PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  A Phase I Double Blind, Placebo-Controlled, Randomized Study of a Multigenic HIV-1 Adenovirus Subtype 35 Vector Vaccine in Healthy Uninfected Adults 
PLoS ONE  2012;7(8):e41936.
Background
We conducted a phase I, randomized, double-blind, placebo-controlled trial to assess the safety and immunogenicity of escalating doses of two recombinant replication defective adenovirus serotype 35 (Ad35) vectors containing gag, reverse transcriptase, integrase and nef (Ad35-GRIN) and env (Ad35-ENV), both derived from HIV-1 subtype A isolates. The trial enrolled 56 healthy HIV-uninfected adults.
Methods
Ad35-GRIN/ENV (Ad35-GRIN and Ad35-ENV mixed in the same vial in equal proportions) or Ad35-GRIN was administered intramuscularly at 0 and 6 months. Participants were randomized to receive either vaccine or placebo (10/4 per group, respectively) within one of four dosage groups: Ad35-GRIN/ENV 2×109 (A), 2×1010 (B), 2×1011 (C), or Ad35-GRIN 1×1010 (D) viral particles.
Results
No vaccine-related serious adverse event was reported. Reactogenicity events reported were dose-dependent, mostly mild or moderate, some severe in Group C volunteers, all transient and resolving spontaneously. IFN-γ ELISPOT responses to any vaccine antigen were detected in 50, 56, 70 and 90% after the first vaccination, and in 75, 100, 88 and 86% of Groups A–D vaccine recipients after the second vaccination, respectively. The median spot forming cells (SFC) per 106 PBMC to any antigen was 78–139 across Groups A–C and 158–174 in Group D, after each of the vaccinations with a maximum of 2991 SFC. Four to five HIV proteins were commonly recognized across all the groups and over multiple timepoints. CD4+ and CD8+ T-cell responses were polyfunctional. Env antibodies were detected in all Group A–C vaccinees and Gag antibodies in most vaccinees after the second immunization. Ad35 neutralizing titers remained low after the second vaccination.
Conclusion/Significance
Ad35-GRIN/ENV reactogenicity was dose-related. HIV-specific cellular and humoral responses were seen in the majority of volunteers immunized with Ad35-GRIN/ENV or Ad35-GRIN and increased after the second vaccination. T-cell responses were broad and polyfunctional.
Trial Registration
ClinicalTrials.gov NCT00851383
doi:10.1371/journal.pone.0041936
PMCID: PMC3411704  PMID: 22870265
2.  In Vivo Electroporation Enhances the Immunogenicity of an HIV-1 DNA Vaccine Candidate in Healthy Volunteers 
PLoS ONE  2011;6(5):e19252.
Background
DNA-based vaccines have been safe but weakly immunogenic in humans to date.
Methods and Findings
We sought to determine the safety, tolerability, and immunogenicity of ADVAX, a multigenic HIV-1 DNA vaccine candidate, injected intramuscularly by in vivo electroporation (EP) in a Phase-1, double-blind, randomized placebo-controlled trial in healthy volunteers. Eight volunteers each received 0.2 mg, 1 mg, or 4 mg ADVAX or saline placebo via EP, or 4 mg ADVAX via standard intramuscular injection at weeks 0 and 8. A third vaccination was administered to eleven volunteers at week 36. EP was safe, well-tolerated and considered acceptable for a prophylactic vaccine. EP delivery of ADVAX increased the magnitude of HIV-1-specific cell mediated immunity by up to 70-fold over IM injection, as measured by gamma interferon ELISpot. The number of antigens to which the response was detected improved with EP and increasing dosage. Intracellular cytokine staining analysis of ELISpot responders revealed both CD4+ and CD8+ T cell responses, with co-secretion of multiple cytokines.
Conclusions
This is the first demonstration in healthy volunteers that EP is safe, tolerable, and effective in improving the magnitude, breadth and durability of cellular immune responses to a DNA vaccine candidate.
Trial Registration
ClinicalTrials.gov NCT00545987
doi:10.1371/journal.pone.0019252
PMCID: PMC3095594  PMID: 21603651
3.  Equivalence of ELISpot Assays Demonstrated between Major HIV Network Laboratories 
PLoS ONE  2010;5(12):e14330.
Background
The Comprehensive T Cell Vaccine Immune Monitoring Consortium (CTC-VIMC) was created to provide standardized immunogenicity monitoring services for HIV vaccine trials. The ex vivo interferon-gamma (IFN-γ) ELISpot is used extensively as a primary immunogenicity assay to assess T cell-based vaccine candidates in trials for infectious diseases and cancer. Two independent, GCLP-accredited central laboratories of CTC-VIMC routinely use their own standard operating procedures (SOPs) for ELISpot within two major networks of HIV vaccine trials. Studies are imperatively needed to assess the comparability of ELISpot measurements across laboratories to benefit optimal advancement of vaccine candidates.
Methods
We describe an equivalence study of the two independently qualified IFN-g ELISpot SOPs. The study design, data collection and subsequent analysis were managed by independent statisticians to avoid subjectivity. The equivalence of both response rates and positivity calls to a given stimulus was assessed based on pre-specified acceptance criteria derived from a separate pilot study.
Findings
Detection of positive responses was found to be equivalent between both laboratories. The 95% C.I. on the difference in response rates, for CMV (−1.5%, 1.5%) and CEF (−0.4%, 7.8%) responses, were both contained in the pre-specified equivalence margin of interval [−15%, 15%]. The lower bound of the 95% C.I. on the proportion of concordant positivity calls for CMV (97.2%) and CEF (89.5%) were both greater than the pre-specified margin of 70%. A third CTC-VIMC central laboratory already using one of the two SOPs also showed comparability when tested in a smaller sub-study.
Interpretation
The described study procedure provides a prototypical example for the comparison of bioanalytical methods in HIV vaccine and other disease fields. This study also provides valuable and unprecedented information for future vaccine candidate evaluations on the comparison and pooling of ELISpot results generated by the CTC-VIMC central core laboratories.
doi:10.1371/journal.pone.0014330
PMCID: PMC3001861  PMID: 21179404
4.  Safety and Immunogenicity Study of Multiclade HIV-1 Adenoviral Vector Vaccine Alone or as Boost following a Multiclade HIV-1 DNA Vaccine in Africa 
PLoS ONE  2010;5(9):e12873.
Background
We conducted a double-blind, randomized, placebo-controlled Phase I study of a recombinant replication-defective adenovirus type 5 (rAd5) vector expressing HIV-1 Gag and Pol from subtype B and Env from subtypes A, B and C, given alone or as boost following a DNA plasmid vaccine expressing the same HIV-1 proteins plus Nef, in 114 healthy HIV-uninfected African adults.
Methodology/Principal Findings
Volunteers were randomized to 4 groups receiving the rAd5 vaccine intramuscularly at dosage levels of 1×1010 or 1×1011 particle units (PU) either alone or as boost following 3 injections of the DNA vaccine given at 4 mg/dose intramuscularly by needle-free injection using Biojector® 2000. Safety and immunogenicity were evaluated for 12 months. Both vaccines were well-tolerated. Overall, 62% and 86% of vaccine recipients in the rAd5 alone and DNA prime - rAd5 boost groups, respectively, responded to the HIV-1 proteins by an interferon-gamma (IFN-γ) ELISPOT. The frequency of immune responses was independent of rAd5 dosage levels. The highest frequency of responses after rAd5 alone was detected at 6 weeks; after DNA prime - rAd5 boost, at 6 months (end of study). At baseline, neutralizing antibodies against Ad5 were present in 81% of volunteers; the distribution was similar across the 4 groups. Pre-existing immunity to Ad5 did not appear to have a significant impact on reactogenicity or immune response rates to HIV antigens by IFN-γ ELISPOT. Binding antibodies against Env were detected in up to 100% recipients of DNA prime - rAd5 boost. One volunteer acquired HIV infection after the study ended, two years after receipt of rAd5 alone.
Conclusions/Significance
The HIV-1 rAd5 vaccine, either alone or as a boost following HIV-1 DNA vaccine, was well-tolerated and immunogenic in African adults. DNA priming increased the frequency and magnitude of cellular and humoral immune responses, but there was no effect of rAd5 dosage on immunogenicity endpoints.
Trial Registration
ClinicalTrials.gov NCT00124007
doi:10.1371/journal.pone.0012873
PMCID: PMC2943475  PMID: 20877623
5.  Human Immunodeficiency Virus Type 1 Elite Neutralizers: Individuals with Broad and Potent Neutralizing Activity Identified by Using a High-Throughput Neutralization Assay together with an Analytical Selection Algorithm▿ † 
Journal of Virology  2009;83(14):7337-7348.
The development of a rapid and efficient system to identify human immunodeficiency virus type 1 (HIV-1)-infected individuals with broad and potent HIV-1-specific neutralizing antibody responses is an important step toward the discovery of critical neutralization targets for rational AIDS vaccine design. In this study, samples from HIV-1-infected volunteers from diverse epidemiological regions were screened for neutralization responses using pseudovirus panels composed of clades A, B, C, and D and circulating recombinant forms (CRFs). Initially, 463 serum and plasma samples from Australia, Rwanda, Uganda, the United Kingdom, and Zambia were screened to explore neutralization patterns and selection ranking algorithms. Samples were identified that neutralized representative isolates from at least four clade/CRF groups with titers above prespecified thresholds and ranked based on a weighted average of their log-transformed neutralization titers. Linear regression methods selected a five-pseudovirus subset, representing clades A, B, and C and one CRF01_AE, that could identify top-ranking samples with 50% inhibitory concentration (IC50) neutralization titers of ≥100 to multiple isolates within at least four clade groups. This reduced panel was then used to screen 1,234 new samples from the Ivory Coast, Kenya, South Africa, Thailand, and the United States, and 1% were identified as elite neutralizers. Elite activity is defined as the ability to neutralize, on average, more than one pseudovirus at an IC50 titer of 300 within a clade group and across at least four clade groups. These elite neutralizers provide promising starting material for the isolation of broadly neutralizing monoclonal antibodies to assist in HIV-1 vaccine design.
doi:10.1128/JVI.00110-09
PMCID: PMC2704778  PMID: 19439467
6.  Evaluation and Recommendations on Good Clinical Laboratory Practice Guidelines for Phase I–III Clinical Trials 
PLoS Medicine  2009;6(5):e1000067.
Marcella Sarzotti-Kelsoe and colleagues harmonize various approaches to Good Clinical Laboratory Practice for clinical trials into a single set of recommendations.
doi:10.1371/journal.pmed.1000067
PMCID: PMC2670502  PMID: 19536325

Results 1-6 (6)