Type 1 Glycoprotein E Domains Involved in Virus Spread and Disease 
Journal of Virology  2000;74(15):6712-6719.
Herpes simplex virus type 1 (HSV-1) glycoprotein E (gE) functions as an immunoglobulin G (IgG) Fc binding protein and is involved in virus spread. Previously we studied a gE mutant virus that was impaired for IgG Fc binding but intact for spread and another that was normal for both activities. To further evaluate the role of gE in spread, two additional mutant viruses were constructed by introducing linker insertion mutations either outside the IgG Fc binding domain at gE position 210 or within the IgG Fc binding domain at position 380. Both mutant viruses were impaired for spread in epidermal cells in vitro; however, the 380 mutant virus was significantly more impaired and was as defective as gE null virus. gE mutant viruses were inoculated into the murine flank to measure epidermal disease at the inoculation site, travel of virus to dorsal root ganglia, and spread of virus from ganglia back to skin to produce zosteriform lesions. Disease at the inoculation and zosteriform sites was reduced for both mutant viruses, but more so for the 380 mutant virus. Moreover, the 380 mutant virus was highly impaired in its ability to reach the ganglia, as demonstrated by virus culture and real-time quantitative PCR. The results indicate that the domain surrounding amino acid 380 is important for both spread and IgG Fc binding and suggest that this domain is a potential target for antiviral therapy or vaccines.
PMCID: PMC112186  PMID: 10888608
18.  Use of Differential Display Reverse Transcription-PCR To Reveal Cellular Changes during Stimuli That Result in Herpes Simplex Virus Type 1 Reactivation from Latency: Upregulation of Immediate-Early Cellular Response Genes TIS7, Interferon, and Interferon Regulatory Factor-1 
Journal of Virology  1998;72(2):1252-1261.
The detailed mechanism which governs the choice between herpes simplex virus (HSV) latency and reactivation remains to be elucidated. It is probable that altered expression of cellular factors in sensory neurons leads to induction of HSV gene expression resulting in reactivation. As an approach to identify novel cellular genes which are activated or repressed by stimuli that reactivate HSV from latency and hence may play a role in viral reactivation, RNA from explanted trigeminal ganglia (TG) was analyzed by differential display reverse transcription-PCR (DDRT-PCR). Nearly 50 cDNAs whose mRNA level was modified by the stress of explantation were isolated and sequenced. We present a listing of a spectrum of altered RNAs, including both known and unknown sequences. Five of those differentially displayed transcripts were identified as interferon-related murine TIS7 mRNA. These results were confirmed in both infected and uninfected ganglia by quantitative RNase protection assay and immunostaining. Alpha and beta interferons and interferon regulatory factor-1 (IRF-1) were also induced by explantation. In addition, we have identified sequences that correspond to IRF-1 consensus binding sites in both HSV type 1 origins of replication. Our findings suggest that physiological pathways that include these cellular factors may be involved in modulating HSV reactivation.
PMCID: PMC124603  PMID: 9445025
19.  Blood fibrinogen as a biomarker of chronic obstructive pulmonary disease 
Thorax  2012;68(7):670-676.
Background
Chronic obstructive pulmonary disease (COPD) is a multicomponent condition that is characterised by airflow obstruction that is not fully reversible and is a major global cause of morbidity and mortality. The most widely used marker of disease severity and progression is FEV1. However, FEV1 correlates poorly with both symptoms and other measures of disease progression and thus there is an urgent need for other biological markers to better characterise individuals with COPD. Fibrinogen is an acute phase plasma protein that has emerged as a promising biomarker in COPD. Here we review the current clinical evidence linking fibrinogen with COPD and its associated co-morbidities and discuss its potential utility as a biomarker.
Methods
Searches for appropriate studies were undertaken on PubMed using search terms fibrinogen, COPD, emphysema, chronic bronchitis, FEV1, cardiovascular disease, exacerbation and mortality.
Results
There is strong evidence of an association between fibrinogen and the presence of COPD, the presence and frequency of exacerbations and with mortality. Fibrinogen is associated with disease severity but does not predict lung function decline, a measure used as a surrogate for disease activity. The role of fibrinogen in identifying inflammatory co morbidities, particularly cardiovascular disease, remains unclear. Fibrinogen is reduced by p38 mitogen-activated protein kinase inhibitors in individuals with stable disease and by oral corticosteroids during exacerbations.
Conclusions
Fibrinogen is likely to be a useful biomarker to stratify individuals with COPD into those with a high or low risk of future exacerbations and may identify those with a higher risk of mortality.
doi:10.1136/thoraxjnl-2012-201871
PMCID: PMC3711372  PMID: 22744884
Fibrinogen; inflammation; COPD; biomarker

Results 1-19 (19)