PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Association of cigarette smoking and CRP levels with DNA methylation in α-1 antitrypsin deficiency 
Epigenetics  2012;7(7):720-728.
Alpha-1 antitrypsin (AAT) deficiency and tobacco smoking are confirmed risk factors for Chronic Obstructive Pulmonary Disease. We hypothesized that variable DNA methylation would be associated with smoking and inflammation, as reflected by the level of C-Reactive Protein (CRP) in AAT-deficient subjects. Methylation levels of 1,411 autosomal CpG sites from the Illumina GoldenGate Methylation Cancer Panel I were analyzed in 316 subjects. Associations of five smoking behaviors and CRP levels with individual CpG sites and average methylation levels were assessed using non-parametric testing, linear regression and linear mixed effect models, with and without adjustment for age and gender. Univariate linear regression analysis revealed that methylation levels of 16 CpG sites significantly associated with ever-smoking status. A CpG site in the TGFBI gene was the only site associated with ever-smoking after adjustment for age and gender. No highly significant associations existed between age at smoking initiation, pack-years smoked, duration of smoking, and time since quitting smoking as predictors of individual CpG site methylation levels. However, ever-smoking and younger age at smoking initiation associated with lower methylation level averaged across all sites. DNA methylation at CpG sites in the RUNX3, JAK3 and KRT1 genes associated with CRP levels. The most significantly associated CpG sites with gender and age mapped to the CASP6 and FZD9 genes, respectively. In summary, this study identified multiple potential candidate CpG sites associated with ever-smoking and CRP level in AAT-deficient subjects. Phenotypic variability in Mendelian diseases may be due to epigenetic factors.
doi:10.4161/epi.20319
PMCID: PMC3414392  PMID: 22617718
68kDa (TGFBI); C-Reactive Protein (CRP); Chronic Obstructive Pulmonary Disease (COPD); Illumina GoldenGate Methylation Cancer Panel I; alpha-1 antitrypsin (AAT) deficiency; beta-induced; methylation; smoking behaviors; transforming growth factor
2.  Efficacy and Safety of Sirolimus in Lymphangioleiomyomatosis 
The New England journal of medicine  2011;364(17):1595-1606.
BACKGROUND
Lymphangioleiomyomatosis (LAM) is a progressive, cystic lung disease in women; it is associated with inappropriate activation of mammalian target of rapamycin (mTOR) signaling, which regulates cellular growth and lymphangiogenesis. Sirolimus (also called rapamycin) inhibits mTOR and has shown promise in phase 1–2 trials involving patients with LAM.
METHODS
We conducted a two-stage trial of sirolimus involving 89 patients with LAM who had moderate lung impairment — a 12-month randomized, double-blind comparison of sirolimus with placebo, followed by a 12-month observation period. The primary end point was the difference between the groups in the rate of change (slope) in forced expiratory volume in 1 second (FEV1).
RESULTS
During the treatment period, the FEV1 slope was −12±2 ml per month in the placebo group (43 patients) and 1±2 ml per month in the sirolimus group (46 patients) (P<0.001). The absolute between-group difference in the mean change in FEV1 during the treatment period was 153 ml, or approximately 11% of the mean FEV1 at enrollment. As compared with the placebo group, the sirolimus group had improvement from baseline to 12 months in measures of forced vital capacity, functional residual capacity, serum vascular endothelial growth factor D (VEGF-D), and quality of life and functional performance. There was no significant between-group difference in this interval in the change in 6-minute walk distance or diffusing capacity of the lung for carbon monoxide. After discontinuation of sirolimus, the decline in lung function resumed in the sirolimus group and paralleled that in the placebo group. Adverse events were more common with sirolimus, but the frequency of serious adverse events did not differ significantly between the groups.
CONCLUSIONS
In patients with LAM, sirolimus stabilized lung function, reduced serum VEGF-D levels, and was associated with a reduction in symptoms and improvement in quality of life. Therapy with sirolimus may be useful in selected patients with LAM. (Funded by the National Institutes of Health and others; MILES ClinicalTrials.gov number, NCT00414648.)
doi:10.1056/NEJMoa1100391
PMCID: PMC3118601  PMID: 21410393
3.  Pharmacokinetic comparability of Prolastin®-C to Prolastin® in alpha1-antitrypsin deficiency: a randomized study 
Background
Alpha1-antitrypsin (AAT) deficiency is characterized by low blood levels of alpha1-proteinase inhibitor (alpha1-PI) and may lead to emphysema. Alpha1-PI protects pulmonary tissue from damage caused by the action of proteolytic enzymes. Augmentation therapy with Prolastin® (Alpha1-Proteinase Inhibitor [Human]) to increase the levels of alpha1-PI has been used to treat individuals with AAT deficiency for over 20 years. Modifications to the Prolastin manufacturing process, incorporating additional purification and pathogen-reduction steps, have led to the development of an alpha1-PI product, designated Prolastin®-C (Alpha1-Proteinase inhibitor [Human]). The pharmacokinetic comparability of Prolastin-C to Prolastin was assessed in subjects with AAT deficiency.
Methods
In total, 24 subjects were randomized to receive 60 mg/kg of functionally active Prolastin-C or Prolastin by weekly intravenous infusion for 8 weeks before crossover to the alternate treatment for another 8 weeks. Pharmacokinetic plasma samples were drawn over 7 days following last dose in the first treatment period and over 10 days following the last dose in the second period. The primary end point for pharmacokinetic comparability was area under the plasma concentration versus time curve over 7 days post dose (AUC0-7 days) of alpha1-PI determined by potency (functional activity) assay. The crossover phase was followed by an 8-week open-label treatment phase with Prolastin-C only.
Results
Mean AUC0-7 days was 155.9 versus 152.4 mg*h/mL for Prolastin-C and Prolastin, respectively. The geometric least squares mean ratio of AUC0-7 days for Prolastin-C versus Prolastin had a point estimate of 1.03 and a 90% confidence interval of 0.97-1.09, demonstrating pharmacokinetic equivalence between the 2 products. Adverse events were similar for both treatments and occurred at a rate of 0.117 and 0.078 per infusion for Prolastin-C (double-blind treatment phase only) and Prolastin, respectively (p = 0.744). There were no treatment-emergent viral infections in any subject for human immunodeficiency virus, hepatitis B or C, or parvovirus B19 during the course of the study.
Conclusion
Prolastin-C demonstrated pharmacokinetic equivalence and a comparable safety profile to Prolastin.
Trial Registration
ClinicalTrials.gov Identifier: NCT00295061
doi:10.1186/1472-6904-10-13
PMCID: PMC2958874  PMID: 20920295
4.  Determinants of airflow obstruction in severe alpha‐1‐antitrypsin deficiency 
Thorax  2007;62(9):806-813.
Background
Severe α1‐antitrypsin (AAT) deficiency is an autosomal recessive genetic condition associated with an increased but variable risk for chronic obstructive pulmonary disease (COPD). A study was undertaken to assess the impact of chronic bronchitis, pneumonia, asthma and sex on the development of COPD in individuals with severe AAT deficiency.
Methods
The AAT Genetic Modifier Study is a multicentre family‐based cohort study designed to study the genetic and epidemiological determinants of COPD in AAT deficiency. 378 individuals (age range 33–80 years), confirmed to be homozygous for the SERPINA1 Z mutation, were included in the analyses. The primary outcomes of interest were a quantitative outcome, forced expiratory volume in 1 s (FEV1) percentage predicted, and a qualitative outcome, severe airflow obstruction (FEV1 <50% predicted).
Results
In multivariate analysis of the overall cohort, cigarette smoking, sex, asthma, chronic bronchitis and pneumonia were risk factors for reduced FEV1 percentage predicted and severe airflow obstruction (p<0.01). Index cases had lower FEV1 values, higher smoking histories and more reports of adult asthma, pneumonia and asthma before age 16 than non‐index cases (p<0.01). Men had lower pre‐ and post‐bronchodilator FEV1 percentage predicted than women (p<0.0001); the lowest FEV1 values were observed in men reporting a history of childhood asthma (26.9%). This trend for more severe obstruction in men remained when index and non‐index groups were examined separately, with men representing the majority of non‐index individuals with airflow obstruction (71%). Chronic bronchitis (OR 3.8, CI 1.8 to 12.0) and a physician's report of asthma (OR 4.2, CI 1.4 to 13.1) were predictors of severe airflow obstruction in multivariate analysis of non‐index men but not women.
Conclusion
In individuals with severe AAT deficiency, sex, asthma, chronic bronchitis and pneumonia are risk factors for severe COPD, in addition to cigarette smoking. These results suggest that, in subjects severely deficient in AAT, men, individuals with symptoms of chronic bronchitis and/or a past diagnosis of asthma or pneumonia may benefit from closer monitoring and potentially earlier treatment.
doi:10.1136/thx.2006.075846
PMCID: PMC2117297  PMID: 17389752
5.  IL10 Polymorphisms Are Associated with Airflow Obstruction in Severe α1-Antitrypsin Deficiency 
Severe α1-antitrypsin (AAT) deficiency is a proven genetic risk factor for chronic obstructive pulmonary disease (COPD), especially in individuals who smoke. There is marked variability in the development of lung disease in individuals homozygous (PI ZZ) for this autosomal recessive condition, suggesting that modifier genes could be important. We hypothesized that genetic determinants of obstructive lung disease may be modifiers of airflow obstruction in individuals with severe AAT deficiency. To identify modifier genes, we performed family-based association analyses for 10 genes previously associated with asthma and/or COPD, including IL10, TNF, GSTP1, NOS1, NOS3, SERPINA3, SERPINE2, SFTPB, TGFB1, and EPHX1. All analyses were performed in a cohort of 378 PI ZZ individuals from 167 families. Quantitative spirometric phenotypes included forced expiratory volume in one second (FEV1) and the ratio of FEV1/forced vital capacity (FVC). A qualitative phenotype of moderate-to-severe COPD was defined for individuals with FEV1 ⩽ 50 percent predicted. Six of 11 single-nucleotide polymorphisms (SNPs) in IL10 (P = 0.0005–0.05) and 3 of 5 SNPs in TNF (P = 0.01–0.05) were associated with FEV1 and/or FEV1/FVC. IL10 SNPs also demonstrated association with the qualitative COPD phenotype. When phenotypes of individuals with a physician's diagnosis of asthma were excluded, IL10 SNPs remained significantly associated, suggesting that the association with airflow obstruction was independent of an association with asthma. Haplotype analysis of IL10 SNPs suggested the strongest association with IL10 promoter SNPs. IL10 is likely an important modifier gene for the development of COPD in individuals with severe AAT deficiency.
doi:10.1165/rcmb.2007-0107OC
PMCID: PMC2176135  PMID: 17690329
chronic obstructive pulmonary disease; genetic modifiers; interleukin 10; family-based association analysis
6.  Association of IREB2 and CHRNA3 polymorphisms with airflow obstruction in severe alpha-1 antitrypsin deficiency 
Respiratory Research  2012;13(1):16.
Background
The development of COPD in subjects with alpha-1 antitrypsin (AAT) deficiency is likely to be influenced by modifier genes. Genome-wide association studies and integrative genomics approaches in COPD have demonstrated significant associations with SNPs in the chromosome 15q region that includes CHRNA3 (cholinergic nicotine receptor alpha3) and IREB2 (iron regulatory binding protein 2).
We investigated whether SNPs in the chromosome 15q region would be modifiers for lung function and COPD in AAT deficiency.
Methods
The current analysis included 378 PIZZ subjects in the AAT Genetic Modifiers Study and a replication cohort of 458 subjects from the UK AAT Deficiency National Registry. Nine SNPs in LOC123688, CHRNA3 and IREB2 were selected for genotyping. FEV1 percent of predicted and FEV1/FVC ratio were analyzed as quantitative phenotypes. Family-based association analysis was performed in the AAT Genetic Modifiers Study. In the replication set, general linear models were used for quantitative phenotypes and logistic regression models were used for the presence/absence of emphysema or COPD.
Results
Three SNPs (rs2568494 in IREB2, rs8034191 in LOC123688, and rs1051730 in CHRNA3) were associated with pre-bronchodilator FEV1 percent of predicted in the AAT Genetic Modifiers Study. Two SNPs (rs2568494 and rs1051730) were associated with the post-bronchodilator FEV1 percent of predicted and pre-bronchodilator FEV1/FVC ratio; SNP-by-gender interactions were observed. In the UK National Registry dataset, rs2568494 was significantly associated with emphysema in the male subgroup; significant SNP-by-smoking interactions were observed.
Conclusions
IREB2 and CHRNA3 are potential genetic modifiers of COPD phenotypes in individuals with severe AAT deficiency and may be sex-specific in their impact.
doi:10.1186/1465-9921-13-16
PMCID: PMC3306733  PMID: 22356581
CHRNA3; Chronic obstructive pulmonary disease; Genetic association analysis; Genetic modifiers; IREB2

Results 1-6 (6)