PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (130)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  Synthetic glycopeptides reveal the glycan specificity of HIV-neutralizing antibodies 
Nature chemical biology  2013;9(8):521-526.
A new class of glycan-reactive HIV-neutralizing antibodies, including PG9 and PG16, has been recently discovered that appear to recognize novel glycopeptide epitopes on HIV-1 gp120. However, further characterization and reconstitution of the precise neutralizing epitopes are complicated by the heterogeneity of glycosylation. We report here the design, synthesis, and antigenic evaluation of novel cyclic V1V2 glycopeptides carrying defined N-linked glycans at the conserved glycosylation sites (N160 and N156/N173) derived from gp120 of two HIV-1 isolates. Antibody binding studies confirmed the necessity of a Man5GlcNAc2 glycan at N160 for recognition by PG9 and PG16, and further revealed a critical role of a sialylated N-glycan at the secondary site (N156/N173) in the context of glycopeptides for antibody binding. In addition to defining the glycan specificities of PG9 and PG16, the identified synthetic glycopeptides provide a valuable template for HIV-1 vaccine design.
doi:10.1038/nchembio.1288
PMCID: PMC3730851  PMID: 23831758
2.  Carbohydrate vaccines: developing sweet solutions to sticky situations? 
Nature reviews. Drug discovery  2010;9(4):10.1038/nrd3012.
The realm of carbohydrate vaccines has expanded far beyond the capsular polysaccharides of bacterial pathogens to include a diverse collection of targets representing nearly every biological kingdom. Recent technological advances in glycobiology and glycochemistry are paving the way for a new era in carbohydrate vaccine design enabling greater efficiency in the identification, synthesis and evaluation of unique glycan epitopes found on a plethora of pathogens and malignant cells. This article reviews the progress being made in addressing challenges posed by targeting the surface carbohydrates of bacteria, protozoa, helminths, viruses, fungi and cancer for vaccine purposes.
doi:10.1038/nrd3012
PMCID: PMC3878310  PMID: 20357803
3.  Computational Prediction of Broadly Neutralizing HIV-1 Antibody Epitopes from Neutralization Activity Data 
PLoS ONE  2013;8(12):e80562.
Broadly neutralizing monoclonal antibodies effective against the majority of circulating isolates of HIV-1 have been isolated from a small number of infected individuals. Definition of the conformational epitopes on the HIV spike to which these antibodies bind is of great value in defining targets for vaccine and drug design. Drawing on techniques from compressed sensing and information theory, we developed a computational methodology to predict key residues constituting the conformational epitopes on the viral spike from cross-clade neutralization activity data. Our approach does not require the availability of structural information for either the antibody or antigen. Predictions of the conformational epitopes of ten broadly neutralizing HIV-1 antibodies are shown to be in good agreement with new and existing experimental data. Our findings suggest that our approach offers a means to accelerate epitope identification for diverse pathogenic antigens.
doi:10.1371/journal.pone.0080562
PMCID: PMC3846483  PMID: 24312481
4.  Anti-HIV B Cell Lines As Candidate Vaccine Biosensors1 
Challenge studies following passive immunization with neutralizing antibodies suggest that an HIV vaccine could be efficacious were it able to elicit broadly neutralizing antibodies (bNAbs4). To better understand the requirements for activation of B cells producing bNAbs, we generated cell lines expressing bNAbs or their germline-reverted versions (gl-bNAbs) as BCRs. We then tested the abilities of the bNAb-expressing cells to recognize HIV pseudovirions and vaccine candidate proteins by binding and activation assays. The results suggest that HIV Env antigen-expressing, infection-competent virions are poorly recognized by high affinity bNAb-expressing cells, as measured by the inability of antigens to induce rapid increases in intracellular calcium levels. Other antigen forms appear to be highly stimulatory: in particular, soluble gp140 trimers and a multimerized, scaffolded epitope protein. Virions failed to efficiently activate bNAb-expressing B cells owing to delayed or inefficient BCR recognition, most likely caused by the low density of Env spikes. Importantly, B cells carrying gl-bNAb BCRs were not stimulated by any of the tested vaccine candidates. These data provide insight into why many HIV immunogens, and natural HIV infections, fail to rapidly stimulate bNAb responses and suggest that bNAb-expressing cell lines might be useful tools in evaluation of vaccine antigens for infectious diseases. As soluble Env trimers or multimerized scaffolded epitopes are best at activating B cell expressing bNAbs, these antigenic forms should be considered as preferred vaccine components, though they should be modified to better target naïve gl-bNAb B cells.
doi:10.4049/jimmunol.1202165
PMCID: PMC3626558  PMID: 23066156
5.  bNAber: database of broadly neutralizing HIV antibodies 
Nucleic Acids Research  2013;42(D1):D1133-D1139.
The discovery of broadly neutralizing antibodies (bNAbs) has provided an enormous impetus to the HIV vaccine research and to entire immunology. The bNAber database at http://bNAber.org provides open, user-friendly access to detailed data on the rapidly growing list of HIV bNAbs, including neutralization profiles, sequences and three-dimensional structures (when available). It also provides an extensive list of visualization and analysis tools, such as heatmaps to analyse neutralization data as well as structure and sequence viewers to correlate bNAbs properties with structural and sequence features of individual antibodies. The goal of the bNAber database is to enable researchers in this field to easily compare and analyse available information on bNAbs thereby supporting efforts to design an effective vaccine for HIV/AIDS. The bNAber database not only provides easy access to data that currently is scattered in the Supplementary Materials sections of individual papers, but also contributes to the development of general standards of data that have to be presented with the discovery of new bNAbs and a universal mechanism of how such data can be shared.
doi:10.1093/nar/gkt1083
PMCID: PMC3964981  PMID: 24214957
6.  Antibody Conjugation Approach Enhances Breadth and Potency of Neutralization of Anti-HIV-1 Antibodies and CD4-IgG 
Journal of Virology  2013;87(9):4985-4993.
Broadly neutralizing antibodies PG9 and PG16 effectively neutralize 70 to 80% of circulating HIV-1 isolates. In this study, the neutralization abilities of PG9 and PG16 were further enhanced by bioconjugation with aplaviroc, a small-molecule inhibitor of virus entry into host cells. A novel air-stable diazonium hexafluorophosphate reagent that allows for rapid, tyrosine-selective functionalization of proteins and antibodies under mild conditions was used to prepare a series of aplaviroc-conjugated antibodies, including b12, 2G12, PG9, PG16, and CD4-IgG. The conjugated antibodies blocked HIV-1 entry through two mechanisms: by binding to the virus itself and by blocking the CCR5 receptor on host cells. Chemical modification did not significantly alter the potency of the parent antibodies against nonresistant HIV-1 strains. Conjugation did not alter the pharmacokinetics of a model IgG in blood. The PG9-aplaviroc conjugate was tested against a panel of 117 HIV-1 strains and was found to neutralize 100% of the viruses. PG9-aplaviroc conjugate IC50s were lower than those of PG9 in neutralization studies of 36 of the 117 HIV-1 strains. These results support this new approach to bispecific antibodies and offer a potential new strategy for combining HIV-1 therapies.
doi:10.1128/JVI.03146-12
PMCID: PMC3624287  PMID: 23427154
7.  A BLUEPRINT FOR HIV VACCINE DISCOVERY 
Cell host & microbe  2012;12(4):396-407.
Despite numerous attempts over many years to develop an HIV vaccine based on classical strategies, none has convincingly succeeded to date. A number of approaches are being pursued in the field, including building upon possible efficacy indicated by the recent RV144 clinical trial, which combined two HIV vaccines. Here, we argue for an approach based, in part, on understanding the HIV envelope spike and its interaction with broadly neutralizing antibodies (bnAbs) at the molecular level and using this understanding to design immunogens as possible vaccines. BnAbs can protect against virus challenge in animal models and many such antibodies have been isolated recently. We further propose that studies focused on how best to provide T cell help to B cells that produce bnAbs are crucial for optimal immunization strategies. The synthesis of rational immunogen design and immunization strategies, together with iterative improvements, offers great promise for advancing toward an HIV vaccine.
doi:10.1016/j.chom.2012.09.008
PMCID: PMC3513329  PMID: 23084910
8.  Rational Antibody-based HIV-1 Vaccine Design: Current Approaches and Future Directions 
Current opinion in immunology  2010;22(3):358-366.
Many anti-viral vaccines elicit neutralizing antibodies as a correlate of protection. For HIV, given the huge variability of the virus, it is widely believed that the induction of a broadly neutralizing antibody (bNAb) response will be crucial in a successful vaccine against the virus. Unfortunately, despite many efforts, the development of an immunogen that elicits bNAbs remains elusive. However, recent structural studies of HIV-1 Env proteins, generation of novel bNAbs, maturation of technologies for the isolation of further antibodies, insights into the requirements for antibody-mediated protection, and novel vaccination approaches are providing grounds for renewed optimism.
doi:10.1016/j.coi.2010.02.012
PMCID: PMC2891291  PMID: 20299194
9.  An engineered mutant of HIV-1 gp120 formulated with adjuvant Quil A promotes elicitation of antibody responses overlapping the CD4-binding site 
Vaccine  2011;30(5):922-930.
A major priority in HIV vaccine research is the development of an immunogen to elicit broadly neutralizing antibodies (NAbs). Monoclonal antibody (mAb) b12 is one of now several broadly neutralizing mAbs that bind epitopes overlapping the CD4-binding site (CD4bs) on HIV-1 gp120 and that serve as templates to engineer effective immunogens. We are exploring a strategy whereby extra glycans are incorporated onto gp120 to occlude the epitopes of non-neutralizing mAbs while maintaining exposure of the b12 site. Immunizing with these so-called hyperglycosylated gp120s is hypothesized to preferentially elicit b12-like NAbs. Here, the effects of two adjuvants, monophosphoryl lipid A (MPL) and Quil A, on eliciting b12-like responses when formulated with a new hyperglycosylated mutant, ΔN2mCHO(Q105N), is presented. Sera from ΔN2mCHO(Q105N)_MPL immunized animals bound the homologous antigen ΔN2mCHO(Q105N) with greater preference than sera from ΔN2mCHO(Q105N) QuilA immunized animals, demonstrating the modulation of antibody fine specificity by these two adjuvants. We also found that sera from ΔN2mCHO(Q105N)_QuilA immunized animals bound best to a resurfaced HIV gp120 core protein on which non-CD4bs epitopes are substituted with non-HIV residues, suggesting that these sera contain a relatively larger fraction of CD4bs-specific antibodies. Consistent with these data, inhibition assays revealed epitope overlap with the binding sites of the CD4bs-specific antibodies b12, b13 and VRC03. Unexpectedly, these sera did not exhibit significant neutralizing activity against a set of HIV-1 primary strains. Our results show that although formulating mutant ΔN2mCHO(Q105N) with Quil A promotes the elicitation of CD4bs-directed antibodies relative to wild-type gp120, tweaking of the immunization regimen is needed to yield robust, CD4bs-focused NAbs.
doi:10.1016/j.vaccine.2011.11.089
PMCID: PMC3733221  PMID: 22142583
Protein engineering; b12; Hyperglycosylation; Immunofocusing
10.  Unusual Features of Vaccinia Virus Extracellular Virion Form Neutralization Resistance Revealed in Human Antibody Responses to the Smallpox Vaccine 
Journal of Virology  2013;87(3):1569-1585.
The extracellular virion form (EV) of vaccinia virus (VACV) is essential for viral pathogenesis and is difficult to neutralize with antibodies. Why this is the case and how the smallpox vaccine overcomes this challenge remain incompletely understood. We previously showed that high concentrations of anti-B5 antibodies are insufficient to directly neutralize EV (M. R. Benhnia, et al., J. Virol. 83:1201–1215, 2009). This allowed for at least two possible interpretations: covering the EV surface is insufficient for neutralization, or there are insufficient copies of B5 to allow anti-B5 IgG to cover the whole surface of EV and another viral receptor protein remains active. We endeavored to test these possibilities, focusing on the antibody responses elicited by immunization against smallpox. We tested whether human monoclonal antibodies (MAbs) against the three major EV antigens, B5, A33, and A56, could individually or together neutralize EV. While anti-B5 or anti-A33 (but not anti-A56) MAbs of appropriate isotypes were capable of neutralizing EV in the presence of complement, a mixture of anti-B5, anti-A33, and anti-A56 MAbs was incapable of directly neutralizing EV, even at high concentrations. This remained true when neutralizing the IHD-J strain, which lacks a functional version of the fourth and final known EV surface protein, A34. These immunological data are consistent with the possibility that viral proteins may not be the active component of the EV surface for target cell binding and infectivity. We conclude that the protection afforded by the smallpox vaccine anti-EV response is predominantly mediated not by direct neutralization but by isotype-dependent effector functions, such as complement recruitment for antibodies targeting B5 and A33.
doi:10.1128/JVI.02152-12
PMCID: PMC3554146  PMID: 23152530
11.  2G12-Expressing B Cell Lines May Aid in HIV Carbohydrate Vaccine Design Strategies 
Journal of Virology  2013;87(4):2234-2241.
The highly conserved cluster of high-mannose glycans on the HIV-1 envelope glycoprotein, gp120, has been highlighted as a target for neutralizing antibodies. 2G12, the first HIV-1 antiglycan neutralizing antibody described, binds with an unusual domain-exchanged structure that creates a high-affinity multivalent binding surface. It is an interesting challenge for rational vaccine design to generate immunogens capable of eliciting domain-exchanged 2G12-like responses. We recently showed that di-mannose recognition by the variable domains of 2G12 is independent of domain exchange but that exchange is critical for virus neutralization. Carbohydrate-based immunogens aimed at inducing 2G12-like antibodies may need to drive both di-mannose recognition and domain exchange through interactions with B cell receptors. Here we assessed the ability of such immunogens to activate mouse B cell lines displaying domain-exchanged wild-type 2G12 (2G12 WT), a non-domain-exchanged Y-shaped variant (2G12 I19R), and germ line 2G12 (2G12 gl). We show that several immunogens, including heat-killed yeast and bacteria, can activate both 2G12 WT and 2G12 I19R B cells. However, only discrete clusters of high-mannose glycans, as on recombinant forms of the HIV-1 envelope trimer and oligodendrons, activate 2G12 WT B cells. Furthermore, no immunogen tested activated 2G12 gl cells. Our results support the hypothesis that in order to drive domain exchange of an antimannose antibody response, a boost with an immunogen displaying discrete clusters of high-mannose glycans not recognized by conventional Y-shaped antibodies will be required. Additionally, a molecule capable of activating 2G12 gl cells might also be required. The results highlight broadly neutralizing antibody-expressing mouse B cells as potentially useful tools for carbohydrate immunogen screening.
doi:10.1128/JVI.02820-12
PMCID: PMC3571453  PMID: 23221565
12.  Broadly neutralizing antibodies suggest new prospects to counter highly antigenically diverse viruses 
Science (New York, N.Y.)  2012;337(6091):183-186.
Certain human pathogens avoid elimination by our immune system by rapidly mutating the surface antigen protein sites targeted by antibody responses and consequently they tend to be refractory to vaccine development. The behavior described is prominent for a subset of viruses-the highly antigenically diverse viruses-which include HIV, influenza and hepatitis C viruses. However, these viruses do harbor highly conserved exposed sites, usually associated with function, which can be targeted by broadly neutralizing antibodies. Until recently, not many such antibodies were known but advances in the field have enabled increasing numbers to be identified. Molecular characterization of the antibodies and, most importantly, of the sites of vulnerability that they recognize, gives hope for the discovery of new vaccines and drugs.
doi:10.1126/science.1225416
PMCID: PMC3600854  PMID: 22798606
13.  Correction: Recombinant HIV Envelope Proteins Fail to Engage Germline Versions of Anti-CD4bs bNAbs 
PLoS Pathogens  2013;9(7):10.1371/annotation/ed7c0148-97eb-4416-824d-6e6d1aaeceef.
doi:10.1371/annotation/ed7c0148-97eb-4416-824d-6e6d1aaeceef
PMCID: PMC3735641
14.  Nonhuman primate models and the failure of the Merck HIV-1 vaccine in humans 
Nature medicine  2008;14(6):617-621.
The recent announcement that a replication defective adenovirus-type 5 Gag-Pol-Nef HIV-1 vaccine developed by Merck failed in the STEP human Phase IIb efficacy trial to either prevent HIV-1 infection or to suppress viral load in subjects who subsequently became infected, was predicted by studies that had evaluated analogous vaccines in the simian immunodeficiency virus (SIV) challenge/rhesus macaque model. In contrast, vaccine protection studies in macaques that used a chimeric simian-human immunodeficiency virus (SHIV89.6P) challenge failed to predict the human trial results. Adenovirus-vector based vaccines did not protect animals from infection after SHIV89.6P challenge but did cause a substantial reduction in viral load and a preservation of CD4+ T-cell counts post-infection, findings that were not reproduced in the human trials. While disappointing for the clinical development of Merck’s vaccine candidate, these studies now enable vaccine designers to utilize the SIV-challenged macaque model with more confidence, thus facilitating the future prioritization of candidate vaccines. Vaccine designers must now develop T-cell vaccine strategies that reduce viral load after heterologous challenge.
doi:10.1038/nm.f.1759
PMCID: PMC3697853  PMID: 18535579
15.  A Short Segment of the HIV-1 gp120 V1/V2 Region Is a Major Determinant of Resistance to V1/V2 Neutralizing Antibodies 
Journal of Virology  2012;86(15):8319-8323.
Antibody PG9 is a prototypical member of a class of V1/V2-directed antibodies that effectively neutralizes diverse strains of HIV-1. We analyzed strain-specific resistance to PG9 using sequence and structural information. For multiply resistant strains, mutations in a short segment of V1/V2 resulted in gain of sensitivity to PG9 and related V1/V2 neutralizing antibodies, suggesting both a common mechanism of HIV-1 resistance to and a common mode of recognition by this class of antibodies.
doi:10.1128/JVI.00696-12
PMCID: PMC3421697  PMID: 22623764
16.  Pre- and Postexposure Prophylaxis of Ebola Virus Infection in an Animal Model by Passive Transfer of a Neutralizing Human Antibody 
Journal of Virology  2002;76(12):6408-6412.
A neutralizing human monoclonal antibody, KZ52, protects guinea pigs from lethal Ebola Zaire virus challenge. Administration before or up to 1 h after challenge resulted in dose-dependent protection by the antibody. Interestingly, some antibody-treated animals survived despite developing high-level viremia, suggesting that the mechanism of protection by KZ52 may extend beyond reduction of viremia by virus neutralization. KZ52 is a promising candidate for immunoprophylaxis of Ebola virus infection.
doi:10.1128/JVI.76.12.6408-6412.2002
PMCID: PMC136210  PMID: 12021376
17.  PGV04, an HIV-1 gp120 CD4 Binding Site Antibody, Is Broad and Potent in Neutralization but Does Not Induce Conformational Changes Characteristic of CD4 
Journal of Virology  2012;86(8):4394-4403.
Recently, several broadly neutralizing monoclonal antibodies (bnMAbs) directed to the CD4-binding site (CD4bs) of gp120 have been isolated from HIV-1-positive donors. These include VRC01, 3BNC117, and NIH45-46, all of which are capable of neutralizing about 90% of circulating HIV-1 isolates and all of which induce conformational changes in the HIV-1 gp120 monomer similar to those induced by the CD4 receptor. In this study, we characterize PGV04 (also known as VRC-PG04), a MAb with potency and breadth that rivals those of the prototypic VRC01 and 3BNC117. When screened on a large panel of viruses, the neutralizing profile of PGV04 was distinct from those of CD4, b12, and VRC01. Furthermore, the ability of PGV04 to neutralize pseudovirus containing single alanine substitutions exhibited a pattern distinct from those of the other CD4bs MAbs. In particular, substitutions D279A, I420A, and I423A were found to abrogate PGV04 neutralization. In contrast to VRC01, PGV04 did not enhance the binding of 17b or X5 to their epitopes (the CD4-induced [CD4i] site) in the coreceptor region on the gp120 monomer. Furthermore, in contrast to CD4, none of the anti-CD4bs MAbs induced the expression of the 17b epitope on cell surface-expressed cleaved Env trimers. We conclude that potent CD4bs bnMAbs can display differences in the way they recognize and access the CD4bs and that mimicry of CD4, as assessed by inducing conformational changes in monomeric gp120 that lead to enhanced exposure of the CD4i site, is not uniquely correlated with effective neutralization at the site of CD4 binding on HIV-1.
doi:10.1128/JVI.06973-11
PMCID: PMC3318667  PMID: 22345481
18.  Somatic Populations of PGT135–137 HIV-1-Neutralizing Antibodies Identified by 454 Pyrosequencing and Bioinformatics 
Select HIV-1-infected individuals develop sera capable of neutralizing diverse viral strains. The molecular basis of this neutralization is currently being deciphered by the isolation of HIV-1-neutralizing antibodies. In one infected donor, three neutralizing antibodies, PGT135–137, were identified by assessment of neutralization from individually sorted B cells and found to recognize an epitope containing an N-linked glycan at residue 332 on HIV-1 gp120. Here we use next-generation sequencing and bioinformatics methods to interrogate the B cell record of this donor to gain a more complete understanding of the humoral immune response. PGT135–137-gene family specific primers were used to amplify heavy-chain and light-chain variable-domain sequences. Pyrosequencing produced 141,298 heavy-chain sequences of IGHV4-39 origin and 87,229 light-chain sequences of IGKV3-15 origin. A number of heavy and light-chain sequences of ∼90% identity to PGT137, several to PGT136, and none of high identity to PGT135 were identified. After expansion of these sequences to include close phylogenetic relatives, a total of 202 heavy-chain sequences and 72 light-chain sequences were identified. These sequences were clustered into populations of 95% identity comprising 15 for heavy chain and 10 for light chain, and a select sequence from each population was synthesized and reconstituted with a PGT137-partner chain. Reconstituted antibodies showed varied neutralization phenotypes for HIV-1 clade A and D isolates. Sequence diversity of the antibody population represented by these tested sequences was notably higher than observed with a 454 pyrosequencing-control analysis on 10 antibodies of defined sequence, suggesting that this diversity results primarily from somatic maturation. Our results thus provide an example of how pathogens like HIV-1 are opposed by a varied humoral immune response, derived from intrinsic mechanisms of antibody development, and embodied by somatic populations of diverse antibodies.
doi:10.3389/fmicb.2012.00315
PMCID: PMC3441199  PMID: 23024643
antibody bioinformatics; high-throughput sequencing; HIV-1; immunity; N-linked glycan
19.  Neutralizing Epitopes in the Membrane-Proximal External Region of HIV-1 gp41 Are Influenced by the Transmembrane Domain and the Plasma Membrane 
Journal of Virology  2012;86(6):2930-2941.
Failure to elicit broadly neutralizing (bNt) antibodies (Abs) against the membrane-proximal external region of HIV-1 gp41 (MPER) reflects the difficulty of mimicking its neutralization-competent structure (NCS). Here, we analyzed MPER antigenicity in the context of the plasma membrane and identified a role for the gp41 transmembrane domain (TM) in exposing the epitopes of three bNt monoclonal Abs (MAbs) (2F5, 4E10, and Z13e1). We transiently expressed DNA constructs encoding gp41 ectodomain fragments fused to either the TM of the platelet-derived growth factor receptor (PDGFR) or the gp41 TM and cytoplasmic tail domain (CT). Constructs encoding the MPER tethered to the gp41 TM followed by a 27-residue CT fragment (MPER-TM1) produced optimal MAb binding. Critical binding residues for the three Nt MAbs were identified using a panel of 24 MPER-TM1 mutants bearing single amino acid substitutions in the MPER; many were previously shown to affect MAb-mediated viral neutralization. Moreover, non-Nt mutants of MAbs 2F5 and 4E10 exhibited a reduction in binding to MPER-TM1 and yet maintained binding to synthetic MPER peptides, indicating that MPER-TM1 better approximates the MPER NCS than peptides. Replacement of the gp41 TM and CT of MPER-TM1 with the PDGFR TM reduced binding by MAb 4E10, but not 2F5, indicating that the gp41 TM plays a pivotal role in orienting the 4E10 epitope, and more globally, in affecting MPER exposure.
doi:10.1128/JVI.06349-11
PMCID: PMC3302331  PMID: 22238313
20.  Sequence and Structural Convergence of Broad and Potent HIV Antibodies That Mimic CD4 Binding 
Science (New York, N.y.)  2011;333(6049):1633-1637.
Passive transfer of broadly neutralizing HIV antibodies can prevent infection, which suggests that vaccines that elicit such antibodies would be protective. Thus far, however, few broadly neutralizing HIV antibodies that occur naturally have been characterized. To determine whether these antibodies are part of a larger group of related molecules, we cloned 576 new HIV antibodies from four unrelated individuals. All four individuals produced expanded clones of potent broadly neutralizing CD4-binding-site antibodies that mimic binding to CD4. Despite extensive hypermutation, the new antibodies shared a consensus sequence of 68 immunoglobulin H (IgH) chain amino acids and arise independently from two related IgH genes. Comparison of the crystal structure of one of the antibodies to the broadly neutralizing antibody VRC01 revealed conservation of the contacts to the HIV spike.
doi:10.1126/science.1207227
PMCID: PMC3351836  PMID: 21764753
21.  Antibody-mediated Neutralization of Ebola Virus Can Occur by Two Distinct Mechanisms 
Virology  2010;401(2):228-235.
Human Ebola virus (EBOV) causes severe hemorrhagic fever disease with high mortality and there is no vaccine or treatment. Antibodies in survivors occur early, are sustained, and can delay infection when transferred into nonhuman primates. Monoclonal antibodies (mAbs) from survivors exhibit potent neutralizing activity in vitro and are protective in rodents. To better understand targets and mechanisms of neutralization, we investigated a panel of mAbs shown previously to react with the envelope glycoprotein (GP). While one non-neutralizing mAb recognized a GP epitope in the non-essential mucin-like domain, the rest were specific for GP1, were neutralizing, and could be further distinguished by reactivity with secreted GP. We show that survivor antibodies, human KZ52 and monkey JP3K11, were specific for conformation-dependent epitopes comprising residues in GP1 and GP2 and that neutralization occurred by two distinct mechanisms; KZ52 inhibited cathepsin cleavage of GP whereas JP3K11 recognized the cleaved, fusion-active form of GP.
doi:10.1016/j.virol.2010.02.029
PMCID: PMC3351102  PMID: 20304456
Virus; Ebola; Immunity; Neutralization; Antibody; Human; Nonhuman Primate; Rodent
22.  A Panel of IgG1 b12 Variants with Selectively Diminished or Enhanced Affinity for Fcγ Receptors To Define the Role of Effector Functions in Protection against HIV ▿  
Journal of Virology  2011;85(20):10572-10581.
Passive transfer of neutralizing antibodies is effective in protecting rhesus macaques against simian/human immunodeficiency virus (SHIV) challenge. In addition to neutralization, effector functions of the crystallizable fragment (Fc) of antibodies are involved in antibody-mediated protection against a number of viruses. We recently showed that interaction between the Fc fragment of the broadly neutralizing antibody IgG1 b12 and cellular Fcγ receptors (FcγRs) plays an important role in protection against SHIV infection in rhesus macaques. The specific nature of this Fc-dependent protection is largely unknown. To investigate, we generated a panel of 11 IgG1 b12 antibody variants with selectively diminished or enhanced affinity for the two main activating FcγRs, FcγRIIa and FcγRIIIa. All 11 antibody variants bind gp120 and neutralize virus as effectively as does wild-type b12. Binding studies using monomeric (enzyme-linked immunosorbent assay [ELISA] and surface plasmon resonance [SPR]) and cellularly expressed Fcγ receptors show decreased (up to 5-fold) and increased (up to 90-fold) binding to FcγRIIa and FcγRIIIa with this newly generated panel of antibodies. In addition, there was generally a good correlation between b12 variant affinity for Fcγ receptor and variant function in antibody-dependent cell-mediated virus inhibition (ADCVI), phagocytosis, NK cell activation assays, and antibody-dependent cellular cytotoxicity (ADCC) assays. In future studies, these b12 variants will enable the investigation of the protective role of individual FcγRs in HIV infection.
doi:10.1128/JVI.05541-11
PMCID: PMC3187489  PMID: 21849450
23.  A robust, high-throughput assay to determine the phagocytic activity of clinical antibody samples 
Journal of immunological methods  2010;366(1-2):8-19.
Phagocytosis can be induced via the engagement of Fcγ receptors by antibody-opsonized material. Furthermore, the efficiency of antibody-induced effector functions has been shown to be dramatically modulated by changes in antibody glycosylation. Because infection can modulate antibody glycans, which in turn modulate antibody functions, assays capable of determining the induction of effector functions rather than neutralization or titer provide a valuable opportunity to more fully characterize the quality of the adaptive immune response. Here we describe a robust and high-throughput flow cytometric assay to define the phagocytic activity of antigen-specific antibodies from clinical samples. This assay employs a monocytic cell line that expresses numerous Fc receptors: including inhibitory and activating, and high and low affinity receptors—allowing complex phenotypes to be studied. We demonstrate the adaptability of this high-throughput, flow-based assay to measure antigen-specific antibody-mediated phagocytosis against an array of viruses, including influenza, HIV, and dengue. The phagocytosis assay format further allows for simultaneous analysis of cytokine release, as well as determination of the role of specific Fcγ-receptor subtypes, making it a highly useful system for parsing differences in the ability of clinical and vaccine induced antibody samples to recruit this critical effector function.
doi:10.1016/j.jim.2010.12.016
PMCID: PMC3050993  PMID: 21192942
Phagocytosis; Antibody; ADCC; antibody-dependent phagocytosis; monocytes; Fc receptor; effector function
24.  Mechanism of Neutralization by the Broadly Neutralizing HIV-1 Monoclonal Antibody VRC01▿† 
Journal of Virology  2011;85(17):8954-8967.
The structure of VRC01 in complex with the HIV-1 gp120 core reveals that this broadly neutralizing CD4 binding site (CD4bs) antibody partially mimics the interaction of the primary virus receptor, CD4, with gp120. Here, we extended the investigation of the VRC01-gp120 core interaction to the biologically relevant viral spike to better understand the mechanism of VRC01-mediated neutralization and to define viral elements associated with neutralization resistance. In contrast to the interaction of CD4 or the CD4bs monoclonal antibody (MAb) b12 with the HIV-1 envelope glycoprotein (Env), occlusion of the VRC01 epitope by quaternary constraints was not a major factor limiting neutralization. Mutagenesis studies indicated that VRC01 contacts within the gp120 loop D, the CD4 binding loop, and the V5 region were necessary for optimal VRC01 neutralization, as suggested by the crystal structure. In contrast to interactions with the soluble gp120 monomer, VRC01 interaction with the native viral spike did not occur in a CD4-like manner; VRC01 did not induce gp120 shedding from the Env spike or enhance gp41 membrane proximal external region (MPER)-directed antibody binding to the Env spike. Finally, VRC01 did not display significant reactivity with human antigens, boding well for potential in vivo applications. The data indicate that VRC01 interacts with gp120 in the context of the functional spike in a manner distinct from that of CD4. It achieves potent neutralization by precisely targeting the CD4bs without requiring alterations of Env spike configuration and by avoiding steric constraints imposed by the quaternary structure of the functional Env spike.
doi:10.1128/JVI.00754-11
PMCID: PMC3165784  PMID: 21715490
25.  A genetically humanized mouse model for hepatitis C virus infection 
Nature  2011;474(7350):208-211.
Hepatitis C virus (HCV) remains a major medical problem. Antiviral treatment is only partially effective and a vaccine does not exist. Development of more effective therapies has been hampered by the lack of a suitable small animal model. While xenotransplantation of immunodeficient mice with human hepatocytes has shown promise, these models are subject to important challenges. Building on the previous observation that CD81 and occludin (OCLN) comprise the minimal human factors required to render mouse cells permissive to HCV entry in vitro, we attempted murine humanization via a genetic approach. Here we show that expression of two human genes is sufficient to allow HCV infection of fully immunocompetent inbred mice. We establish a precedent for applying mouse genetics to dissect viral entry and validate the role of SCARB1 for HCV uptake. We demonstrate that HCV can be blocked by passive immunization, as well as show that a recombinant vaccinia virus (rVV) vector induces humoral immunity and confers partial protection against heterologous challenge. This system recapitulates a portion of the HCV life cycle in an immunocompetent rodent for the first time, opening opportunities for studying viral pathogenesis and immunity and comprising an effective platform for testing HCV entry inhibitors in vivo.
doi:10.1038/nature10168
PMCID: PMC3159410  PMID: 21654804

Results 1-25 (130)