PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-18 (18)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  HLA-DQB1*02 and DQB1*06:03P are associated with peanut allergy 
European Journal of Human Genetics  2013;21(10):1181-1184.
Peanut allergy (PA) is a common and serious food allergy and its prevalence has increased in the past decade. Although there is strong evidence of inheritance, the genetic causes of this disease are not well understood. Previously, a large-scale genome-wide association study described an association between human leukocyte antigen (HLA)-DQB1 and asthma; the aim of this study was to evaluate the association between HLA-DQB1 and PA. Genotypic and allelic profiles were established for 311 Caucasian members of a well-described Canadian group of children with PA and 226 Caucasian controls. Firth's logistic regression analyses showed associations between HLA-DQB1 alleles and PA for DQB1*02 (P=1.1 × 10−8, odds ratio (OR)=0.09 (CI=0.03–0.23)) and DQB1*06:03P alleles (P=2.1 × 10−2, OR=2.82 (CI=1.48–5.45)). This study of HLA in PA demonstrates specific association between two allelic groups of the HLA-DQB1 gene (DQB1*02 and DQB1*06:03P) and PA, highlighting its possible role in the development of this disease.
doi:10.1038/ejhg.2013.13
PMCID: PMC3778350  PMID: 23443026
HLA-DQB1; peanut allergy; Caucasian; association; food allergy
2.  Longer Telomere Length in COPD Patients with α1-Antitrypsin Deficiency Independent of Lung Function 
PLoS ONE  2014;9(4):e95600.
Oxidative stress is involved in the pathogenesis of airway obstruction in α1-antitrypsin deficient patients. This may result in a shortening of telomere length, resulting in cellular senescence. To test whether telomere length differs in α1-antitrypsin deficient patients compared with controls, we measured telomere length in DNA from peripheral blood cells of 217 α1-antitrypsin deficient patients and 217 control COPD patients. We also tested for differences in telomere length between DNA from blood and DNA from lung tissue in a subset of 51 controls. We found that telomere length in the blood was significantly longer in α1-antitrypsin deficient COPD patients compared with control COPD patients (p = 1×10−29). Telomere length was not related to lung function in α1-antitrypsin deficient patients (p = 0.3122) or in COPD controls (p = 0.1430). Although mean telomere length was significantly shorter in the blood when compared with the lungs (p = 0.0078), telomere length was correlated between the two tissue types (p = 0.0122). Our results indicate that telomere length is better preserved in α1-antitrypsin deficient COPD patients than in non-deficient patients. In addition, measurement of telomere length in the blood may be a suitable surrogate for measurement in the lung.
doi:10.1371/journal.pone.0095600
PMCID: PMC3998943  PMID: 24763308
4.  Nitric oxide synthase polymorphisms, gene expression and lung function in chronic obstructive pulmonary disease 
Background
Due to the pleiotropic effects of nitric oxide (NO) within the lungs, it is likely that NO is a significant factor in the pathogenesis of chronic obstructive pulmonary disease (COPD). The aim of this study was to test for association between single nucleotide polymorphisms (SNPs) in three NO synthase (NOS) genes and lung function, as well as to examine gene expression and protein levels in relation to the genetic variation.
Methods
One SNP in each NOS gene (neuronal NOS (NOS1), inducible NOS (NOS2), and endothelial NOS (NOS3)) was genotyped in the Lung Health Study (LHS) and correlated with lung function. One SNP (rs1800779) was also analyzed for association with COPD and lung function in four COPD case–control populations. Lung tissue expression of NOS3 mRNA and protein was tested in individuals of known genotype for rs1800779. Immunohistochemistry of lung tissue was used to localize NOS3 expression.
Results
For the NOS3 rs1800779 SNP, the baseline forced expiratory volume in one second in the LHS was significantly higher in the combined AG + GG genotypic groups compared with the AA genotypic group. Gene expression and protein levels in lung tissue were significantly lower in subjects with the AG + GG genotypes than in AA subjects. NOS3 protein was expressed in the airway epithelium and subjects with the AA genotype demonstrated higher NOS3 expression compared with AG and GG individuals. However, we were not able to replicate the associations with COPD or lung function in the other COPD study groups.
Conclusions
Variants in the NOS genes were not associated with lung function or COPD status. However, the G allele of rs1800779 resulted in a decrease of NOS3 gene expression and protein levels and this has implications for the numerous disease states that have been associated with this polymorphism.
doi:10.1186/1471-2466-13-64
PMCID: PMC3827989  PMID: 24192154
Chronic obstructive pulmonary disease; Nitric oxide synthase; Polymorphism; Gene expression
5.  Causal and Synthetic Associations of Variants in the SERPINA Gene Cluster with Alpha1-antitrypsin Serum Levels 
PLoS Genetics  2013;9(8):e1003585.
Several infrequent genetic polymorphisms in the SERPINA1 gene are known to substantially reduce concentration of alpha1-antitrypsin (AAT) in the blood. Since low AAT serum levels fail to protect pulmonary tissue from enzymatic degradation, these polymorphisms also increase the risk for early onset chronic obstructive pulmonary disease (COPD). The role of more common SERPINA1 single nucleotide polymorphisms (SNPs) in respiratory health remains poorly understood.
We present here an agnostic investigation of genetic determinants of circulating AAT levels in a general population sample by performing a genome-wide association study (GWAS) in 1392 individuals of the SAPALDIA cohort.
Five common SNPs, defined by showing minor allele frequencies (MAFs) >5%, reached genome-wide significance, all located in the SERPINA gene cluster at 14q32.13. The top-ranking genotyped SNP rs4905179 was associated with an estimated effect of β = −0.068 g/L per minor allele (P = 1.20*10−12). But denser SERPINA1 locus genotyping in 5569 participants with subsequent stepwise conditional analysis, as well as exon-sequencing in a subsample (N = 410), suggested that AAT serum level is causally determined at this locus by rare (MAF<1%) and low-frequent (MAF 1–5%) variants only, in particular by the well-documented protein inhibitor S and Z (PI S, PI Z) variants. Replication of the association of rs4905179 with AAT serum levels in the Copenhagen City Heart Study (N = 8273) was successful (P<0.0001), as was the replication of its synthetic nature (the effect disappeared after adjusting for PI S and Z, P = 0.57). Extending the analysis to lung function revealed a more complex situation. Only in individuals with severely compromised pulmonary health (N = 397), associations of common SNPs at this locus with lung function were driven by rarer PI S or Z variants. Overall, our meta-analysis of lung function in ever-smokers does not support a functional role of common SNPs in the SERPINA gene cluster in the general population.
Author Summary
Low levels of alpha1-antitrypsin (AAT) in the blood are a well-established risk factor for accelerated loss in lung function and chronic obstructive pulmonary disease. While a few infrequent genetic polymorphisms are known to influence the serum levels of this enzyme, the role of common genetic variants has not been examined so far. The present genome-wide scan for associated variants in approximately 1400 Swiss inhabitants revealed a chromosomal locus containing the functionally established variants of AAT deficiency and variants previously associated with lung function and emphysema. We used dense genotyping of this genetic region in more than 5500 individuals and subsequent conditional analyses to unravel which of these associated variants contribute independently to the phenotype's variability. All associations of common variants could be attributed to the rarer functionally established variants, a result which was then replicated in an independent population-based Danish cohort. Hence, this locus represents a textbook example of how a large part of a trait's heritability can be hidden in infrequent genetic polymorphisms. The attempt to transfer these results to lung function furthermore suggests that effects of common variants in this genetic region in ever-smokers may also be explained by rarer variants, but only in individuals with hampered pulmonary health.
doi:10.1371/journal.pgen.1003585
PMCID: PMC3749935  PMID: 23990791
6.  ROLE OF GENETIC SUSCEPTIBILITY TO LATENT ADENOVIRAL INFECTION AND DECREASED LUNG FUNCTION 
Respiratory medicine  2009;103(11):1672-1680.
Background
Latent adenoviral infection may amplify cigarette smoke-induced lung inflammation and therefore play an important role in the development of chronic obstructive pulmonary disease (COPD). Adenoviruses can evade the human immune response via their 19-kDa protein (19K) which delays the expression of class I human leukocyte antigen (HLA) proteins. The 19K protein shows higher affinity to HLA-B7 and A2 compared with HLA-A1 and A3. The receptor for adenovirus (CXADR) and integrin β5 (ITGB5) are host factors which might affect adenovirus infection. Therefore, we investigated the contribution of HLA, CXADR, and ITGB5 genetic variants to the presence of the E1A gene and to level of lung function.
Methods
Study subjects were assayed for HLA-B7, A1, A2 and A3 by PCR-based assays using allele-specific primers. Polymorphisms of the CXADR and ITGB5 genes were genotyped by PCR-based restriction fragment length polymorphism assays. Detection of adenoviral E1A gene was performed by a real-time PCR TaqMan assay.
Results
E1A positive individuals have a lower FEV1 compared with E1A negative individuals. However, there was no significant difference in E1A positivity rate between the high (HLA-B7 and A2) and low (HLA-A1 and A3) 19K affinity groups. There was also no significant difference in FEV1 level between each affinity group. There was no significant difference in E1A positivity rate or lung function among the CXADR and ITGB5 genotypes.
Conclusions
Genetic variants in HLA, CXADR and ITGB5 do not influence latent adenoviral infections and are not associated with COPD.
doi:10.1016/j.rmed.2009.05.008
PMCID: PMC2757510  PMID: 19502044
7.  Selection of Suitable Housekeeping Genes for Real-Time Quantitative PCR in CD4+ Lymphocytes from Asthmatics with or without Depression 
PLoS ONE  2012;7(10):e48367.
Objective
No optimal housekeeping genes (HKGs) have been identified for CD4+ T cells from non-depressive asthmatic and depressive asthmatic adults for normalizing quantitative real-time PCR (qPCR) assays. The aim of present study was to select appropriate HKGs for gene expression analysis in purified CD4+ T cells from these asthmatics.
Methods
Three groups of subjects (Non-depressive asthmatic, NDA, n = 10, Depressive asthmatic, DA, n = 11, and Healthy control, HC, n = 10 respectively) were studied. qPCR for 9 potential HKGs, namely RNA, 28S ribosomal 1 (RN28S1), ribosomal protein, large, P0 (RPLP0), actin, beta (ACTB), cyclophilin A (PPIA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase 1 (PGK1), beta-2-microglobulin (B2M), glucuronidase, beta (GUSB) and ribosomal protein L13a (RPL13A), was performed. Then the data were analyzed with three different applications namely BestKeeper, geNorm, and NormFinder.
Results
The analysis of gene expression data identified B2M and RPLP0 as the most stable reference genes and showed that the level of PPIA was significantly different among subjects of three groups when the two best HKGs identified were applied. Post-hoc analysis by Student-Newman-Keuls correction shows that depressive asthmatics and non-depressive asthmatics exhibited lower expression level of PPIA than healthy controls (p<0.05).
Conclusions
B2M and RPLP0 were identified as the most optimal HKGs in gene expression studies involving human blood CD4+ T cells derived from normal, depressive asthmatics and non-depressive asthmatics. The suitability of using the PPIA gene as the HKG for such studies was questioned due to its low expression in asthmatics.
doi:10.1371/journal.pone.0048367
PMCID: PMC3480507  PMID: 23110234
8.  Functional characterization of the matrix metalloproteinase-1 cigarette smoke-responsive region and association with the lung health study 
Respiratory Research  2012;13(1):79.
Background
Prior studies have demonstrated that the distal 1.5 kb of the MMP-1 promoter is fundamental in directing the induction of the MMP-1 gene by cigarette smoke.
Methods
To characterize the genetic variants in the MMP-1 cigarette smoke-responsive element, deep re-sequencing of this element was performed on DNA samples from participants in the Lung Health Study. Furthermore, evidence of Sp1 binding to the MMP-1 promoter was assessed using chromatin immunoprecipitation assays and the influence of cigarette smoke exposure on this interaction was evaluated in cultured human small airway epithelial cells.
Results
Ten polymorphisms (four novel) were detected in the cigarette smoke-responsive element. Chromatin immunoprecipitation assays to assess the protein-DNA interactions at Sp1 sites in the MMP-1 promoter showed increased binding to the Sp1 sites in the cigarette smoke-responsive element in small airway epithelial cells treated with cigarette smoke extract. In contrast, a Sp1 site outside of the element exhibited the opposite effect. None of the polymorphisms were more prevalent in the fast decliners versus the slow decliners (fast decliners = mean −4.14% decline in FEV1% predicted per year vs. decline in FEV1% predicted per year).
Conclusions
Sequencing analyses identified four novel polymorphisms within the cigarette smoke-responsive element of the MMP-1 promoter. This study identifies functional activity within the cigarette smoke-responsive element that is influenced by cigarette smoke and examines this region of the promoter within a small patient population.
doi:10.1186/1465-9921-13-79
PMCID: PMC3509005  PMID: 22992122
Chromatin immunoprecipitation; COPD; Metalloproteinase; Polymorphisms; Transcription factors
9.  The Relationship between Telomere Length and Mortality in Chronic Obstructive Pulmonary Disease (COPD) 
PLoS ONE  2012;7(4):e35567.
Some have suggested that chronic obstructive pulmonary disease (COPD) is a disease of accelerated aging. Aging is characterized by shortening of telomeres. The relationship of telomere length to important clinical outcomes such as mortality, disease progression and cancer in COPD is unknown. Using quantitative polymerase chain reaction (qPCR), we measured telomere length of peripheral leukocytes in 4,271 subjects with mild to moderate COPD who participated in the Lung Health Study (LHS). The subjects were followed for approximately 7.5 years during which time their vital status, FEV1 and smoking status were ascertained. Using multiple regression methods, we determined the relationship of telomere length to cancer and total mortality in these subjects. We also measured telomere length in healthy “mid-life” volunteers and patients with more severe COPD. The LHS subjects had significantly shorter telomeres than those of healthy “mid-life” volunteers (p<.001). Compared to individuals in the 4th quartile of relative telomere length (i.e. longest telomere group), the remaining participants had significantly higher risk of cancer mortality (Hazard ratio, HR, 1.48; p = 0.0324) and total mortality (HR, 1.29; p = 0.0425). Smoking status did not make a significant difference in peripheral blood cells telomere length. In conclusion, COPD patients have short leukocyte telomeres, which are in turn associated increased risk of total and cancer mortality. Accelerated aging is of particular relevance to cancer mortality in COPD.
doi:10.1371/journal.pone.0035567
PMCID: PMC3338848  PMID: 22558169
10.  Understanding the Population Structure of North American Patients with Cystic Fibrosis 
Clinical genetics  2011;79(2):136-146.
Rationale
It is generally presumed that the Cystic Fibrosis (CF) population is relatively homogeneous, and predominantly of European origin. The complex ethnic make-up observed in the CF patients collected by the North American CF Modifier Gene Consortium has brought this assumption into question, and suggested the potential for population substructure in the three CF study samples collected from North America. It is well appreciated that population substructure can result in spurious genetic associations.
Objectives
To understand the ethnic composition of the North American CF population, and to assess the need for population structure adjustment in genetic association studies with North American CF patients.
Methods
Genome-wide single-nucleotide polymorphisms on 3076 unrelated North American CF patients were used to perform population structure analyses. We compared self-reported ethnicity to genotype-inferred ancestry, and also examined whether geographic distribution and CFTR mutation type could explain the structure observed.
Main Results
Although largely Caucasian, our analyses identified a considerable number of CF patients with admixed African-Caucasian, Mexican-Caucasian and Indian-Caucasian ancestries. Population substructure was present and comparable across the three studies of the consortium. Neither geographic distribution nor mutation type explained the population structure.
Conclusion
Given the ethnic diversity of the North American CF population, it is essential to carefully detect, estimate and adjust for population substructure to guard against potential spurious findings in CF genetic association studies. Other Mendelian diseases that are presumed to predominantly affect single ethnic groups may also benefit from careful analysis of population structure.
doi:10.1111/j.1399-0004.2010.01502.x
PMCID: PMC2995003  PMID: 20681990
ethnicity; principal component analysis; population substructure; population stratification
11.  Effect of heme oxygenase-1 polymorphisms on lung function and gene expression 
BMC Medical Genetics  2011;12:117.
Background
Oxidative stress induced by smoking is considered to be important in the pathogenesis of Chronic Obstructive Pulmonary Disease (COPD). Heme oxygenase-1 (HMOX1) is an essential enzyme in heme catabolism that is induced by oxidative stress and may play a protective role as an antioxidant in the lung. We determined whether HMOX1 polymorphisms were associated with lung function in COPD patients and whether the variants had functional effects.
Methods
We genotyped five single nucleotide polymorphisms (SNPs) in the HMOX1 gene in Caucasians who had the fastest (n = 278) and the slowest (n = 304) decline of FEV1 % predicted, selected from smokers in the NHLBI Lung Health Study. These SNPs were also studied in Caucasians with the lowest (n = 535) or the highest (n = 533) baseline lung function. Reporter genes were constructed containing three HMOX1 promoter polymorphisms and the effect of these polymorphisms on H2O2 and hemin-stimulated gene expression was determined. The effect of the HMOX1 rs2071749 SNP on gene expression in alveolar macrophages was investigated.
Results
We found a nominal association (p = 0.015) between one intronic HMOX1 SNP (rs2071749) and lung function decline but this did not survive correction for multiple comparisons. This SNP was in perfect linkage disequilibrium with rs3761439, located in the promoter of HMOX1. We tested rs3761439 and two other putatively functional polymorphisms (rs2071746 and the (GT)n polymorphism) in reporter gene assays but no significant effects on gene expression were found. There was also no effect of rs2071749 on HMOX1 gene expression in alveolar macrophages.
Conclusions
We found no association of the five HMOX1 tag SNPs with lung function decline and no evidence that the three promoter polymorphisms affected the regulation of the HMOX1 gene.
doi:10.1186/1471-2350-12-117
PMCID: PMC3180266  PMID: 21902835
Heme oxygenase; polymorphism; chronic obstructive pulmonary disease
12.  Effect of gene environment interactions on lung function and cardiovascular disease in COPD 
Background:
The objective of this study was to determine if gene-environment interactions between cigarette smoking and interleukin-6 (IL6), interferon-γ (IFNG), interleukin-1β (IL1B), or interleukin-1 receptor antagonist (IL1RN) single nucleotide polymorphisms are associated with lung function decline and cardiovascular disease in chronic obstructive pulmonary disease (COPD).
Methods:
Single nucleotide polymorphisms (SNPs) in IL6, IFNG, IL1B, and IL1RN were genotyped in the Lung Health Study and correlated with rate of decline of forced expiratory volume in 1 second (FEV1) over 5 years, baseline FEV1, serum protein levels, cardiovascular disease, and interactions with smoking.
Results:
The IL6 rs2069825 single nucleotide polymorphism was associated with the rate of decline of prebronchodilator FEV1 (P = 0.049), and was found to have a significant interaction (P = 0.004) with mean number of cigarettes smoked per day. There was also a significant interaction of IFNG rs2069727 with smoking on prebronchodilator (P = 0.008) and postbronchodilator (P =0.01) FEV1. The IL6 polymorphism was also associated with cardiovascular disease in heterozygous individuals (P = 0.044), and was found to have a significant interaction with smoking (P = 0.024). None of the genetic variants were associated with their respective serum protein levels.
Conclusion:
The results suggest interactions of IL6 rs2069825 and IFNG rs2069727 single nucleotide polymorphisms with cigarette smoking on measures of lung function. The IL6 rs2069825 single nucleotide polymorphism also interacted with smoking to affect the risk of cardiovascular disease in COPD patients.
doi:10.2147/COPD.S18279
PMCID: PMC3144847  PMID: 21814463
gene-environment interactions; interleukin-6; forced expiratory volume in one second; cardiovascular disease; chronic obstructive pulmonary disease
13.  Associations of IL6 polymorphisms with lung function decline and COPD 
Thorax  2009;64(8):698-704.
Background
Interleukin-6 (IL6) is a pleiotropic pro-inflammatory and immunomodulatory cytokine which likely plays an important role in the pathogenesis of COPD. There is a functional single nucleotide polymorphism (SNP), −174G/C, in the promoter region of IL6. We hypothesized that IL6 SNPs influence susceptibility for impaired lung function and COPD in smokers.
Methods
Seven and 5 SNPs in IL6 were genotyped in two nested case-control samples derived from the Lung Health Study (LHS) based on phenotypes of rate of decline of forced expiratory volume in one second (FEV1) over 5 years and baseline FEV1 at the beginning of the LHS. Serum IL6 concentrations were measured for all subjects. A partially overlapping panel of 9 IL6 SNPs was genotyped in 389 COPD cases from the National Emphysema Treatment Trial (NETT) and 420 controls from the Normative Aging Study (NAS).
Results
In the LHS, three IL6 SNPs were associated with FEV1 decline (0.023 ≤ P ≤ 0.041 in additive models). Among them the IL6_−174C allele was associated with rapid decline of lung function. The association was more significant in a genotype-based analysis (P = 0.006). In the NETT-NAS study, IL6_−174G/C and four other IL6 SNPs, all of which are in linkage disequilibrium with IL6_−174G/C, were associated with susceptibility to COPD (0.01 ≤ P ≤ 0.04 in additive genetic models).
Conclusion
Our results suggest that the IL6_−174G/C SNP is associated with rapid decline of FEV1 and susceptibility to COPD in smokers.
doi:10.1136/thx.2008.111278
PMCID: PMC2859187  PMID: 19359268
genetic polymorphism; IL6; forced expiratory volume in one second (FEV1); lung function; chronic obstructive pulmonary disease (COPD)
14.  Lack of association of TIM3 polymorphisms and allergic phenotypes 
BMC Medical Genetics  2009;10:62.
Background
T-cell immunoglobulin mucin-3 (TIM3) is a TH1-specific type 1 membrane protein that regulates TH1 proliferation and the development of immunological tolerance. TIM3 and its genetic variants have been suggested to play a role in regulating allergic diseases. Polymorphisms in the TIM3 promoter region have been reported to be associated with allergic phenotypes in several populations. The aims of this study were to examine whether genetic variation in the promoter region of TIM3 influenced transcription of the gene and risk for allergic phenotypes.
Methods
We performed 5' rapid amplification of cDNA ends and reverse transcription-polymerase chain reaction. We screened for polymorphisms in the promoter region. Deletion analysis was used to localize the promoter region of TIM3. Genotyping was performed by TaqMan assays in three asthma/allergy population samples.
Results
We found two regions with promoter activity in TIM3. One region was from -214 bp to +58 bp and the other from -1.6 kb to -914 bp relative to the transcription start site. None of the single nucleotide polymorphisms (SNPs) or haplotypes affected the transcriptional activity in reporter gene assays. No association between the SNPs and any phenotype was observed in the study cohorts.
Conclusion
Our findings indicate that SNPs and haplotypes in the TIM3 promoter region do not have a functional effect in vitro and are not associated with allergic diseases. These data suggest that polymorphisms in the TIM3 promoter region are unlikely to play an important role in susceptibility to allergic diseases.
doi:10.1186/1471-2350-10-62
PMCID: PMC2711936  PMID: 19566956
15.  Recent advances in asthma genetics 
Respiratory Research  2008;9(1):4.
There are over 100 genes that have been reported to be associated with asthma or related phenotypes. In 2006–2007 alone there were 53 novel candidate gene associations reported in the literature. Replication of genetic associations and demonstration of a functional mechanism for the associated variants are needed to confirm an asthma susceptibility gene. For most of the candidate genes there is little functional information. In a previous review by Hoffjan et al. published in 2003, functional information was reported for 40 polymorphisms and here we list another 22 genes which have such data. Some important genes such as filaggrin, interleukin-13, interleukin-17 and the cysteinyl leukotriene receptor-1 which not only were replicated by independent association studies but also have functional data are reviewed in this article.
doi:10.1186/1465-9921-9-4
PMCID: PMC2244620  PMID: 18197984
16.  Variants in the Glutamate-Cysteine-Ligase Gene Are Associated with Cystic Fibrosis Lung Disease 
Background: Chronic progressive lung disease is the most serious complication of cystic fibrosis (CF). Glutathione plays an important role in the protection of the CF lung against oxidant-induced lung injury.
Objectives: We hypothesized that a polymorphism in a novel candidate gene that regulates glutathione synthesis might influence CF lung disease.
Methods: In a cross-sectional study, subjects were recruited from CF clinics in Seattle and multiple centers in Canada. We tested for an association between CF lung disease and a functional polymorphism in the glutamate-cysteine ligase catalytic subunit (GCLC) gene. Multiple linear regression was used to test for association between polymorphisms of GCLC and severity of CF lung disease while adjusting for age, Pseudomonas aeruginosa infection, and cystic fibrosis transmembrane conductance regulator (CFTR) genotype. Analysis was repeated for patients with CF stratified by CFTR genotype.
Measurements and Main Results: A total of 440 subjects with CF participated in the study (51% male; mean [± SD] age, 26 ± 11 yr; mean FEV1, 62 ± 28% predicted). In the total population, there was a trend toward an association between GCLC genotypes and CF lung disease (linear regression coefficient [SEM], 1.68 [1.0]; p = 0.097). In the stratified analysis, there was a highly significant association between GCLC genotype and CF lung function in subjects with a milder CFTR genotype (linear regression coefficient [SEM], 5.5 (1.7); p = 0.001).
Conclusions: In patients with CF with a milder CFTR genotype, there is a strong association between functional polymorphisms of the GCLC gene and CF lung disease severity.
doi:10.1164/rccm.200508-1281OC
PMCID: PMC2648118  PMID: 16690975
CFTR genotype; glutathione; modifier genes
17.  Contribution of alpha- and beta-defensins to lung function decline and infection in smokers: an association study 
Respiratory Research  2006;7(1):76.
Background
Alpha-defensins, which are major constituents of neutrophil azurophilic granules, and beta-defensins, which are expressed in airway epithelial cells, could contribute to the pathogenesis of chronic obstructive pulmonary disease by amplifying cigarette smoke-induced and infection-induced inflammatory reactions leading to lung injury. In Japanese and Chinese populations, two different beta-defensin-1 polymorphisms have been associated with chronic obstructive pulmonary disease phenotypes. We conducted population-based association studies to test whether alpha-defensin and beta-defensin polymorphisms influenced smokers' susceptibility to lung function decline and susceptibility to lower respiratory infection in two groups of white participants in the Lung Health Study (275 = fast decline in lung function and 304 = no decline in lung function).
Methods
Subjects were genotyped for the alpha-defensin-1/alpha-defensin-3 copy number polymorphism and four beta-defensin-1 polymorphisms (G-20A, C-44G, G-52A and Val38Ile).
Results
There were no associations between individual polymorphisms or imputed haplotypes and rate of decline in lung function or susceptibility to infection.
Conclusion
These findings suggest that, in a white population, the defensin polymorphisms tested may not be of importance in determining who develops abnormally rapid lung function decline or is susceptible to developing lower respiratory infections.
doi:10.1186/1465-9921-7-76
PMCID: PMC1523340  PMID: 16700921
18.  Selection of reference genes for gene expression studies in human neutrophils by real-time PCR 
Background
Reference genes, which are often referred to housekeeping genes, are frequently used to normalize mRNA levels between different samples. However the expression level of these genes may vary among tissues or cells, and may change under certain circumstances. Thus the selection of reference gene(s) is critical for gene expression studies. For this purpose, 10 commonly used housekeeping genes were investigated in isolated human neutrophils.
Results
Initial screening of the expression pattern demonstrated that 3 of the 10 genes were expressed at very low levels in neutrophils and were excluded from further analysis. The range of expression stability of the other 7 genes was (from most stable to least stable): GNB2L1 (Guanine nucleotide binding protein, beta polypeptide 2-like 1), HPRT1 (Hypoxanthine phosphoribosyl transferase 1), RPL32 (ribosomal protein L32), ACTB (beta-actin), B2M (beta-2-microglobulin), GAPD (glyceraldehyde-3-phosphate dehydrogenase) and TBP (TATA-binding protein). Relative expression levels of the genes (from high to low) were: B2M, ACTB, GAPD, RPL32, GNB2L1, TBP, and HPRT1.
Conclusion
Our data suggest that GNB2L1, HPRT1, RPL32, ACTB, and B2M may be suitable reference genes in gene expression studies of neutrophils.
doi:10.1186/1471-2199-6-4
PMCID: PMC551605  PMID: 15720708

Results 1-18 (18)