PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (31)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Genome-Wide Association Analysis of Blood Biomarkers in Chronic Obstructive Pulmonary Disease 
Rationale: A genome-wide association study (GWAS) for circulating chronic obstructive pulmonary disease (COPD) biomarkers could identify genetic determinants of biomarker levels and COPD susceptibility.
Objectives: To identify genetic variants of circulating protein biomarkers and novel genetic determinants of COPD.
Methods: GWAS was performed for two pneumoproteins, Clara cell secretory protein (CC16) and surfactant protein D (SP-D), and five systemic inflammatory markers (C-reactive protein, fibrinogen, IL-6, IL-8, and tumor necrosis factor-α) in 1,951 subjects with COPD. For genome-wide significant single nucleotide polymorphisms (SNPs) (P < 1 × 10−8), association with COPD susceptibility was tested in 2,939 cases with COPD and 1,380 smoking control subjects. The association of candidate SNPs with mRNA expression in induced sputum was also elucidated.
Measurements and Main Results: Genome-wide significant susceptibility loci affecting biomarker levels were found only for the two pneumoproteins. Two discrete loci affecting CC16, one region near the CC16 coding gene (SCGB1A1) on chromosome 11 and another locus approximately 25 Mb away from SCGB1A1, were identified, whereas multiple SNPs on chromosomes 6 and 16, in addition to SNPs near SFTPD, had genome-wide significant associations with SP-D levels. Several SNPs affecting circulating CC16 levels were significantly associated with sputum mRNA expression of SCGB1A1 (P = 0.009–0.03). Several SNPs highly associated with CC16 or SP-D levels were nominally associated with COPD in a collaborative GWAS (P = 0.001–0.049), although these COPD associations were not replicated in two additional cohorts.
Conclusions: Distant genetic loci and biomarker-coding genes affect circulating levels of COPD-related pneumoproteins. A subset of these protein quantitative trait loci may influence their gene expression in the lung and/or COPD susceptibility.
Clinical trial registered with www.clinicaltrials.gov (NCT 00292552).
doi:10.1164/rccm.201206-1013OC
PMCID: PMC3622441  PMID: 23144326
biomarker; chronic obstructive pulmonary disease; genome-wide association study
2.  Associations between COPD related manifestations: a cross-sectional study 
Respiratory Research  2013;14(1):129.
Background
Cardiovascular disease, osteoporosis and emphysema are associated with COPD. Associations between these factors and whether they predict all-cause mortality in COPD patients are not well understood. Therefore, we examined associations between markers of cardiovascular disease (coronary artery calcification [CAC], thoracic aortic calcification [TAC] and arterial stiffness), bone density (bone attenuation of the thoracic vertebrae), emphysema (PI-950 and 15th percentile) and all-cause mortality in a COPD cohort.
Methods
We assessed CAC, TAC, bone attenuation of the thoracic vertebrae, PI-950 and 15th percentile on low-dose chest computed tomography in COPD subjects. We measured arterial stiffness as carotid-radial pulse wave velocity (PWV), and identified deaths from the national register.
Results
We studied 119 COPD subjects; aged 67.8 ±7.3, 66% were males and mean FEV1% predicted was 46.0 ±17.5. Subjects were classified into three pre-specificed groups: CAC = 0 (n = 14), 0 < CAC ≤ 400 (n = 41) and CAC > 400 (n = 64). Subjects with higher CAC were more likely to be older (p < 0.001) and male (p = 0.03), and more likely to have higher systolic blood pressure (p = 0.001) and a history of hypertension (p = 0.002) or ischemic heart disease (p = 0.003). Higher CAC was associated with higher PWV (OR 1.62, p = 0.04) and lower bone attenuation (OR 0.32, p = 0.02), but not with 15th percentile, after adjustment for age, sex and pack-years of smoking. In a Cox proportional hazards model, CAC, TAC and 15th percentile predicted all-cause mortality (HR 2.01, 2.09 and 0.66, respectively).
Conclusions
Increased CAC was associated with increased arterial stiffness and lower bone density in a COPD cohort. In addition, CAC, TAC and extent of emphysema predicted all-cause mortality.
Trial registration
Lothian NHS Board, Lothian Research Ethics Committee, LREC/2003/8/28.
doi:10.1186/1465-9921-14-129
PMCID: PMC3840707  PMID: 24251912
Arterial calcification; Arterial stiffness; Bone density; Cardiovascular disease; Co-morbidity; Computed tomography; COPD; Emphysema; Mortality; Osteoporosis
3.  ANTIOXIDANT PHARMACOLOGIAL THERAPIES FOR COPD 
Current opinion in pharmacology  2012;12(3):256-265.
Increased oxidative stress occurs in the lungs and systemically in COPD, which plays a role in many of the pathogenic mechanisms in COPD. Hence, targeting local lung and systemic oxidative stress with agents that modulate the antioxidants/redox system or boost endogenous antioxidants would be a useful therapeutic approach in COPD. Thiol antioxidants (N-acetyl-L-cysteine and N-acystelyn, carbocysteine, erdosteine, and fudosteine have been used to increase lung thiol content. Modulation of cigarette smoke induced oxidative stress and its consequent cellular changes have also been reported to be effected by synthetic molecules, such as spin traps (α-phenyl-N-tert-butyl nitrone), catalytic antioxidants (superoxide dismutase [ECSOD] mimetics), porphyrins, and lipid peroxidation and protein carbonylation blockers/inhibitors (edaravone and lazaroids/tirilazad). Pre-clinical and clinical trials have shown that these antioxidants can reduce oxidative stress, affect redox and glutathione biosynthesis genes, and pro-inflammatory gene expression. In this review the approaches to enhance lung antioxidants in COPD and the potential beneficial effects of antioxidant therapy on the course of the disease are discussed.
doi:10.1016/j.coph.2012.01.015
PMCID: PMC3768007  PMID: 22349417
Cigarette smoke; antioxidants; oxidants; glutathione; thiols; Nrf2; Chronic Obstructive Pulmonary Disease
4.  Forced Expiratory Volume in One Second Predicts Length of Stay and In-Hospital Mortality in Patients Undergoing Cardiac Surgery: A Retrospective Cohort Study 
PLoS ONE  2013;8(5):e64565.
Objective
An aging population and increasing use of percutaneous therapies have resulted in older patients with more co-morbidity being referred for cardiac surgery. Objective measurements of physiological reserve and severity of co-morbid disease are required to improve risk stratification. We hypothesised that FEV1 would predict mortality and length of stay following cardiac surgery.
Methods
We assessed clinical outcomes in 2,241 consecutive patients undergoing coronary artery bypass grafting and/or valve surgery from 2001 to 2007 in a regional cardiac centre. Generalized linear models of the association between FEV1 and length of hospital stay and mortality were adjusted for age, sex, height, body mass index, socioeconomic status, smoking, cardiovascular risk factors, long-term use of bronchodilators or steroids for lung disease, and type and urgency of surgery. FEV1 was compared to an established risk prediction model, the EuroSCORE.
Results
Spirometry was performed in 2,082 patients (93%) whose mean (SD) age was 67 (10) years. Median hospital stay was 3 days longer in patients in the lowest compared to the highest quintile for FEV1, 1.35-fold higher (95% CI 1.20–1.52; p<0.001). The adjusted odds ratio for mortality was increased 2.11-fold (95% CI 1.45–3.08; p<0.001) per standard deviation decrement in FEV1 (800 ml). FEV1 improved discrimination of the EuroSCORE for mortality. Similar associations were found after excluding people with known pulmonary disease and/or airflow limitation on spirometry.
Conclusions
Reduced FEV1 strongly predicted increased length of stay and in-hospital mortality following cardiac surgery. FEV1 is a widely available measure of physiological health that may improve risk stratification of complex patients undergoing cardiac surgery and should be evaluated for inclusion in new prediction tools.
doi:10.1371/journal.pone.0064565
PMCID: PMC3665784  PMID: 23724061
5.  Pulmonary Function is Associated with Distal Aortic Calcium, not Proximal Aortic Distensibility. MESA Lung Study 
COPD  2011;8(2):71-78.
Forced expiratory volume in one second strongly predicts mortality from cardiovascular disease. FEV1 has been associated with aortic stiffness a strong independent predictor of cardiovascular mortality. However, the anatomical site and possible mechanisms linking aortic stiffness and lung function are unknown. We therefore examined if FEV1 and CT percent emphysema were associated with calcification of the abdominal aorta or reduced distensibility of the proximal thoracic aorta.
The Multi-Ethnic Study of Atherosclerosis (MESA) measured aortic calcification on cardiac and abdominal CT scans and proximal aortic distensibility using magnetic resonance among participants aged 45–84 years without clinical cardiovascular disease. Spirometry was measured following ATS/ERS guidelines and percent emphysema was measured in the lung fields of cardiac CT scans. Multivariate analyses adjusted for age, sex, race/ethnicity and cardiovascular risk factors.
Of 1,917 participants with aortic distensibility measures, 13% were current and 38% were former smokers. Eighteen percent had airflow limitation without asthma. FEV1 was associated with the extent of distal aortic calcification (0.76; 95%CI 0.60–0.97, p=0.02) but not proximal aortic calcification or proximal aortic distensibility (−0.04 mmHg−1; 95%CI −0.16–0.09 mmHg−1, p=0.60). Percent emphysema was associated with neither measure.
FEV1 was associated with severity of distal aortic calcification where it was present independently of smoking and other cardiovascular risk factors but not with distensibility or calcification of the proximal aorta.
doi:10.3109/15412555.2011.558543
PMCID: PMC3629728  PMID: 21495835
forced expiratory volume; pulmonary emphysema; aorta; calcification; compliance
6.  A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13 
Human Molecular Genetics  2011;21(4):947-957.
The genetic risk factors for chronic obstructive pulmonary disease (COPD) are still largely unknown. To date, genome-wide association studies (GWASs) of limited size have identified several novel risk loci for COPD at CHRNA3/CHRNA5/IREB2, HHIP and FAM13A; additional loci may be identified through larger studies. We performed a GWAS using a total of 3499 cases and 1922 control subjects from four cohorts: the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE); the Normative Aging Study (NAS) and National Emphysema Treatment Trial (NETT); Bergen, Norway (GenKOLS); and the COPDGene study. Genotyping was performed on Illumina platforms with additional markers imputed using 1000 Genomes data; results were summarized using fixed-effect meta-analysis. We identified a new genome-wide significant locus on chromosome 19q13 (rs7937, OR = 0.74, P = 2.9 × 10−9). Genotyping this single nucleotide polymorphism (SNP) and another nearby SNP in linkage disequilibrium (rs2604894) in 2859 subjects from the family-based International COPD Genetics Network study (ICGN) demonstrated supportive evidence for association for COPD (P = 0.28 and 0.11 for rs7937 and rs2604894), pre-bronchodilator FEV1 (P = 0.08 and 0.04) and severe (GOLD 3&4) COPD (P = 0.09 and 0.017). This region includes RAB4B, EGLN2, MIA and CYP2A6, and has previously been identified in association with cigarette smoking behavior.
doi:10.1093/hmg/ddr524
PMCID: PMC3298111  PMID: 22080838
7.  Persistent Systemic Inflammation is Associated with Poor Clinical Outcomes in COPD: A Novel Phenotype 
PLoS ONE  2012;7(5):e37483.
Background
Because chronic obstructive pulmonary disease (COPD) is a heterogeneous condition, the identification of specific clinical phenotypes is key to developing more effective therapies. To explore if the persistence of systemic inflammation is associated with poor clinical outcomes in COPD we assessed patients recruited to the well-characterized ECLIPSE cohort (NCT00292552).
Methods and Findings
Six inflammatory biomarkers in peripheral blood (white blood cells (WBC) count and CRP, IL-6, IL-8, fibrinogen and TNF-α levels) were quantified in 1,755 COPD patients, 297 smokers with normal spirometry and 202 non-smoker controls that were followed-up for three years. We found that, at baseline, 30% of COPD patients did not show evidence of systemic inflammation whereas 16% had persistent systemic inflammation. Even though pulmonary abnormalities were similar in these two groups, persistently inflamed patients during follow-up had significantly increased all-cause mortality (13% vs. 2%, p<0.001) and exacerbation frequency (1.5 (1.5) vs. 0.9 (1.1) per year, p<0.001) compared to non-inflamed ones. As a descriptive study our results show associations but do not prove causality. Besides this, the inflammatory response is complex and we studied only a limited panel of biomarkers, albeit they are those investigated by the majority of previous studies and are often and easily measured in clinical practice.
Conclusions
Overall, these results identify a novel systemic inflammatory COPD phenotype that may be the target of specific research and treatment.
doi:10.1371/journal.pone.0037483
PMCID: PMC3356313  PMID: 22624038
8.  Serum PARC/CCL-18 Concentrations and Health Outcomes in Chronic Obstructive Pulmonary Disease 
Rationale: There are no accepted blood-based biomarkers in chronic obstructive pulmonary disease (COPD). Pulmonary and activation-regulated chemokine (PARC/CCL-18) is a lung-predominant inflammatory protein that is found in serum.
Objectives: To determine whether PARC/CCL-18 levels are elevated and modifiable in COPD and to determine their relationship to clinical end points of hospitalization and mortality.
Methods: PARC/CCL-18 was measured in serum samples from individuals who participated in the ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) and LHS (Lung Health Study) studies and a prednisolone intervention study.
Measurements and Main Results: Serum PARC/CCL-18 levels were higher in subjects with COPD than in smokers or lifetime nonsmokers without COPD (105 vs. 81 vs. 80 ng/ml, respectively; P < 0.0001). Elevated PARC/CCL-18 levels were associated with increased risk of cardiovascular hospitalization or mortality in the LHS cohort and with total mortality in the ECLIPSE cohort.
Conclusions: Serum PARC/CCL-18 levels are elevated in COPD and track clinical outcomes. PARC/CCL-18, a lung-predominant chemokine, could be a useful blood biomarker in COPD.
Clinical trial registered with www.clinicaltrials.gov (NCT 00292552).
doi:10.1164/rccm.201008-1220OC
PMCID: PMC3114051  PMID: 21216880
biomarker; chronic obstructive pulmonary disease; PARC/CCL-18; chemokine
9.  Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes 
Background
Large production volumes of zinc oxide nanoparticles (ZnONP) might be anticipated to pose risks, of accidental inhalation in occupational and even in consumer settings. Herein, we further investigated the pathological changes induced by ZnONP and their possible mechanism of action.
Methods
Two doses of ZnONP (50 and 150 cm2/rat) were intratracheally instilled into the lungs of rats with assessments made at 24 h, 1 wk, and 4 wks after instillation to evaluate dose- and time-course responses. Assessments included bronchoalveolar lavage (BAL) fluid analysis, histological analysis, transmission electron microscopy, and IgE and IgA measurement in the serum and BAL fluid. To evaluate the mechanism, alternative ZnONP, ZnONP-free bronchoalveolar lavage exudate, and dissolved Zn2+ (92.5 μg/rat) were also instilled to rats. Acridine orange staining was utilized in macrophages in culture to evaluate the lysosomal membrane destabilization by NP.
Results
ZnONP induced eosinophilia, proliferation of airway epithelial cells, goblet cell hyperplasia, and pulmonary fibrosis. Bronchocentric interstitial pulmonary fibrosis at the chronic phase was associated with increased myofibroblast accumulation and transforming growth factor-β positivity. Serum IgE levels were up-regulated by ZnONP along with the eosinophilia whilst serum IgA levels were down-regulated by ZnONP. ZnONP are rapidly dissolved under acidic conditions (pH 4.5) whilst they remained intact around neutrality (pH 7.4). The instillation of dissolved Zn2+ into rat lungs showed similar pathologies (eg., eosinophilia, bronchocentric interstitial fibrosis) as were elicited by ZnONP. Lysosomal stability was decreased and cell death resulted following treatment of macrophages with ZnONP in vitro.
Conclusions
We hypothesise that rapid, pH-dependent dissolution of ZnONP inside of phagosomes is the main cause of ZnONP-induced diverse progressive severe lung injuries.
doi:10.1186/1743-8977-8-27
PMCID: PMC3179432  PMID: 21896169
10.  Cytotoxicity and Induction of Inflammation by Pepsin in Acid in Bronchial Epithelial Cells 
Introduction. Gastroesophageal reflux has been associated with chronic inflammatory diseases and may be a cause of airway remodelling. Aspiration of gastric fluids may cause damage to airway epithelial cells, not only because acidity is toxic to bronchial epithelial cells, but also since it contains digestive enzymes, such as pepsin. Aim. To study whether pepsin enhances cytotoxicity and inflammation in airway epithelial cells, and whether this is pH-dependent. Methods. Human bronchial epithelial cells were exposed to increasing pepsin concentrations in varying acidic milieus, and cell proliferation and cytokine release were assessed. Results. Cell survival was decreased by pepsin exposure depending on its concentration (F = 17.4) and pH level of the medium (F = 6.5) (both P < 0.01). Pepsin-induced interleukin-8 release was greater at lower pH (F = 5.1; P < 0.01). Interleukin-6 induction by pepsin was greater at pH 1.5 compared to pH 2.5 (mean difference 434%; P = 0.03). Conclusion. Pepsin is cytotoxic to bronchial epithelial cells and induces inflammation in addition to acid alone, dependent on the level of acidity. Future studies should assess whether chronic aspiration causes airway remodelling in chronic inflammatory lung diseases.
doi:10.4061/2011/569416
PMCID: PMC3139191  PMID: 21785693
11.  The role of IREB2 and transforming growth factor beta-1 genetic variants in COPD: a replication case-control study 
BMC Medical Genetics  2011;12:24.
Background
Genetic factors are known to contribute to COPD susceptibility and these factors are not fully understood. Conflicting results have been reported for many genetic studies of candidate genes based on their role in the disease. Genome-wide association studies in combination with expression profiling have identified a number of new candidates including IREB2. A meta-analysis has implicated transforming growth factor beta-1 (TGFbeta1) as a contributor to disease susceptibility.
Methods
We have examined previously reported associations in both genes in a collection of 1017 white COPD patients and 912 non-diseased smoking controls. Genotype information was obtained for seven SNPs in the IREB2 gene, and for four SNPs in the TGFbeta1 gene. Allele and genotype frequencies were compared between COPD cases and controls, and odds ratios were calculated. The analysis was adjusted for age, sex, smoking and centre, including interactions of age, sex and smoking with centre.
Results
Our data replicate the association of IREB2 SNPs in association with COPD for SNP rs2568494, rs2656069 and rs12593229 with respective adjusted p-values of 0.0018, 0.0039 and 0.0053. No significant associations were identified for TGFbeta1.
Conclusions
These studies have therefore confirmed that the IREB2 locus is a contributor to COPD susceptibility and suggests a new pathway in COPD pathogenesis invoking iron homeostasis.
doi:10.1186/1471-2350-12-24
PMCID: PMC3047296  PMID: 21320324
12.  Living and dying with severe chronic obstructive pulmonary disease: multi-perspective longitudinal qualitative study 
Objectives To understand the perspectives of people with severe chronic obstructive pulmonary disease (COPD) as their illness progresses, and of their informal and professional carers, to inform provision of care for people living and dying with COPD.
Design Up to four serial qualitative interviews were conducted with each patient and nominated carer over 18 months. Interviews were transcribed and analysed both thematically and as narratives.
Participants 21 patients, and 13 informal carers (a family member, friend, or neighbour) and 18 professional carers (a key health or social care professional) nominated by the patients.
Setting Primary and secondary care in Lothian, Tayside, and Forth Valley, Scotland, during 2007-9.
Results Eleven patients died during the study period. Our final dataset comprised 92 interviews (23 conducted with patient and informal carer together). Severe symptoms that caused major disruption to normal life were described, often in terms implying acceptance of the situation as a “way of life” rather than an “illness.” Patients and their informal carers adapted to and accepted the debilitating symptoms of a lifelong condition. Professional carers’ familiarity with the patients’ condition, typically over many years, and prognostic uncertainty contributed to the difficulty of recognising and actively managing end stage disease. Overall, patients told a “chaos narrative” of their illness that was indistinguishable from their life story, with no clear beginning and an unanticipated end described in terms comparable with attitudes to death in a normal elderly population.
Conclusions Our findings challenge current assumptions underpinning provision of end of life care for people with COPD. The policy focus on identifying a time point for transition to palliative care has little resonance for people with COPD or their clinicians and is counter productive if it distracts from early phased introduction of supportive care. Careful assessment of possible supportive and palliative care needs should be triggered at key disease milestones along a lifetime journey with COPD, in particular after hospital admission for an exacerbation.
doi:10.1136/bmj.d142
PMCID: PMC3025692  PMID: 21262897
13.  Metal Oxide Nanoparticles Induce Unique Inflammatory Footprints in the Lung: Important Implications for Nanoparticle Testing 
Environmental Health Perspectives  2010;118(12):1699-1706.
Background
Metal oxide nanoparticles (NPs) have been widely used in industry, cosmetics, and biomedicine.
Objectives
We examined hazards of several well-characterized high production volume NPs because of increasing concern about occupational exposure via inhalation.
Methods
A panel of well-characterized NPs [cerium oxide (CeO2NP), titanium dioxide (TiO2NP), carbon black (CBNP), silicon dioxide (SiO2NP), nickel oxide (NiONP), zinc oxide (ZnONP), copper oxide (CuONP), and amine-modified polystyrene beads] was instilled into lungs of rats. We evaluated the inflammation potencies of these NPs 24 hr and 4 weeks postinstillation. For NPs that caused significant inflammation at 24 hr, we then investigated the characteristics of the inflammation. All exposures were carried out at equal-surface-area doses.
Results
Only CeO2NP, NiONP, ZnONP, and CuONP were inflammogenic to the lungs of rats at the high doses used. Strikingly, each of these induced a unique inflammatory footprint both acutely (24 hr) and chronically (4 weeks). Acutely, patterns of neutrophil and eosinophil infiltrates differed after CeO2NP, NiONP, ZnONP, and CuONP treatment. Chronic inflammatory responses also differed after 4 weeks, with neutrophilic, neutrophilic/lymphocytic, eosinophilic/fibrotic/granulomatous, and fibrotic/granulomatous inflammation being caused respectively by CeO2NP, NiONP, ZnONP, and CuONP.
Conclusion
Different types of inflammation imply different hazards in terms of pathology, risks, and risk severity. In vitro testing could not have differentiated these complex hazard outcomes, and this has important implications for the global strategy for NP hazard assessment. Our results demonstrate that NPs cannot be viewed as a single hazard entity and that risk assessment should be performed separately and with caution for different NPs.
doi:10.1289/ehp.1002201
PMCID: PMC3002189  PMID: 20729176
eosinophilic inflammation; intratracheal instillation; in vitro assay; in vivo assay; lymphocytic inflammation; metal oxide nanoparticles; neutrophilic inflammation; risk assessment; surface area dose; Wistar rat
14.  Characterisation of COPD heterogeneity in the ECLIPSE cohort 
Respiratory Research  2010;11(1):122.
Background
Chronic obstructive pulmonary disease (COPD) is a complex condition with pulmonary and extra-pulmonary manifestations. This study describes the heterogeneity of COPD in a large and well characterised and controlled COPD cohort (ECLIPSE).
Methods
We studied 2164 clinically stable COPD patients, 337 smokers with normal lung function and 245 never smokers. In these individuals, we measured clinical parameters, nutritional status, spirometry, exercise tolerance, and amount of emphysema by computed tomography.
Results
COPD patients were slightly older than controls and had more pack years of smoking than smokers with normal lung function. Co-morbidities were more prevalent in COPD patients than in controls, and occurred to the same extent irrespective of the GOLD stage. The severity of airflow limitation in COPD patients was poorly related to the degree of breathlessness, health status, presence of co-morbidity, exercise capacity and number of exacerbations reported in the year before the study. The distribution of these variables within each GOLD stage was wide. Even in subjects with severe airflow obstruction, a substantial proportion did not report symptoms, exacerbations or exercise limitation. The amount of emphysema increased with GOLD severity. The prevalence of bronchiectasis was low (4%) but also increased with GOLD stage. Some gender differences were also identified.
Conclusions
The clinical manifestations of COPD are highly variable and the degree of airflow limitation does not capture the heterogeneity of the disease.
doi:10.1186/1465-9921-11-122
PMCID: PMC2944278  PMID: 20831787
15.  The pro‐inflammatory effects of low‐toxicity low‐solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area 
Objective
Rats exposed to high airborne mass concentrations of low‐solubility low‐toxicity particles (LSLTP) have been reported to develop lung disease such as fibrosis and lung cancer. These particles are regulated on a mass basis in occupational settings, but mass might not be the appropriate metric as animal studies have shown that nanoparticles (ultrafine particles) produce a stronger adverse effect than fine particles when delivered on an equal mass basis.
Methods
This study investigated whether the surface area is a better descriptor than mass of LSLTP of their ability to stimulate pro‐inflammatory responses in vitro. In a human alveolar epithelial type II‐like cell line, A549, we measured interleukin (IL)‐8 mRNA, IL8 protein release and glutathione (GSH) depletion as markers of pro‐inflammatory effects and oxidative stress after treatment with a range of LSLTP (fine and nanoparticles) and DQ12 quartz, a particle with a highly reactive surface.
Results
In all the assays, nanoparticle preparations of titanium dioxide (TiO2‐np) and of carbon black (CB‐np) produced much stronger pro‐inflammatory responses than the same mass dose of fine TiO2 and CB. The results of the GSH assay confirmed that oxidative stress was involved in the response to all the particles, and two ultra‐fine metal dusts (cobalt and nickel) produced GSH depletion similar to TiO2‐np, for similar surface‐area dose. As expected, DQ12 quartz was more inflammatory than the low toxicity dusts, on both a mass and surface‐area basis.
Conclusion
Dose–response relationships observed in the in vitro assays appeared to be directly comparable with dose–response relationships in vivo when the doses were similarly standardised. Both sets of data suggested a threshold in dose measured as surface area of particles relative to the surface area of the exposed cells, at around 1–10 cm2/cm2.
These findings are consistent with the hypothesis that surface area is a more appropriate dose metric than mass for the pro‐inflammatory effects of LSLTP in vitro and in vivo, and consequently that the high surface area of nanoparticles is a key factor in their inflammogenicity.
doi:10.1136/oem.2005.024802
PMCID: PMC2092561  PMID: 17409182
low‐solubility low‐toxicity particles; nanoparticles; surface area; inflammation; IL8
16.  Cigarette smoke regulates VEGFR2-mediated survival signaling in rat lungs 
Background
Vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2)-mediated survival signaling is critical to endothelial cell survival, maintenance of the vasculature and alveolar structure and regeneration of lung tissue. Reduced VEGF and VEGFR2 expression in emphysematous lungs has been linked to increased endothelial cell death and vascular regression. Previously, we have shown that CS down-regulated the VEGFR2 and its downstream signaling in mouse lungs. However, the VEGFR2-mediated survival signaling in response to oxidants/cigarette smoke (CS) is not known. We hypothesized that CS exposure leads to disruption of VEGFR2-mediated endothelial survival signaling in rat lungs.
Methods
Adult male Sprague-Dawley rats were exposed CS for 3 days, 8 weeks and 6 months to investigate the effect of CS on VEGFR2-mediated survival signaling by measuring the Akt/PI3-kinase/eNOS downstream signaling in rat lungs.
Results and Discussion
We show that CS disrupts VEGFR2/PI3-kinase association leading to decreased Akt and eNOS phosphorylation. This may further alter the phosphorylation of the pro-apoptotic protein Bad and increase the Bad/Bcl-xl association. However, this was not associated with a significant lung cell death as evidenced by active caspase-3 levels. These data suggest that although CS altered the VEGFR2-mediated survival signaling in the rat lungs, but it was not sufficient to cause lung cell death.
Conclusion
The rat lungs exposed to CS in acute, sub-chronic and chronic levels may be representative of smokers where survival signaling is altered but was not associated with lung cell death whereas emphysema is known to be associated with lung cell apoptosis.
doi:10.1186/1476-9255-7-11
PMCID: PMC2831890  PMID: 20205917
17.  Association of MMP - 12 polymorphisms with severe and very severe COPD: A case control study of MMPs - 1, 9 and 12 in a European population 
BMC Medical Genetics  2010;11:7.
Background
Genetic factors play a role in chronic obstructive pulmonary disease (COPD) but are poorly understood. A number of candidate genes have been proposed on the basis of the pathogenesis of COPD. These include the matrix metalloproteinase (MMP) genes which play a role in tissue remodelling and fit in with the protease - antiprotease imbalance theory for the cause of COPD. Previous genetic studies of MMPs in COPD have had inadequate coverage of the genes, and have reported conflicting associations of both single nucleotide polymorphisms (SNPs) and SNP haplotypes, plausibly due to under-powered studies.
Methods
To address these issues we genotyped 26 SNPs, providing comprehensive coverage of reported SNP variation, in MMPs- 1, 9 and 12 from 977 COPD patients and 876 non-diseased smokers of European descent and evaluated their association with disease singly and in haplotype combinations. We used logistic regression to adjust for age, gender, centre and smoking history.
Results
Haplotypes of two SNPs in MMP-12 (rs652438 and rs2276109), showed an association with severe/very severe disease, corresponding to GOLD Stages III and IV.
Conclusions
Those with the common A-A haplotype for these two SNPs were at greater risk of developing severe/very severe disease (p = 0.0039) while possession of the minor G variants at either SNP locus had a protective effect (adjusted odds ratio of 0.76; 95% CI 0.61 - 0.94). The A-A haplotype was also associated with significantly lower predicted FEV1 (42.62% versus 44.79%; p = 0.0129). This implicates haplotypes of MMP-12 as modifiers of disease severity.
doi:10.1186/1471-2350-11-7
PMCID: PMC2820470  PMID: 20078883
18.  Cardiovascular Injury and Repair in Chronic Obstructive Pulmonary Disease 
Cardiovascular disease represents a considerable burden in terms of both morbidity and mortality in patients with chronic obstructive pulmonary disease (COPD). For 20 years, forced expiratory volume in 1 second (FEV1) has been an established predictor of cardiovascular mortality among smokers, never-smokers, and patients with COPD. We review evidence for increased cardiovascular risk in COPD. In addition, we assess the emerging evidence which suggests that hypoxia, systemic inflammation, and oxidative stress in patients with COPD may cause cardiovascular disease. We also discuss alternative hypotheses that the endothelium and connective tissues in the arteries and lungs of patients with COPD and cardiovascular disease have a shared susceptibility to these factors.
doi:10.1513/pats.200807-071TH
PMCID: PMC2643206  PMID: 19017737
COPD; cardiovascular disease; systemic inflammation; endothelial dysfunction
19.  Lung function in idiopathic pulmonary fibrosis - extended analyses of the IFIGENIA trial 
Respiratory Research  2009;10(1):101.
Background
The randomized placebo-controlled IFIGENIA-trial demonstrated that therapy with high-dose N-acetylcysteine (NAC) given for one year, added to prednisone and azathioprine, significantly ameliorates (i.e. slows down) disease progression in terms of vital capacity (VC) (+9%) and diffusing capacity (DLco) (+24%) in idiopathic pulmonary fibrosis (IPF). To better understand the clinical implications of these findings we performed additional, explorative analyses of the IFGENIA data set.
Methods
We analysed effects of NAC on VC, DLco, a composite physiologic index (CPI), and mortality in the 155 study-patients.
Results
In trial completers the functional indices did not change significantly with NAC, whereas most indices deteriorated with placebo; in non-completers the majority of indices worsened but decline was generally less pronounced in most indices with NAC than with placebo. Most categorical analyses of VC, DLco and CPI also showed favourable changes with NAC. The effects of NAC on VC, DLco and CPI were significantly better if the baseline CPI was 50 points or lower.
Conclusion
This descriptive analysis confirms and extends the favourable effects of NAC on lung function in IPF and emphasizes the usefulness of VC, DLco, and the CPI for the evaluation of a therapeutic effect. Most importantly, less progressed disease as indicated by a CPI of 50 points or lower at baseline was more responsive to therapy in this study.
Trial Registration
Registered at http://www.ClinicalTrials.gov; number NCT00639496.
doi:10.1186/1465-9921-10-101
PMCID: PMC2774307  PMID: 19860915
20.  Targeted treatment in COPD: a multi-system approach for a multi-system disease 
Chronic obstructive pulmonary disease is a varied condition when examined from a number of different perspectives including factors which influence disease development, pathological process and clinical features. There may be a complex interaction between the degree by which each of these processes influences the development of COPD and the subsequent clinical phenotype with which the patient presents. The varied host response and subsequent clinical phenotype has generated much interest in recent years. It is possible that failure of treatment to impact on mortality and reverse the disease process is because of the heterogeneous nature of the condition. Identification and targeted treatment of clinical and pathological phenotypes within the broad spectrum of COPD may therefore improve outcome. This article will review previous work which has attempted to phenotype COPD and identify if specific treatment for these phenotypes has been shown to be of benefit. It will examine the work on pathological processes and clinical manifestations, both pulmonary and systemic, and will focus on pharmacological therapies.
PMCID: PMC2740954  PMID: 19750192
COPD; clinical phenotypes; pathological phenotypes
21.  Efficacy of Simple Short-Term in Vitro Assays for Predicting the Potential of Metal Oxide Nanoparticles to Cause Pulmonary Inflammation 
Environmental Health Perspectives  2008;117(2):241-247.
Background
There has been concern regarding risks from inhalation exposure to nanoparticles (NPs). The large number of particles requiring testing means that alternative approaches to animal testing are needed.
Objectives
We set out to determine whether short-term in vitro assays that assess intrinsic oxidative stress potential and membrane-damaging potency of a panel of metal oxide NPs can be used to predict their inflammogenic potency.
Methods
For a panel of metal oxide NPs, we investigated intrinsic free radical generation, oxidative activity in an extracellular environment, cytotoxicity to lung epithelial cells, hemolysis, and inflammation potency in rat lungs. All exposures were carried out at equal surface area doses.
Results
Only nickel oxide (NiO) and alumina 2 caused significant lung inflammation when instilled into rat lungs at equal surface area, suggesting that these two had extra surface reactivity. We observed significant free radical generation with 4 of 13 metal oxides, only one of which was inflammogenic. Only 3 of 13 were significantly hemolytic, two of which were inflammogenic.
Conclusions
Potency in generating free radicals in vitro did not predict inflammation, whereas alumina 2 had no free radical activity but was inflammogenic. The hemolysis assay was correct in predicting the proinflammatory potential of 12 of 13 of the particles examined. Using a battery of simple in vitro tests, it is possible to predict the inflammogenicity of metal oxide NPs, although some false-positive results are likely. More research using a larger panel is needed to confirm the efficacy and generality of this approach for metal oxide NPs.
doi:10.1289/ehp.11811
PMCID: PMC2649226  PMID: 19270794
electron paramagnetic resonance; EPR; inflammation; lungs; nanoparticles; oxidative stress; ROS
22.  Arterial Stiffness Is Independently Associated with Emphysema Severity in Patients with Chronic Obstructive Pulmonary Disease 
Rationale: More patients with chronic obstructive pulmonary disease (COPD) die of cardiovascular causes than of respiratory causes, and patients with COPD have increased morbidity and mortality from stroke and coronary heart disease. Arterial stiffness independently predicts cardiovascular risk, is associated with atheromatous plaque burden, and is increased in patients with COPD compared with control subjects matched for cardiovascular risk factors. Elastin fragmentation and changes in collagen are found in the connective tissue of both emphysematous lungs and stiff arteries, but it is not known whether the severity of arterial stiffness in patients with COPD is associated with the severity of emphysema.
Objectives: To identify whether the extent of arterial stiffness is associated with emphysema severity.
Methods: We performed a cross-sectional study in 157 patients with COPD.
Measurements and Main Results: We measured pulse wave velocity (a validated measure of arterial stiffness), blood pressure, smoking pack-years, glucose, cholesterol, and C-reactive protein in 157 patients with COPD. We assessed emphysema using quantitative computed tomography scanning in a subgroup of 73 patients. We found that emphysema severity was associated with arterial stiffness (r = 0.471, P < 0.001). The association was independent of smoking, age, sex, FEV1% predicted, highly sensitive C-reactive protein and glucose concentrations, cholesterol–high-density lipoprotein ratio, and pulse oximetry oxygen saturations.
Conclusions: Emphysema severity is associated with arterial stiffness in patients with COPD. Similar pathophysiological processes may be involved in both lung and arterial tissue and further studies are now required to identify the mechanism underlying this newly described association.
doi:10.1164/rccm.200707-1080OC
PMCID: PMC2176105  PMID: 17885263
humans; elasticity; cardiovascular diseases; pulmonary emphysema
23.  Airways inflammation and treatment during acute exacerbations of COPD 
Introduction
Inflammation is a core feature of acute chronic obstructive pulmonary disease (COPD) exacerbations. It is important to focus on inflammation since it gives insight into the pathological changes causing an exacerbation, thereby possibly providing directions for future therapies which modify inflammation.
Objectives
To provide a cell-by-cell overview of the inflammatory processes during COPD exacerbations. To evaluate cell activation, and cytokine production, cellular interactions, damaging effects of inflammatory mediators to tissue, and the relation to symptoms at the onset of COPD exacerbations. To speculate on future therapeutic options to modify inflammation during COPD exacerbations.
Results
During COPD exacerbations, there is increased airway wall inflammation, with pathophysiological influx of eosinophils, neutrophils, and lymphocytes. Although links have been suggested between the increase in eosinophils and lymphocytes and a viral etiology of the exacerbation, and between the increase in neutrophils and a bacterial aetiology, these increases in both inflammatory cell types are not limited to the respective aetiologies and the underlying mechanisms remain elusive.
Conclusion
Further research is required to fully understand the inflammatory mechanisms in the onset and development of COPD exacerbations. This might make inflammatory pathway-specific intervention possible, resulting in a more effective treatment of COPD exacerbations with fewer side effects.
PMCID: PMC2629961  PMID: 18686731
COPD; exacerbation; inflammation; therapy
24.  Exposure to Concentrated Ambient Particles Does Not Affect Vascular Function in Patients with Coronary Heart Disease 
Environmental Health Perspectives  2008;116(6):709-715.
Background
Exposure to fine particulate air pollution is associated with increased cardiovascular morbidity and mortality. We previously demonstrated that exposure to dilute diesel exhaust causes vascular dysfunction in humans.
Objectives
We conducted a study to determine whether exposure to ambient particulate matter causes vascular dysfunction.
Methods
Twelve male patients with stable coronary heart disease and 12 age-matched volunteers were exposed to concentrated ambient fine and ultrafine particles (CAPs) or filtered air for 2 hr using a randomized, double-blind cross-over study design. We measured peripheral vascular vasomotor and fibrinolytic function, and inflammatory variables—including circulating leukocytes, serum C-reactive protein, and exhaled breath 8-isoprostane and nitrotyrosine—6–8 hr after both exposures.
Results
Particulate concentrations (mean ± SE) in the exposure chamber (190 ± 37 μg/m3) were higher than ambient levels (31 ± 8 μg/m3) and levels in filtered air (0.5 ± 0.4 μg/m3; p < 0.001). Chemical analysis of CAPs identified low levels of elemental carbon. Exhaled breath 8-isoprostane concentrations increased after exposure to CAPs (16.9 ± 8.5 vs. 4.9 ± 1.2 pg/mL, p < 0.05), but markers of systemic inflammation were largely unchanged. Although there was a dose-dependent increase in blood flow and plasma tissue plasminogen activator release (p < 0.001 for all), CAPs exposure had no effect on vascular function in either group.
Conclusions
Despite achieving marked increases in particulate matter, exposure to CAPs—low in combustion-derived particles—did not affect vasomotor or fibrinolytic function in either middle-aged healthy volunteers or patients with coronary heart disease. These findings contrast with previous exposures to dilute diesel exhaust and highlight the importance of particle composition in determining the vascular effects of particulate matter in humans.
doi:10.1289/ehp.11016
PMCID: PMC2430224  PMID: 18560524
air pollution; blood flow; endothelium; fibrinolysis; inflammation
25.  Pathogenesis of Chronic Obstructive Pulmonary Disease 
The current paradigm for the pathogenesis of chronic obstructive pulmonary disease is that chronic airflow limitation results from an abnormal inflammatory response to inhaled particles and gases in the lung. Airspace inflammation appears to be different in susceptible smokers and involves a predominance of CD8+ T lymphocytes, neutrophils, and macrophages. Studies have characterized inflammation in the peripheral airspaces in different stages of disease severity. Two other processes have received considerable research attention. The first is a protease–antiprotease imbalance, which has been linked to the pathogenesis of emphysema. However, the hypothesis of an increased protease burden associated with functional inhibition of antiproteases has been difficult to prove and is now considered an oversimplification. The second process, oxidative stress, has a role in many of the pathogenic processes of chronic obstructive pulmonary disease and may be one mechanism that enhances the inflammatory response. In addition, it has been proposed that the development of emphysema may involve alveolar cell loss through apoptosis. This mechanism may involve the vascular endothelial growth factor pathway and oxidative stress.
doi:10.1513/pats.200504-045SR
PMCID: PMC2713323  PMID: 16267346
apoptosis; emphysema; inflammation; oxidative stress; protease–antiprotease imbalance

Results 1-25 (31)