PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Broad neutralization coverage of HIV by multiple highly potent antibodies 
Nature  2011;477(7365):466-470.
Broadly neutralizing antibodies (bnAbs) against highly variable viral pathogens are much sought-after to treat or protect against global circulating viruses. We have probed the neutralizing antibody repertoires of four HIV-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies (MAbs) that neutralize broadly across clades. Many of the new MAbs are almost 10-fold more potent than the recently described PG9, PG16, and VRC01 bnMAbs and 100-fold more potent than the original prototype HIV bnMAbs1–3. The MAbs largely recapitulate the neutralization breadth found in the corresponding donor serum and many recognize novel epitopes on envelope (Env) glycoprotein gp120, illuminating new targets for vaccine design. Analysis of neutralization by the full complement of anti-HIV bnMAbs now available reveals that certain combinations of antibodies provide significantly more favorable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes. Overall, the isolation of multiple HIV bnMAbs, from several donors, that, in aggregate, provide broad coverage at low concentrations is a highly positive indicator for the eventual design of an effective antibody-based HIV vaccine.
doi:10.1038/nature10373
PMCID: PMC3393110  PMID: 21849977
2.  Broad and Potent Neutralizing Antibodies from an African Donor Reveal a New HIV-1 Vaccine Target 
Science (New York, N.y.)  2009;326(5950):285-289.
Broadly neutralizing antibodies (bNAbs), which develop over time in some HIV-1 infected individuals, define critical epitopes for HIV vaccine design. Using a systematic approach, we have examined neutralization breadth in the sera of about 1,800 HIV-1 infected individuals, primarily infected with non-clade B viruses, and selected donors for monoclonal antibody (mAb) generation. We then used a high-throughput neutralization screen of antibody-containing culture supernatants from approximately 30,000 activated memory B cells from a clade A-infected African donor to isolate two potent mAbs that target a broadly neutralizing epitope. The previously undescribed epitope is preferentially expressed on trimeric Envelope protein and spans conserved regions of variable loops of the gp120 subunit. The results provide a framework for the design of new vaccine candidates for the elicitation of bNAb responses.
doi:10.1126/science.1178746
PMCID: PMC3335270  PMID: 19729618
3.  A Limited Number of Antibody Specificities Mediate Broad and Potent Serum Neutralization in Selected HIV-1 Infected Individuals 
PLoS Pathogens  2010;6(8):e1001028.
A protective vaccine against HIV-1 will likely require the elicitation of a broadly neutralizing antibody (bNAb) response. Although the development of an immunogen that elicits such antibodies remains elusive, a proportion of HIV-1 infected individuals evolve broadly neutralizing serum responses over time, demonstrating that the human immune system can recognize and generate NAbs to conserved epitopes on the virus. Understanding the specificities that mediate broad neutralization will provide insight into which epitopes should be targeted for immunogen design and aid in the isolation of broadly neutralizing monoclonal antibodies from these donors. Here, we have used a number of new and established technologies to map the bNAb specificities in the sera of 19 donors who exhibit among the most potent cross-clade serum neutralizing activities observed to date. The results suggest that broad and potent serum neutralization arises in most donors through a limited number of specificities (1–2 per donor). The major targets recognized are an epitope defined by the bNAbs PG9 and PG16 that is associated with conserved regions of the V1, V2 and V3 loops, an epitope overlapping the CD4 binding site and possibly the coreceptor binding site, an epitope sensitive to a loss of the glycan at N332 and distinct from that recognized by the bNAb 2G12 and an epitope sensitive to an I165A substitution. In approximately half of the donors, key N-linked glycans were critical for expression of the epitopes recognized by the bNAb specificities in the sera.
Author Summary
The development of an immunogen that elicits antibodies that neutralize a wide range of global circulating HIV-1 isolates is a major goal of HIV-1 vaccine research. Unfortunately, even the most promising antibody-based vaccine candidates have only induced NAb responses that neutralize a limited number of these strains. However, recent studies have demonstrated that broad and potent NAb responses develop in the sera of a subset of HIV-1 infected individuals, and studying the nature of these responses may provide clues for the design of new vaccine immunogens. Here, we show that the broad neutralization in the sera of most of the individual donors that we studied can be associated with single or a small number of specificities. Across the donor panel, broad neutralization appears associated with 4–5 principal specificities.
doi:10.1371/journal.ppat.1001028
PMCID: PMC2916884  PMID: 20700449
4.  Human Immunodeficiency Virus Type 1 Elite Neutralizers: Individuals with Broad and Potent Neutralizing Activity Identified by Using a High-Throughput Neutralization Assay together with an Analytical Selection Algorithm▿ † 
Journal of Virology  2009;83(14):7337-7348.
The development of a rapid and efficient system to identify human immunodeficiency virus type 1 (HIV-1)-infected individuals with broad and potent HIV-1-specific neutralizing antibody responses is an important step toward the discovery of critical neutralization targets for rational AIDS vaccine design. In this study, samples from HIV-1-infected volunteers from diverse epidemiological regions were screened for neutralization responses using pseudovirus panels composed of clades A, B, C, and D and circulating recombinant forms (CRFs). Initially, 463 serum and plasma samples from Australia, Rwanda, Uganda, the United Kingdom, and Zambia were screened to explore neutralization patterns and selection ranking algorithms. Samples were identified that neutralized representative isolates from at least four clade/CRF groups with titers above prespecified thresholds and ranked based on a weighted average of their log-transformed neutralization titers. Linear regression methods selected a five-pseudovirus subset, representing clades A, B, and C and one CRF01_AE, that could identify top-ranking samples with 50% inhibitory concentration (IC50) neutralization titers of ≥100 to multiple isolates within at least four clade groups. This reduced panel was then used to screen 1,234 new samples from the Ivory Coast, Kenya, South Africa, Thailand, and the United States, and 1% were identified as elite neutralizers. Elite activity is defined as the ability to neutralize, on average, more than one pseudovirus at an IC50 titer of 300 within a clade group and across at least four clade groups. These elite neutralizers provide promising starting material for the isolation of broadly neutralizing monoclonal antibodies to assist in HIV-1 vaccine design.
doi:10.1128/JVI.00110-09
PMCID: PMC2704778  PMID: 19439467

Results 1-4 (4)