PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (70)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Analysis of Latino populations from GALA and MEC studies reveals genomic loci with biased local ancestry estimation 
Bioinformatics  2013;29(11):1407-1415.
Motivation: Local ancestry analysis of genotype data from recently admixed populations (e.g. Latinos, African Americans) provides key insights into population history and disease genetics. Although methods for local ancestry inference have been extensively validated in simulations (under many unrealistic assumptions), no empirical study of local ancestry accuracy in Latinos exists to date. Hence, interpreting findings that rely on local ancestry in Latinos is challenging.
Results: Here, we use 489 nuclear families from the mainland USA, Puerto Rico and Mexico in conjunction with 3204 unrelated Latinos from the Multiethnic Cohort study to provide the first empirical characterization of local ancestry inference accuracy in Latinos. Our approach for identifying errors does not rely on simulations but on the observation that local ancestry in families follows Mendelian inheritance. We measure the rate of local ancestry assignments that lead to Mendelian inconsistencies in local ancestry in trios (MILANC), which provides a lower bound on errors in the local ancestry estimates. We show that MILANC rates observed in simulations underestimate the rate observed in real data, and that MILANC varies substantially across the genome. Second, across a wide range of methods, we observe that loci with large deviations in local ancestry also show enrichment in MILANC rates. Therefore, local ancestry estimates at such loci should be interpreted with caution. Finally, we reconstruct ancestral haplotype panels to be used as reference panels in local ancestry inference and show that ancestry inference is significantly improved by incoroprating these reference panels.
Availability and implementation: We provide the reconstructed reference panels together with the maps of MILANC rates as a public resource for researchers analyzing local ancestry in Latinos at http://bogdanlab.pathology.ucla.edu.
Contact: bpasaniuc@mednet.ucla.edu
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btt166
PMCID: PMC3661056  PMID: 23572411
2.  Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse 
Nature genetics  2013;45(12):1494-1498.
Recent genomic profiling of childhood acute lymphoblastic leukemia (ALL) identified a novel high-risk subtype with a gene expression signature resembling Philadelphia chromosome-positive ALL and a poor prognosis (Ph-like ALL). However, the role of inherited genetic variation in Ph-like ALL pathogenesis remains unknown. In a genome-wide association study (GWAS) of 511 ALL cases and 6,661 non-ALL controls, we identified a single susceptibility locus for Ph-like ALL (GATA3, rs3824662, P=2.17×10−14, odds ratio [OR]=3.85, for Ph-like ALL vs. non-ALL; P=1.05×10−8, OR=3.25, for Ph-like ALL vs. non-Ph-like ALL) that was independently validated. The rs3824662 risk allele was associated with somatic lesions underlying Ph-like ALL (i.e., CRLF2 rearrangement, JAK mutation, and IKZF1 deletion) and directly influenced GATA3 transcription. Finally, GATA3 SNP genotype was also associated with early treatment response and the risk of ALL relapse. Our results provide insights into interactions between host and tumor genomes and their importance in ALL pathogenesis and prognosis.
doi:10.1038/ng.2803
PMCID: PMC4039076  PMID: 24141364
3.  Novel Susceptibility Variants at 10p12.31-12.2 for Childhood Acute Lymphoblastic Leukemia in Ethnically Diverse Populations 
Background
Acute lymphoblastic leukemia (ALL) is the most common cancer in children and the incidence of ALL varies by ethnicity. Although accumulating evidence indicates inherited predisposition to ALL, the genetic basis of ALL susceptibility in diverse ancestry has not been comprehensively examined.
Methods
We performed a multiethnic genome-wide association study in 1605 children with ALL and 6661 control subjects after adjusting for population structure, with validation in three replication series of 845 case subjects and 4316 control subjects. Association was tested by two-sided logistic regression.
Results
A novel ALL susceptibility locus at 10p12.31-12.2 (BMI1-PIP4K2A, rs7088318, P = 1.1×10−11) was identified in the genome-wide association study, with independent replication in European Americans, African Americans, and Hispanic Americans (P = .001, .009, and .04, respectively). Association was also validated at four known ALL susceptibility loci: ARID5B, IKZF1, CEBPE, and CDKN2A/2B. Associations at ARID5B, IKZF1, and BMI1-PIP4K2A variants were consistent across ethnicity, with multiple independent signals at IKZF1 and BMI1-PIP4K2A loci. The frequency of ARID5B and BMI1-PIP4K2A variants differed by ethnicity, in parallel with ethnic differences in ALL incidence. Suggestive evidence for modifying effects of age on genetic predisposition to ALL was also observed. ARID5B, IKZF1, CEBPE, and BMI1-PIP4K2A variants cumulatively conferred strong predisposition to ALL, with children carrying six to eight copies of risk alleles at a ninefold (95% confidence interval = 6.9 to 11.8) higher ALL risk relative to those carrying zero to one risk allele at these four single nucleotide polymorphisms.
Conclusions
These findings indicate strong associations between inherited genetic variation and ALL susceptibility in children and shed new light on ALL molecular etiology in diverse ancestry.
doi:10.1093/jnci/djt042
PMCID: PMC3691938  PMID: 23512250
4.  A Meta-analysis of Genome-wide Association Studies for Serum Total IgE in Diverse Study Populations 
Background
Immunoglobulin E (IgE) is both a marker and mediator of allergic inflammation. Despite reported differences in serum total IgE levels by race-ethnicity, African American and Latino individuals have not been well represented in genetic studies of total IgE.
Objective
To identify the genetic predictors of serum total IgE levels.
Methods
We used genome wide association (GWA) data from 4,292 individuals (2,469 African Americans, 1,564 European Americans, and 259 Latinos) in the EVE Asthma Genetics Consortium. Tests for association were performed within each cohort by race-ethnic group (i.e., African American, Latino, and European American) and asthma status. The resulting p-values were meta-analyzed accounting for sample size and direction of effect. Top single nucleotide polymorphism (SNP) associations from the meta-analysis were reassessed in six additional cohorts comprising 5,767 individuals.
Results
We identified 10 unique regions where the combined association statistic was associated with total serum IgE levels (P-value <5.0×10−6) and the minor allele frequency was ≥5% in two or more population groups. Variant rs9469220, corresponding to HLA-DQB1, was the most significantly associated SNP with serum total IgE levels when assessed in both the replication cohorts and the discovery and replication sets combined (P-value = 0.007 and 2.45×10−7, respectively). In addition, findings from earlier GWA studies were also validated in the current meta-analysis.
Conclusion
This meta-analysis independently identified a variant near HLA-DQB1 as a predictor of total serum IgE in multiple race-ethnic groups. This study also extends and confirms the findings of earlier GWA analyses in African American and Latino individuals.
doi:10.1016/j.jaci.2012.10.002
PMCID: PMC3596497  PMID: 23146381
meta-analysis; genome wide association study; total immunoglobulin E; race-ethnicity; continental population groups
5.  Childhood Obesity and Asthma Control in the GALA II and SAGE II Studies 
Rationale: Obesity is associated with increased asthma morbidity, lower drug responsiveness to inhaled corticosteroids, and worse asthma control. However, most prior investigations on obesity and asthma control have not focused on pediatric populations, considered environmental exposures, or included minority children.
Objectives: To examine the association between body mass index categories and asthma control among boys and girls; and whether these associations are modified by age and race/ethnicity.
Methods: Children and adolescents ages 8–19 years (n = 2,174) with asthma were recruited from the Genes-environments and Admixture in Latino Americans (GALA II) Study and the Study of African Americans, Asthma, Genes, and Environments (SAGE II). Ordinal logistic regression was used to estimate odds ratios (OR) and their confidence intervals (95% CI) for worse asthma control.
Measurements and Main Results: In adjusted analyses, boys who were obese had a 33% greater chance of having worse asthma control than their normal-weight counterparts (OR, 1.33; 95% CI, 1.04–1.71). However, for girls this association varied with race and ethnicity (P interaction = 0.008). When compared with their normal-weight counterparts, obese African American girls (OR, 0.65; 95% CI, 0.41–1.05) were more likely to have better controlled asthma, whereas Mexican American girls had a 1.91 (95% CI, 1.12–3.28) greater odds of worse asthma control.
Conclusions: Worse asthma control is uniformly associated with increased body mass index in boys. Among girls, the direction of this association varied with race/ethnicity.
doi:10.1164/rccm.201211-2116OC
PMCID: PMC3678111  PMID: 23392439
obesity; asthma control; race and ethnicity; age; sex
6.  Role of interactions in pharmacogenetic studies: leukotrienes in asthma 
Pharmacogenomics  2013;14(8):10.2217/pgs.13.70.
Researchers have identified thousands of loci involved in complex traits and drug response. However, in most cases they only explain a small proportion of the heritability of the trait. Among different strategies conducted to identify this ‘missing heritability’, here we illustrate the importance of complex gene–environment interactions using findings regarding the role of leukotrienes on the bronchodilator response to albuterol in Latino asthmatics. Patients managing their asthma with leukotriene-modifying medication presented higher increases in the bronchodilator response to albuterol. Moreover, interactions between genes responsible for leukotriene production were associated with a decreased risk of asthma. Combining genetic and pharmacologic effects, leukotriene-modifying users carrying certain combinations of alleles presented higher improvements in lung function after bronchodilator administration. Genes and drugs act at different orders of interaction (from individual effects to gene–gene–drug–drug interactions) and population-specific effects have to be considered. These results may be extrapolated to other complex phenotypes.
doi:10.2217/pgs.13.70
PMCID: PMC3852422  PMID: 23746186
albuterol; asthma; bronchodilator drug response; drug–drug interaction; ethnic differences; gene–gene interaction; leukotriene modifier; leukotrienes
7.  Reconstructing Native American Migrations from Whole-Genome and Whole-Exome Data 
PLoS Genetics  2013;9(12):e1004023.
There is great scientific and popular interest in understanding the genetic history of populations in the Americas. We wish to understand when different regions of the continent were inhabited, where settlers came from, and how current inhabitants relate genetically to earlier populations. Recent studies unraveled parts of the genetic history of the continent using genotyping arrays and uniparental markers. The 1000 Genomes Project provides a unique opportunity for improving our understanding of population genetic history by providing over a hundred sequenced low coverage genomes and exomes from Colombian (CLM), Mexican-American (MXL), and Puerto Rican (PUR) populations. Here, we explore the genomic contributions of African, European, and especially Native American ancestry to these populations. Estimated Native American ancestry is in MXL, in CLM, and in PUR. Native American ancestry in PUR is most closely related to populations surrounding the Orinoco River basin, confirming the Southern America ancestry of the Taíno people of the Caribbean. We present new methods to estimate the allele frequencies in the Native American fraction of the populations, and model their distribution using a demographic model for three ancestral Native American populations. These ancestral populations likely split in close succession: the most likely scenario, based on a peopling of the Americas thousand years ago (kya), supports that the MXL Ancestors split kya, with a subsequent split of the ancestors to CLM and PUR kya. The model also features effective populations of in Mexico, in Colombia, and in Puerto Rico. Modeling Identity-by-descent (IBD) and ancestry tract length, we show that post-contact populations also differ markedly in their effective sizes and migration patterns, with Puerto Rico showing the smallest effective size and the earlier migration from Europe. Finally, we compare IBD and ancestry assignments to find evidence for relatedness among European founders to the three populations.
Author Summary
Populations of the Americas have a rich and heterogeneous genetic and cultural heritage that draws from a diversity of pre-Columbian Native American, European, and African populations. Characterizing this diversity facilitates the development of medical genetics research in diverse populations and the transfer of medical knowledge across populations. It also represents an opportunity to better understand the peopling of the Americas, from the crossing of Beringia to the post-Columbian era. Here, we take advantage sequencing of individuals of Colombian (CLM), Mexican (MXL), and Puerto Rican (PUR) origin by the 1000 Genomes project to improve our demographic models for the peopling of the Americas. The divergence among African, European, and Native American ancestors to these populations enables us to infer the continent of origin at each locus in the sampled genomes. The resulting patterns of ancestry suggest complex post-Columbian migration histories, starting later in CLM than in MXL and PUR. Whereas European ancestral segments show evidence of relatedness, a demographic model of synonymous variation suggests that the Native American Ancestors to MXL, PUR, and CLM panels split within a few hundred years over 12 thousand years ago. Together with early archeological sites in South America, these results support rapid divergence during the initial peopling of the Americas.
doi:10.1371/journal.pgen.1004023
PMCID: PMC3873240  PMID: 24385924
8.  Genetic ancestry and its association with asthma exacerbations among African American patients with asthma 
Background
There are large and persisting disparities in severe asthma exacerbations by race-ethnicity, and African American individuals are among those at greatest risk. It is unclear whether this increased risk solely represents differences in environmental exposures and health care, or whether there is a predisposing genetic component.
Objective
To assess the relationship between genetic ancestry and severe exacerbations among African American individuals with asthma.
Methods
Participants were part of the Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-ethnicity (SAPPHIRE). These individuals were 12–56 years of age; received care from a single, large health system; and had a physician diagnosis of asthma. Genetic ancestry was estimated using a set of validated ancestry informative markers. Severe exacerbations (i.e., asthma-related emergency department visits, hospitalizations, and burst oral steroid use) were prospectively identified from health care claims.
Results
We assessed genetic ancestry in 392 African American individuals with asthma. The average proportion of African ancestry was 76.1%. A significant interaction was identified between ancestry and sex on severe exacerbations, such that the risk was significantly higher with increasing African ancestry among males but not among females. The association among males persisted after adjusting for potential confounders (relative risk of 4.30 for every 20% increase in African ancestry; P-value 0.029).
Conclusions
African ancestry was a significantly and positively associated with severe exacerbations among African American males. These findings suggest that a portion of the risk of asthma exacerbations in this high risk group is attributable to a genetic risk factor which partitions with ancestry.
doi:10.1016/j.jaci.2012.09.001
PMCID: PMC3511609  PMID: 23069492
asthma; continental population groups; African continental ancestry group; genetic association study; health status disparities; minority health
9.  Reconstructing the Population Genetic History of the Caribbean 
PLoS Genetics  2013;9(11):e1003925.
The Caribbean basin is home to some of the most complex interactions in recent history among previously diverged human populations. Here, we investigate the population genetic history of this region by characterizing patterns of genome-wide variation among 330 individuals from three of the Greater Antilles (Cuba, Puerto Rico, Hispaniola), two mainland (Honduras, Colombia), and three Native South American (Yukpa, Bari, and Warao) populations. We combine these data with a unique database of genomic variation in over 3,000 individuals from diverse European, African, and Native American populations. We use local ancestry inference and tract length distributions to test different demographic scenarios for the pre- and post-colonial history of the region. We develop a novel ancestry-specific PCA (ASPCA) method to reconstruct the sub-continental origin of Native American, European, and African haplotypes from admixed genomes. We find that the most likely source of the indigenous ancestry in Caribbean islanders is a Native South American component shared among inland Amazonian tribes, Central America, and the Yucatan peninsula, suggesting extensive gene flow across the Caribbean in pre-Columbian times. We find evidence of two pulses of African migration. The first pulse—which today is reflected by shorter, older ancestry tracts—consists of a genetic component more similar to coastal West African regions involved in early stages of the trans-Atlantic slave trade. The second pulse—reflected by longer, younger tracts—is more similar to present-day West-Central African populations, supporting historical records of later transatlantic deportation. Surprisingly, we also identify a Latino-specific European component that has significantly diverged from its parental Iberian source populations, presumably as a result of small European founder population size. We demonstrate that the ancestral components in admixed genomes can be traced back to distinct sub-continental source populations with far greater resolution than previously thought, even when limited pre-Columbian Caribbean haplotypes have survived.
Author Summary
Latinos are often regarded as a single heterogeneous group, whose complex variation is not fully appreciated in several social, demographic, and biomedical contexts. By making use of genomic data, we characterize ancestral components of Caribbean populations on a sub-continental level and unveil fine-scale patterns of population structure distinguishing insular from mainland Caribbean populations as well as from other Hispanic/Latino groups. We provide genetic evidence for an inland South American origin of the Native American component in island populations and for extensive pre-Columbian gene flow across the Caribbean basin. The Caribbean-derived European component shows significant differentiation from parental Iberian populations, presumably as a result of founder effects during the colonization of the New World. Based on demographic models, we reconstruct the complex population history of the Caribbean since the onset of continental admixture. We find that insular populations are best modeled as mixtures absorbing two pulses of African migrants, coinciding with the early and maximum activity stages of the transatlantic slave trade. These two pulses appear to have originated in different regions within West Africa, imprinting two distinguishable signatures on present-day Afro-Caribbean genomes and shedding light on the genetic impact of the slave trade in the Caribbean.
doi:10.1371/journal.pgen.1003925
PMCID: PMC3828151  PMID: 24244192
10.  Genetic variation in BAFF and asthma exacerbations among African American individuals 
Capsule Summary
A BAFF polymorphism is associated with asthma exacerbations and serum BAFF levels. BAFF expression in vivo increases in natural rhinovirus infection. BAFF may play a role in airway antiviral immunity and impact asthma exacerbation rates.
doi:10.1016/j.jaci.2012.04.047
PMCID: PMC3520130  PMID: 22728080
BAFF; B-cell activating factor; tumor necrosis factor ligand superfamily; asthma; asthma exacerbations; genetics
11.  Genome-wide Ancestry Association Testing Identifies a Common European Variant on 6q14.1 as a Risk Factor for Asthma in African Americans 
Background
Genetic variants that contribute to asthma susceptibility may be present at varying frequencies in different populations, which is an important consideration and advantage for performing genetic association studies in admixed populations.
Objective
To identify asthma-associated loci in African Americans.
Methods
We compared local African and European ancestry estimated from dense single nucleotide polymorphism (SNP) genotype data in African American adults with asthma and non-asthmatic controls. Allelic tests of association were performed within the candidate regions identified, correcting for local European admixture.
Results
We identified a significant ancestry association peak on chromosomes 6q. Allelic tests for association within this region identified a SNP (rs1361549) on 6q14.1 that was associated with asthma exclusively in African Americans with local European admixture (OR=2.2). The risk allele is common in Europe (42% in the HapMap CEU) but absent in West Africa (0% in the HapMap YRI), suggesting the allele is present in African Americans due to recent European admixture. We replicated our findings in Puerto Ricans and similarly found that the signal of association is largely specific to individuals who are heterozygous for African and non-African ancestry at 6q14.1. However, we found no evidence for association in European Americans or in Puerto Ricans in the absence of local African ancestry, suggesting that the association with asthma at rs1361549 is due to an environmental or genetic interaction.
Conclusion
We identified a novel asthma-associated locus that is relevant to admixed populations with African ancestry, and highlight the importance of considering local ancestry in genetic association studies of admixed populations.
doi:10.1016/j.jaci.2012.03.045
PMCID: PMC3503456  PMID: 22607992
asthma; population structure; genome-wide association study; admixture mapping; ancestry association testing; admixed populations; African Americans; Puerto Ricans
12.  Genomics for the world 
Nature  2011;475(7355):163-165.
doi:10.1038/475163a
PMCID: PMC3708540  PMID: 21753830
13.  Case-control admixture mapping in Latino populations enriches for known asthma-associated genes 
Background
Polymorphisms in more than 100 genes have been associated with asthma susceptibility, yet much of the heritability remains to be explained. Asthma disproportionately affects different racial and ethnic groups in the United States, suggesting that admixture mapping is a useful strategy to identify novel asthma-associated loci.
Objective
We sought to identify novel asthma-associated loci in Latino populations using case-control admixture mapping.
Methods
We performed genome-wide admixture mapping by comparing levels of local Native American, European, and African ancestry between children with asthma and nonasthmatic control subjects in Puerto Rican and Mexican populations. Within candidate peaks, we performed allelic tests of association, controlling for differences in local ancestry.
Results
Between the 2 populations, we identified a total of 62 admixture mapping peaks at a P value of less than 10−3 that were significantly enriched for previously identified asthma-associated genes (P = .0051). One of the peaks was statistically significant based on 100 permutations in the Mexican sample (6q15); however, it was not significant in Puerto Rican subjects. Another peak was identified at nominal significance in both populations (8q12); however, the association was observed with different ancestries.
Conclusion
Case-control admixture mapping is a promising strategy for identifying novel asthma-associated loci in Latino populations and implicates genetic variation at 6q15 and 8q12 regions with asthma susceptibility. This approach might be useful for identifying regions that contribute to both shared and population-specific differences in asthma susceptibility.
doi:10.1016/j.jaci.2012.02.040
PMCID: PMC3593143  PMID: 22502797
Admixture mapping; genome-wide association study; asthma; Latino populations; population-specific risk factors
14.  The impact of secondhand smoke on asthma control among Black and Latino children 
Background
Among people with asthma, the clinical impact and relative contribution of maternal smoking during pregnancy (in utero smoking) and current secondhand smoke exposure on asthma control is poorly documented, and there is a paucity of research involving minority populations.
Objectives
To examine the association between poor asthma control and in utero smoking and current secondhand smoke exposure among Latino and Black children with asthma.
Methods
Case-only analysis of 2 multi-center case-control studies conducted from 2008–2010 using similar protocols. We recruited 2,481 Latinos and Blacks with asthma (ages 8–17) from the mainland United States and Puerto Rico. Ordinal logistic regression was used to estimate the effect of in utero smoking and current secondhand smoke exposures on National Heart Lung and Blood Institute-defined asthma control.
Results
Poor asthma control among children 8–17 years of age was independently associated with in utero smoking (odds ratio; 95% confidence interval = 1.5; 1.1–2.0). In utero smoking via the mother was also associated with secondary asthma outcomes, including early onset asthma (1.7; 1.1–2.4), daytime symptoms (1.6; 1.1–2.1), and asthma-related limitation of activities (1.6; 1.2–2.2).
Conclusions
Maternal smoking while in utero is associated with poor asthma control in Black and Latino subjects assessed at 8–17 years of age.
doi:10.1016/j.jaci.2012.03.017
PMCID: PMC3367092  PMID: 22552109
Secondhand smoke; prenatal exposure delayed effects; asthma; health status disparities
15.  Fast and accurate inference of local ancestry in Latino populations 
Bioinformatics  2012;28(10):1359-1367.
Motivation: It is becoming increasingly evident that the analysis of genotype data from recently admixed populations is providing important insights into medical genetics and population history. Such analyses have been used to identify novel disease loci, to understand recombination rate variation and to detect recent selection events. The utility of such studies crucially depends on accurate and unbiased estimation of the ancestry at every genomic locus in recently admixed populations. Although various methods have been proposed and shown to be extremely accurate in two-way admixtures (e.g. African Americans), only a few approaches have been proposed and thoroughly benchmarked on multi-way admixtures (e.g. Latino populations of the Americas).
Results: To address these challenges we introduce here methods for local ancestry inference which leverage the structure of linkage disequilibrium in the ancestral population (LAMP-LD), and incorporate the constraint of Mendelian segregation when inferring local ancestry in nuclear family trios (LAMP-HAP). Our algorithms uniquely combine hidden Markov models (HMMs) of haplotype diversity within a novel window-based framework to achieve superior accuracy as compared with published methods. Further, unlike previous methods, the structure of our HMM does not depend on the number of reference haplotypes but on a fixed constant, and it is thereby capable of utilizing large datasets while remaining highly efficient and robust to over-fitting. Through simulations and analysis of real data from 489 nuclear trio families from the mainland US, Puerto Rico and Mexico, we demonstrate that our methods achieve superior accuracy compared with published methods for local ancestry inference in Latinos.
Availability: http://lamp.icsi.berkeley.edu/lamp/lampld/
Contact: bpasaniu@hsph.harvard.edu
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/bts144
PMCID: PMC3348558  PMID: 22495753
16.  Admixture mapping identifies a locus on 6q25 associated with breast cancer risk in US Latinas 
Human Molecular Genetics  2012;21(8):1907-1917.
Among US Latinas and Mexican women, those with higher European ancestry have increased risk of breast cancer. We combined an admixture mapping and genome-wide association mapping approach to search for genomic regions that may explain this observation. Latina women with breast cancer (n= 1497) and Latina controls (n= 1272) were genotyped using Affymetrix and Illumina arrays. We inferred locus-specific genetic ancestry and compared the ancestry between cases and controls. We also performed single nucleotide polymorphism (SNP) association analyses in regions of interest. Correction for multiple-hypothesis testing was conducted using permutations (Pcorrected). We identified one region where genetic ancestry was significantly associated with breast cancer risk: 6q25 [odds ratio (OR) per Indigenous American chromosome 0.75, 95% confidence interval (CI): 0.65–0.85, P= 1.1 × 10−5, Pcorrected= 0.02]. A second region on 11p15 showed a trend towards association (OR per Indigenous American chromosome 0.77, 95% CI: 0.68–0.87, P= 4.3 × 10−5, Pcorrected= 0.08). In both regions, breast cancer risk decreased with higher Indigenous American ancestry in concordance with observations made on global ancestry. The peak of the 6q25 signal includes the estrogen receptor 1 (ESR1) gene and 5′ region, a locus previously implicated in breast cancer. Genome-wide association analysis found that a multi-SNP model explained the admixture signal in both regions. Our results confirm that the association between genetic ancestry and breast cancer risk in US Latinas is partly due to genetic differences between populations of European and Indigenous Americans origin. Fine-mapping within the 6q25 and possibly the 11p15 loci will lead to the discovery of the biologically functional variant/s behind this association.
doi:10.1093/hmg/ddr617
PMCID: PMC3313799  PMID: 22228098
17.  A Genome-Wide Association Study on African-Ancestry Populations For Asthma 
Background
Asthma is a complex disease characterized by striking ethnic disparities not explained entirely by environmental, social, cultural, or economic factors. Of the limited genetic studies performed on populations of African descent, notable differences in susceptibility allele frequencies have been observed.
Objectives
To test the hypothesis that some genes may contribute to the profound disparities in asthma.
Methods
We performed a genome-wide association study in two independent populations of African ancestry (935 African American asthma cases and controls from the Baltimore-Washington, D.C. area, and 929 African Caribbean asthmatics and their family members from Barbados) to identify single-nucleotide polymorphisms (SNPs) associated with asthma.
Results
Meta-analysis combining these two African-ancestry populations yielded three SNPs with a combined P-value <10-5 in genes of potential biological relevance to asthma and allergic disease: rs10515807, mapping to alpha-1B-adrenergic receptor (ADRA1B) gene on chromosome 5q33 (3.57×10-6); rs6052761, mapping to prion-related protein (PRNP) on chromosome 20pter-p12 (2.27×10-6); and rs1435879, mapping to dipeptidyl peptidase 10 (DPP10) on chromosome 2q12.3-q14.2. The generalizability of these findings was tested in family and case-control panels of UK and German origin, respectively, but none of the associations observed in the African groups were replicated in these European studies.
Conclusions
Evidence for association was also examined in four additional case-control studies of African Americans; however, none of the SNPs implicated in the discovery population were replicated. This study illustrates the complexity of identifying true associations for a complex and heterogeneous disease such as asthma in admixed populations, especially populations of African descent.
doi:10.1016/j.jaci.2009.08.031
PMCID: PMC3606015  PMID: 19910028
Asthma; GWAS; ADRA1B; PRNP; DPP10; African ancestry; ethnicity; polymorphism; genetic association
18.  ARID5B Genetic Polymorphisms Contribute to Racial Disparities in the Incidence and Treatment Outcome of Childhood Acute Lymphoblastic Leukemia 
Journal of Clinical Oncology  2012;30(7):751-757.
Purpose
Recent genome-wide screens have identified genetic variations in ARID5B associated with susceptibility to childhood acute lymphoblastic leukemia (ALL). We sought to determine the contribution of ARID5B single nucleotide polymorphisms (SNPs) to racial disparities in ALL susceptibility and treatment outcome.
Patients and Methods
We compared the association between ARID5B SNP genotype and ALL susceptibility in whites (> 95% European genetic ancestry; 978 cases and 1,046 controls) versus in Hispanics (> 10% Native American ancestry; 330 cases and 541 controls). We determined the relationships between ARID5B SNP genotype and ALL relapse risk in 1,605 children treated on the Children's Oncology Group (COG) P9904/9905 clinical trials.
Results
Among 49 ARID5B SNPs interrogated, 10 were significantly associated with ALL susceptibility in both whites and Hispanics (P < .05), with risk alleles consistently more frequent in Hispanics than in whites. rs10821936 exhibited the most significant association in both races (P = 8.4 × 10−20 in whites; P = 1 × 10−6 in Hispanics), and genotype at this SNP was highly correlated with local Native American genetic ancestry (P = 1.8 × 10−8). Multivariate analyses in Hispanics identified an additional SNP associated with ALL susceptibility independent of rs10821936. Eight ARID5B SNPs were associated with both ALL susceptibility and relapse hazard; the alleles related to higher ALL incidence were always linked to poorer treatment outcome and were more frequent in Hispanics.
Conclusion
ARID5B polymorphisms are important determinants of childhood ALL susceptibility and treatment outcome, and they contribute to racial disparities in this disease.
doi:10.1200/JCO.2011.38.0345
PMCID: PMC3295551  PMID: 22291082
19.  Quantifying the proportion of severe asthma exacerbations attributable to inhaled corticosteroid non-adherence 
Background
Asthma is an inflammatory condition often punctuated by episodic symptomatic worsening, and accordingly, individuals with asthma may have waxing and waning adherence to controller therapy.
Objective
To measure changes in inhaled corticosteroid (ICS) adherence over time, and to estimate the effect of this changing pattern of use on asthma exacerbations.
Methods
ICS adherence was estimated from electronic prescription and fill information for 298 participants in the Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-ethnicity (SAPPHIRE). For each individual we calculated a moving average of ICS adherence for each day of follow-up. Asthma exacerbations were defined as the need for oral corticosteroids, an asthma-related emergency department visit, or an asthma-related hospitalization. Proportional hazard models were used to assess the relationship between ICS medication adherence and asthma exacerbations.
Results
Adherence to ICS medications began to increase prior to the first asthma exacerbation and continued afterward. Adherence was associated with a reduction in exacerbations, but was only statistically significant among individuals whose adherence was >75% of the prescribed dose (hazard ratio [HR] 0.61; 95% confidence interval [CI] 0.41–0.90) when compared with individuals whose adherence was ≤25%. This pattern was largely confined to individuals whose asthma was not well controlled initially. An estimated 24% of asthma exacerbations were attributable to ICS medication non-adherence.
Conclusions
Inhaled corticosteroid adherence varies in the time period leading up to and following an asthma exacerbation, and non-adherence likely contributes to a large number of these exacerbations. High levels of adherence are likely required to prevent these events. [ClinicalTrials.gov number NCT01142947]
doi:10.1016/j.jaci.2011.09.011
PMCID: PMC3229671  PMID: 22019090
medication adherence; inhaled corticosteroids; asthma; patient compliance; asthma exacerbations
20.  Melanesians blond hair is caused by an amino acid change in TYRP1 
Science (New York, N.Y.)  2012;336(6081):554.
Blond hair is a rare human phenotype found almost exclusively in Europe and Oceania. Here, we identify a cystine-to-arginine change at a highly conserved residue in tyrosinase-related protein 1 (TYRP1) as the single source of blond hair in Solomon Islanders. This missense mutation is predicted to impact catalytic activity of the protein and causes blond hair through a recessive mode of inheritance. The novel mutation is at a frequency of 26% in the Solomon Islands but is absent outside of Oceania and represents the largest genetic effect on a visible human phenotype reported to date. Our findings demonstrate that alleles of large effect reach appreciable frequencies in geographically isolated populations and underscore the importance of extending medical genomics to humans worldwide.
doi:10.1126/science.1217849
PMCID: PMC3481182  PMID: 22556244
21.  Admixture-Matched Case-Control Study: A Practical Approach for Genetic Association Studies in Admixed Populations 
Human genetics  2005;118(5):626-639.
Case-control genetic association studies in admixed populations are known to be susceptible to genetic confounding due to population stratification. The transmission/disequilibrium test (TDT) approach can avoid this problem. However, the TDT is expensive and impractical for late- onset diseases. Case-control study designs, in which cases and controls are matched by admixture, can be an appealing and suitable alternative for genetic association studies in admixed populations. In this study, we applied this matching strategy when recruiting our African American participants in the Study of African American, Asthma, Genes and Environments (SAGE). Group admixture in this cohort consists of 83% African ancestry and 17% European ancestry, which was consistent with reports from other studies. By carrying out several complementary analyses, our results show that there is substructure in the cohort, but that the admixture distributions are almost identical in cases and controls, and also in cases only. We performed association tests for asthma-related traits with ancestry, and only found that FEV1, a measure for baseline pulmonary function, was associated with ancestry after adjusting for socio-economic and environmental risk factors (P = 0.01). We did not observe an excess of type I error rate in our association tests for ancestry informative markers (AIMs) and asthma-related phenotypes when ancestry was not adjusted in the analyses. Furthermore, using the association tests between genetic variants in a known asthma candidate gene, β2 adrenergic receptor (β2AR) and ΔFEF25-75, an asthma-related phenotype, as an example, we demonstrated population stratification was not a confounder in our genetic association. Our present work demonstrates that admixture-matched case-control strategies can efficiently control for population stratification confounding in admixed populations.
doi:10.1007/s00439-005-0080-2
PMCID: PMC3478103  PMID: 16273390
22.  Identification of ATPAF1 as a novel candidate gene for asthma in children 
Background
Asthma is a common disease of children with a complex genetic origin. Understanding the genetic basis of asthma susceptibility will allow disease prediction and risk stratification.
Objective
We sought to identify asthma susceptibility genes in children.
Methods
A nested case-control genetic association study of children of Caucasian European ancestry from a birth cohort was conducted. Single nucleotide polymorphisms (SNPs, n=116,024) were genotyped in pools of DNA samples from cohort children with physician-diagnosed asthma (n=112) and normal controls (n=165). A genomic region containing the ATPAF1 gene was significantly associated with asthma. Additional SNPs within this region were genotyped in individual samples from the same children and in eight independent study populations consisting of Caucasian, African American, Hispanic, or other ancestries. SNPs were also genotyped or imputed in two consortia control populations. ATPAF1 expression was measured in bronchial biopsies from asthmatics and controls.
Results
Asthma was associated with a cluster of SNPs and SNP haplotypes containing the ATPAF1 gene with two SNPs achieving significance at a genome-wide level (p=2.26×10−5 to 2.2×10−8). Asthma severity was also associated with SNPs and haplotypes in the primary population. SNP and/or gene-level associations were confirmed in the four non-Hispanic populations. Haplotype associations were confirmed in the non-Hispanic populations (p=0.045 to 0.0009). ATPAF1 total RNA expression was significantly (p<0.01) higher in bronchial biopsies from asthmatics than controls.
Conclusion
Genetic variation in the ATPAF1 gene predisposes children of different ancestry to asthma.
doi:10.1016/j.jaci.2011.04.058
PMCID: PMC3185108  PMID: 21696813
asthma; ATPAF1; children; gene; genetic; genome-wide association; purinergic; respiratory; single nucleotide polymorphism; SNP
23.  Furthering the Link Between the Sarcomere and Primary Cardiomyopathies: Restrictive Cardiomyopathy Associated with Multiple Mutations in Genes Previously Associated With Hypertrophic or Dilated Cardiomyopathy 
Mutations in genes that encode components of the sarcomere are well established as the cause of hypertrophic and dilated cardiomyopathies. Sarcomere genes, however, are increasingly being associated with other cardiomyopathies. One phenotype more recently recognized as a disease of the sarcomere is restrictive cardiomyopathy (RCM). We report on two patients with RCM associated with multiple mutations in sarcomere genes not previously associated with RCM. Patient 1 presented with NYHA Class III/IV heart failure at 22 years of age. She was diagnosed with RCM and advanced heart failure requiring heart transplantation. Sequencing of sarcomere genes revealed previously reported homozygous p.Glu143Lys mutations in MYL3, and a novel heterozygous p.Gly57Glu mutation in MYL2. The patient’s mother is a double heterozygote for these mutations, with no evidence of cardiomyopathy. Patient 2 presented at 35 years of age with volume overload while hospitalized for oophorectomy. She was diagnosed with RCM and is being evaluated for heart transplantation. Sarcomere gene sequencing identified homozygous p.Asn279His mutations in TPM1. The patient’s parents are consanguineous and confirmed heterozygotes. Her father was diagnosed with HCM at 42 years of age.
This is the first report of mutations in TPM1, MYL3 and MYL2 associated with primary, non-hypertrophied restrictive cardiomyopathy. The association of more sarcomere genes with RCM provides further evidence that mutations in the various sarcomere genes can cause different cardiomyopathy phenotypes. These cases also contribute to the growing body of evidence that multiple mutations have an additive effect on the severity of cardiomyopathies.
doi:10.1002/ajmg.a.34097
PMCID: PMC3158811  PMID: 21823217
Restrictive Cardiomyopathy; Hypertrophic Cardiomyopathy; Sarcomere; Genetic Testing; Genetic Counseling; Cardiovascular Genetics
24.  Ethnic Variability in Persistent Asthma After In Utero Tobacco Exposure 
Pediatrics  2011;128(3):e623-e630.
BACKGROUND:
The effects of in utero tobacco smoke exposure on childhood respiratory health have been investigated, and outcomes have been inconsistent.
OBJECTIVE:
To determine if in utero tobacco smoke exposure is associated with childhood persistent asthma in Mexican, Puerto Rican, and black children.
PATIENTS AND METHODS:
There were 295 Mexican, Puerto Rican, and black asthmatic children, aged 8 to 16 years, who underwent spirometry, and clinical data were collected from the parents during a standardized interview. The effect of in utero tobacco smoke exposure on the development of persistent asthma and related clinical outcomes was evaluated by logistic regression.
RESULTS:
Children with persistent asthma had a higher odds of exposure to in utero tobacco smoke, but not current tobacco smoke, than did children with intermittent asthma (odds ratio [OR]: 3.57; P = .029). Tobacco smoke exposure from parents in the first 2 years of life did not alter this association. Furthermore, there were higher odds of in utero tobacco smoke exposure in children experiencing nocturnal symptoms (OR: 2.77; P = .048), daily asthma symptoms (OR: 2.73; P = .046), and emergency department visits (OR: 3.85; P = .015) within the year.
CONCLUSIONS:
Exposure to tobacco smoke in utero was significantly associated with persistent asthma among Mexican, Puerto Rican, and black children compared with those with intermittent asthma. These results suggest that smoking cessation during pregnancy may lead to a decrease in the incidence of persistent asthma in these populations.
doi:10.1542/peds.2011-0640
PMCID: PMC3164096  PMID: 21859918
asthma; tobacco; Latino; African American; pregnancy
25.  Asthma Research for All of the United States 
Asthma disproportionally affects different ethnic/racial groups, with Puerto Ricans and African Americans suffering the highest asthma prevalence and morbidity, Mexicans the lowest, and non-Hispanic whites in between. Genome-wide association studies of asthma have found both shared and race/ethnic-specific genetic risks factors for asthma. However, the majority of genetic asthma research is performed in populations of European descent, which limits the benefits of genetic research to European populations. It is important to biomedical and clinical research to include more diverse and underrepresented populations. The rich genetic diversity of all populations can be leveraged to scientific advantage. For example, admixture mapping provides a more powerful approach than traditional genome-wide allelic association studies in discovering genetic associations for complex diseases. By being more inclusive we can achieve a better understanding of the genetics of asthma, address health disparities, and ensure that scientific advances will benefit populations worldwide.
doi:10.1089/ped.2012.0173
PMCID: PMC3429272  PMID: 22970422

Results 1-25 (70)