PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-18 (18)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  High-density array analysis of DNA methylation in Tamoxifen-resistant breast cancer cell lines 
Epigenetics  2013;9(2):297-307.
Roughly two-thirds of all breast cancers are ERα-positive and can be treated with the antiestrogen, Tamoxifen, however resistance occurs in 33% of women who take the drug for more than 5 y. Aberrant DNA methylation, an epigenetic mechanism that alters gene expression in cancer, is thought to play a role in this resistance. To develop an understanding of Tamoxifen-resistance and identify novel pathways and targets of aberrant methylation, DNA from MCF-7 breast cancer cells and Tamoxifen-resistant derivatives, TMX2–11 and TMX2–28, were analyzed using the Illumina HumanMethylation450 BeadChip. Normalizing against MCF-7 values, ERα-positive TMX2–11 had 4000 hypermethylated sites and ERα-negative TMX2–28 had over 33 000. Analysis of CpG sites altered in both TMX2–11 and TMX2–28 revealed that the Tamoxifen-resistant cell lines share 3000 hypermethylated and 200 hypomethylated CpGs. ZNF350 and MAGED1, two genes hypermethylated in both cell lines, were examined in greater detail. Treatment with 5-aza-2′deoxycitidine caused a significant reduction in promoter methylation of both ZNF350 and MAGED1 and a corresponding increase in expression in TMX2–28. A similar relationship between methylation and expression was not detected in TMX2–11. Our findings are indicative of the variable responses to methylation-targeted breast cancer therapy and highlight the need for biomarkers that accurately predict treatment outcome.
doi:10.4161/epi.27111
PMCID: PMC3962540  PMID: 24225485
Tamoxifen Resistance; Breast Cancer; Estrogen Receptor; HumanMethylation450 BeadChip; methylation; ZNF350; MAGED1
2.  Genome-wide association studies of gastric adenocarcinoma and esophageal squamous cell carcinoma identify a shared susceptibility locus in PLCE1 at 10q23 
Nature genetics  2012;44(10):1090-1097.
We conducted a genome-wide association study of gastric cancer (GC) and esophageal squamous cell carcinoma (ESCC) in ethnic Chinese subjects in which we genotyped 551,152 single nucleotide polymorphisms (SNPs). We report a combined analysis of 2,240 GC cases, 2,115 ESCC cases, and 3,302 controls drawn from five studies. In logistic regression models adjusted for age, sex, and study, multiple variants at 10q23 had genome-wide significance for GC and ESCC independently. A notable signal was rs2274223, a nonsynonymous SNP located in PLCE1, for GC (P=8.40×1010; per allele odds ratio (OR) = 1.31) and ESCC (P=3.85×10−9; OR = 1.34). The association with GC differed by anatomic subsite. For tumors located in the cardia the association was stronger (P=4.19 × 10−15; OR= 1.57) and for those located in the noncardia stomach it was absent (P=0.44; OR=1.05). Our findings at 10q23 could provide insight into the high incidence rates of both cancers in China.
doi:10.1038/ng.2411
PMCID: PMC3513832  PMID: 22960999
3.  Allele-specific gene expression and epigenetic modifications and their application to understanding inheritance and cancer 
Biochimica et Biophysica Acta  2012;1819(7):739-742.
Epigenetic information is characterized by its plasticity during development and differentiation as well as its stable transmission during mitotic cell divisions in somatic tissues. This duality contrasts to genetic information, which is essentially static and identical in every cell in an organism with only a few exceptions such as immunoglobulin genes in lymphocytes. Epigenetics is traditionally perceived as a means to regulate gene expression without a change in DNA sequence. This, however, does not exclude a potential role for genetic variations in providing differential backgrounds on which epigenetic modulations and their regulatory consequences are achieved. An effective approach to investigating the interplay between genetic variations and epigenetic variations is through allele-specific analysis of epigenetics and gene expression. Such studies have generated many new insights into functions of genetic variations, mechanisms of gene expression regulation, and the role of mutations and epigenetic alterations in human cancer.
doi:10.1016/j.bbagrm.2012.02.007
PMCID: PMC3371177  PMID: 22366057
allele-specific gene expression; allele-specific methylation; allele-specific chromatin; epigenetic marks; polymorphism; inheritance; cancer
4.  Genotypic variants at 2q33 and risk of esophageal squamous cell carcinoma in China: a meta-analysis of genome-wide association studies 
Abnet, Christian C. | Wang, Zhaoming | Song, Xin | Hu, Nan | Zhou, Fu-You | Freedman, Neal D. | Li, Xue-Min | Yu, Kai | Shu, Xiao-Ou | Yuan, Jian-Min | Zheng, Wei | Dawsey, Sanford M. | Liao, Linda M. | Lee, Maxwell P. | Ding, Ti | Qiao, You-Lin | Gao, Yu-Tang | Koh, Woon-Puay | Xiang, Yong-Bing | Tang, Ze-Zhong | Fan, Jin-Hu | Chung, Charles C. | Wang, Chaoyu | Wheeler, William | Yeager, Meredith | Yuenger, Jeff | Hutchinson, Amy | Jacobs, Kevin B. | Giffen, Carol A. | Burdett, Laurie | Fraumeni, Joseph F. | Tucker, Margaret A. | Chow, Wong-Ho | Zhao, Xue-Ke | Li, Jiang-Man | Li, Ai-Li | Sun, Liang-Dan | Wei, Wu | Li, Ji-Lin | Zhang, Peng | Li, Hong-Lei | Cui, Wen-Yan | Wang, Wei-Peng | Liu, Zhi-Cai | Yang, Xia | Fu, Wen-Jing | Cui, Ji-Li | Lin, Hong-Li | Zhu, Wen-Liang | Liu, Min | Chen, Xi | Chen, Jie | Guo, Li | Han, Jing-Jing | Zhou, Sheng-Li | Huang, Jia | Wu, Yue | Yuan, Chao | Huang, Jing | Ji, Ai-Fang | Kul, Jian-Wei | Fan, Zhong-Min | Wang, Jian-Po | Zhang, Dong-Yun | Zhang, Lian-Qun | Zhang, Wei | Chen, Yuan-Fang | Ren, Jing-Li | Li, Xiu-Min | Dong, Jin-Cheng | Xing, Guo-Lan | Guo, Zhi-Gang | Yang, Jian-Xue | Mao, Yi-Ming | Yuan, Yuan | Guo, Er-Tao | Zhang, Wei | Hou, Zhi-Chao | Liu, Jing | Li, Yan | Tang, Sa | Chang, Jia | Peng, Xiu-Qin | Han, Min | Yin, Wan-Li | Liu, Ya-Li | Hu, Yan-Long | Liu, Yu | Yang, Liu-Qin | Zhu, Fu-Guo | Yang, Xiu-Feng | Feng, Xiao-Shan | Wang, Zhou | Li, Yin | Gao, She-Gan | Liu, Hai-Lin | Yuan, Ling | Jin, Yan | Zhang, Yan-Rui | Sheyhidin, Ilyar | Li, Feng | Chen, Bao-Ping | Ren, Shu-Wei | Liu, Bin | Li, Dan | Zhang, Gao-Fu | Yue, Wen-Bin | Feng, Chang-Wei | Qige, Qirenwang | Zhao, Jian-Ting | Yang, Wen-Jun | Lei, Guang-Yan | Chen, Long-Qi | Li, En-Min | Xu, Li-Yan | Wu, Zhi-Yong | Bao, Zhi-Qin | Chen, Ji-Li | Li, Xian-Chang | Zhuang, Xiang | Zhou, Ying-Fa | Zuo, Xian-Bo | Dong, Zi-Ming | Wang, Lu-Wen | Fan, Xue-Pin | Wang, Jin | Zhou, Qi | Ma, Guo-Shun | Zhang, Qin-Xian | Liu, Hai | Jian, Xin-Ying | Lian, Sin-Yong | Wang, Jin-Sheng | Chang, Fu-Bao | Lu, Chang-Dong | Miao, Jian-Jun | Chen, Zhi-Guo | Wang, Ran | Guo, Ming | Fan, Zeng-Lin | Tao, Ping | Liu, Tai-Jing | Wei, Jin-Chang | Kong, Qing-Peng | Fan, Lei | Wang, Xian-Zeng | Gao, Fu-Sheng | Wang, Tian-Yun | Xie, Dong | Wang, Li | Chen, Shu-Qing | Yang, Wan-Cai | Hong, Jun-Yan | Wang, Liang | Qiu, Song-Liang | Goldstein, Alisa M. | Yuan, Zhi-Qing | Chanock, Stephen J. | Zhang, Xue-Jun | Taylor, Philip R. | Wang, Li-Dong
Human Molecular Genetics  2012;21(9):2132-2141.
Genome-wide association studies have identified susceptibility loci for esophageal squamous cell carcinoma (ESCC). We conducted a meta-analysis of all single-nucleotide polymorphisms (SNPs) that showed nominally significant P-values in two previously published genome-wide scans that included a total of 2961 ESCC cases and 3400 controls. The meta-analysis revealed five SNPs at 2q33 with P< 5 × 10−8, and the strongest signal was rs13016963, with a combined odds ratio (95% confidence interval) of 1.29 (1.19–1.40) and P= 7.63 × 10−10. An imputation analysis of 4304 SNPs at 2q33 suggested a single association signal, and the strongest imputed SNP associations were similar to those from the genotyped SNPs. We conducted an ancestral recombination graph analysis with 53 SNPs to identify one or more haplotypes that harbor the variants directly responsible for the detected association signal. This showed that the five SNPs exist in a single haplotype along with 45 imputed SNPs in strong linkage disequilibrium, and the strongest candidate was rs10201587, one of the genotyped SNPs. Our meta-analysis found genome-wide significant SNPs at 2q33 that map to the CASP8/ALS2CR12/TRAK2 gene region. Variants in CASP8 have been extensively studied across a spectrum of cancers with mixed results. The locus we identified appears to be distinct from the widely studied rs3834129 and rs1045485 SNPs in CASP8. Future studies of esophageal and other cancers should focus on comprehensive sequencing of this 2q33 locus and functional analysis of rs13016963 and rs10201587 and other strongly correlated variants.
doi:10.1093/hmg/dds029
PMCID: PMC3315211  PMID: 22323360
5.  Genome-wide association studies of gastric adenocarcinoma and esophageal squamous cell carcinoma identify a shared susceptibility locus in PLCE1 at 10q23 
Nature genetics  2010;42(9):764-767.
We conducted a genome-wide association study of gastric cancer (GC) and esophageal squamous cell carcinoma (ESCC) in ethnic Chinese subjects in which we genotyped 551,152 single nucleotide polymorphisms (SNPs). We report a combined analysis of 2,240 GC cases, 2,115 ESCC cases, and 3,302 controls drawn from five studies. In logistic regression models adjusted for age, sex, and study, multiple variants at 10q23 had genome-wide significance for GC and ESCC independently. A notable signal was rs2274223, a nonsynonymous SNP located in PLCE1, for GC (P=8.40×10−9; per allele odds ratio (OR) = 1.31) and ESCC (P=3.85×10−9; OR = 1.34). The association with GC differed by anatomic subsite. For tumors located in the cardia the association was stronger (P=4.19 × 10−15; OR= 1.57) and for those located in the noncardia stomach it was absent (P=0.44; OR=1.05). Our findings at 10q23 could provide insight into the high incidence rates of both cancers in China.
doi:10.1038/ng.649
PMCID: PMC2947317  PMID: 20729852
6.  Identification of novel gene amplifications in breast cancer and coexistence of gene amplification with an activating mutation of PIK3CA 
Cancer research  2009;69(18):7357-7365.
To identify genetic events that characterize cancer progression, we conducted a comprehensive genetic evaluation of 161 primary breast tumors. Similar to the “mountain-and-hill” view of mutations, gene amplification also shows high and low frequency alterations in breast cancers. The frequently amplified genes include the well-known oncogenes, ERBB2, FGFR1, MYC, CCND1, and PIK3CA, whereas other known oncogenes that are amplified, though less frequently, include CCND2, EGFR, FGFR2, and NOTCH3. More importantly, by honing in on minimally amplified regions containing ≤ 3 genes, we identified six new amplified genes: POLD3, IRAK4, IRX2, TBL1XR1, ASPH, and BRD4. We found that both the IRX2 and TBL1XR1 proteins showed higher expression in the malignant cell lines, MCF10CA1h and MCF10CA1a, than in their precursor, MCF10A, a normal immortalized mammary epithelial cell line. To study oncogenic roles of TBL1XR1, we performed knockdown experiments using a shRNA approach and found that depletion of TBL1XR1 in MCF10CA1h cells resulted in reduction of cell migration and invasion as well as suppression of tumorigenesis in mouse xenografts. Intriguingly, our mutation analysis showed the presence of activation mutations in the PIK3CA gene in a subset of tumors that also had DNA copy number increases in the PIK3CA locus, suggesting an additive effect of co-existing activating amino-acid substitution and dosage increase from amplification. Our gene amplification and somatic mutation analysis of breast primary tumors provides a coherent picture of genetic events, both corroborating and novel, offering insight into the genetic underpinnings of breast cancer progression.
doi:10.1158/0008-5472.CAN-09-0064
PMCID: PMC2745517  PMID: 19706770
DNA copy number; gene amplification; oncogene; somatic mutation; breast cancer
7.  Genomic characterization of esophageal squamous cell carcinoma from a high-risk population in China 
Cancer research  2009;69(14):5908-5917.
Genomic instability plays an important role in most human cancers. To characterize genomic instability in esophageal squamous cell carcinoma (ESCC), we examined loss of heterozygosity (LOH), copy number (CN) loss, CN gain, and gene expression using the Affymetrix GeneChip Human Mapping 500K (n=30 cases) and Human U133A (n=17 cases) arrays in ESCC cases from a high-risk region of China. We found that genomic instability measures varied widely among cases and separated them into two groups: a high-frequency instability group (two-thirds of all cases with one or more instability category ≥ 10%) and a low-frequency instability group (one-third of cases with instability < 10%). Genomic instability also varied widely across chromosomal arms, with the highest frequency of LOH on 9p (33% of informative single nucleotide polymorphisms (SNPs)), CN loss on 3p (33%), and CN gain on 3q (48%). Twenty-two LOH regions were identified: four on 9p, seven on 9q, four on 13q, two on 17p, and five on 17q. Three CN loss regions – 3p12.3, 4p15.1, and 9p21.3 – were detected. Twelve CN gain regions were found, including six on 3q, one on 7q, four on 8q, and one on 11q. One of the most gene-rich of these CN gain regions was 11q13.1-13.4, where 26 genes also had RNA expression data available. CN gain was significantly correlated with increased RNA expression in over 80% of these genes. Our findings demonstrate the potential utility of combining CN analysis and gene expression data to identify genes involved in esophageal carcinogenesis.
doi:10.1158/0008-5472.CAN-08-4622
PMCID: PMC2734334  PMID: 19584285
esophageal cancer; LOH; copy number alteration; 500K SNP array
8.  Influence of Genetic Background and Tissue Types on Global DNA Methylation Patterns 
PLoS ONE  2010;5(2):e9355.
Recent studies have shown a genetic influence on gene expression variation, chromatin, and DNA methylation. However, the effects of genetic background and tissue types on DNA methylation at the genome-wide level have not been characterized extensively. To study the effect of genetic background and tissue types on global DNA methylation, we performed DNA methylation analysis using the Affymetrix 500K SNP array on tumor, adjacent normal tissue, and blood DNA from 30 patients with esophageal squamous cell carcinoma (ESCC). The use of multiple tissues from 30 individuals allowed us to evaluate variation of DNA methylation states across tissues and individuals. Our results demonstrate that blood and esophageal tissues shared similar DNA methylation patterns within the same individual, suggesting an influence of genetic background on DNA methylation. Furthermore, we showed that tissue types are important contributors of DNA methylation states.
doi:10.1371/journal.pone.0009355
PMCID: PMC2826396  PMID: 20186319
9.  Delineating Genetic Alterations for Tumor Progression in the MCF10A Series of Breast Cancer Cell Lines 
PLoS ONE  2010;5(2):e9201.
To gain insight into the role of genomic alterations in breast cancer progression, we conducted a comprehensive genetic characterization of a series of four cell lines derived from MCF10A. MCF10A is an immortalized mammary epithelial cell line (MEC); MCF10AT is a premalignant cell line generated from MCF10A by transformation with an activated HRAS gene; MCF10CA1h and MCF10CA1a, both derived from MCF10AT xenografts, form well-differentiated and poorly-differentiated malignant tumors in the xenograft models, respectively. We analyzed DNA copy number variation using the Affymetrix 500 K SNP arrays with the goal of identifying gene-specific amplification and deletion events. In addition to a previously noted deletion in the CDKN2A locus, our studies identified MYC amplification in all four cell lines. Additionally, we found intragenic deletions in several genes, including LRP1B in MCF10CA1h and MCF10CA1a, FHIT and CDH13 in MCF10CA1h, and RUNX1 in MCF10CA1a. We confirmed the deletion of RUNX1 in MCF10CA1a by DNA and RNA analyses, as well as the absence of the RUNX1 protein in that cell line. Furthermore, we found that RUNX1 expression was reduced in high-grade primary breast tumors compared to low/mid-grade tumors. Mutational analysis identified an activating PIK3CA mutation, H1047R, in MCF10CA1h and MCF10CA1a, which correlates with an increase of AKT1 phosphorylation at Ser473 and Thr308. Furthermore, we showed increased expression levels for genes located in the genomic regions with copy number gain. Thus, our genetic analyses have uncovered sequential molecular events that delineate breast tumor progression. These events include CDKN2A deletion and MYC amplification in immortalization, HRAS activation in transformation, PIK3CA activation in the formation of malignant tumors, and RUNX1 deletion associated with poorly-differentiated malignant tumors.
doi:10.1371/journal.pone.0009201
PMCID: PMC2821407  PMID: 20169162
10.  Replication of a genome-wide case-control study of esophageal squamous cell carcinoma 
In a previous pilot case-control study of individuals diagnosed with esophageal squamous cell carcinoma (ESCC) and matched controls from a high-risk area in China, we identified 38 single nucleotide polymorphisms (SNPs) associated with ESCC located in or near one of 33 genes. In the present study, we attempted to replicate the results of these 38 gene-related SNPs in a new sample of 300 ESCC cases and 300 matched controls from the same study conducted in Shanxi Province, China. Among 36 evaluable SNPs, four were significant in one or more analyses, including SNPs located in EPHB1, PGLYRP2, PIK3C3, and SLC9A9, although the odds ratios (ORs) for these genotypes were modest. Associations were found with EPHB1/rs1515366 (OR 0.92, 95% CI 0.86-0.99; p = 0.019), PIK3C3/rs52911 (OR 0.93, 95% CI 0.88-0.99; p = 0.02), and PGLYRP2/rs959117 (OR 0.93, 95% CI, 0.86-1.01; p = 0.061) in general linear models (additive mode); and the genotype distribution differed between cases and controls for SLC9A9/rs956062 (p = 0.024). To examine these four genes in more detail, 40 HapMap-based tag SNPs from these four genes were evaluated in the same subjects, and seven additional SNPs associated with ESCC were identified. Further confirmation of these findings in other populations and other studies are needed to determine if the signals from these SNPs are indirectly associated due to linkage disequilibrium, or are directly related to biologic function and the development of ESCC.
doi:10.1002/ijc.23682
PMCID: PMC2552411  PMID: 18649358
Esophageal cancer; Replication study; SNP
11.  Allele-Specific Chromatin Immunoprecipitation Studies Show Genetic Influence on Chromatin State in Human Genome 
PLoS Genetics  2007;3(5):e81.
Several recent studies have shown a genetic influence on gene expression variation, including variation between the two chromosomes within an individual and variation between individuals at the population level. We hypothesized that genetic inheritance may also affect variation in chromatin states. To test this hypothesis, we analyzed chromatin states in 12 lymphoblastoid cells derived from two Centre d'Etude du Polymorphisme Humain families using an allele-specific chromatin immunoprecipitation (ChIP-on-chip) assay with Affymetrix 10K SNP chip. We performed the allele-specific ChIP-on-chip assays for the 12 lymphoblastoid cells using antibodies targeting at RNA polymerase II and five post-translation modified forms of the histone H3 protein. The use of multiple cell lines from the Centre d'Etude du Polymorphisme Humain families allowed us to evaluate variation of chromatin states across pedigrees. These studies demonstrated that chromatin state clustered by family. Our results support the idea that genetic inheritance can determine the epigenetic state of the chromatin as shown previously in model organisms. To our knowledge, this is the first demonstration in humans that genetics may be an important factor that influences global chromatin state mediated by histone modification, the hallmark of the epigenetic phenomena.
Author Summary
Human health and disease are determined by an interaction between genetic background and environmental exposures. Both normal development and disease are mediated by epigenetic regulation of gene expression. The epigenetic regulation causes heritable changes in gene expression, which is not associated with DNA sequence changes. Instead, it is mediated by chemical modification of DNA such as DNA methylation or by protein modifications such as histone acetylation and methylation. Although much has been known about epigenetic inheritance during development, little is known about the influence of the genetic background on epigenetic processes such as histone modifications. In this report the authors studied five histone modifications on a genome-wide level in cells from different families. Global epigenetic states, as measured by these histone modifications, showed a similar pattern for cells derived from the same family. This study demonstrates that genetic inheritance may be an important factor influencing global chromatin states mediated by histone modifications in humans. These observations illustrate the importance of integrating genetic and epigenetic information into studies of human health and complex diseases.
doi:10.1371/journal.pgen.0030081
PMCID: PMC1868950  PMID: 17511522
12.  Allele-Specific Chromatin Immunoprecipitation Studies Show Genetic Influence on Chromatin State in Human Genome 
PLoS Genetics  2007;3(5):e81.
Several recent studies have shown a genetic influence on gene expression variation, including variation between the two chromosomes within an individual and variation between individuals at the population level. We hypothesized that genetic inheritance may also affect variation in chromatin states. To test this hypothesis, we analyzed chromatin states in 12 lymphoblastoid cells derived from two Centre d'Etude du Polymorphisme Humain families using an allele-specific chromatin immunoprecipitation (ChIP-on-chip) assay with Affymetrix 10K SNP chip. We performed the allele-specific ChIP-on-chip assays for the 12 lymphoblastoid cells using antibodies targeting at RNA polymerase II and five post-translation modified forms of the histone H3 protein. The use of multiple cell lines from the Centre d'Etude du Polymorphisme Humain families allowed us to evaluate variation of chromatin states across pedigrees. These studies demonstrated that chromatin state clustered by family. Our results support the idea that genetic inheritance can determine the epigenetic state of the chromatin as shown previously in model organisms. To our knowledge, this is the first demonstration in humans that genetics may be an important factor that influences global chromatin state mediated by histone modification, the hallmark of the epigenetic phenomena.
Author Summary
Human health and disease are determined by an interaction between genetic background and environmental exposures. Both normal development and disease are mediated by epigenetic regulation of gene expression. The epigenetic regulation causes heritable changes in gene expression, which is not associated with DNA sequence changes. Instead, it is mediated by chemical modification of DNA such as DNA methylation or by protein modifications such as histone acetylation and methylation. Although much has been known about epigenetic inheritance during development, little is known about the influence of the genetic background on epigenetic processes such as histone modifications. In this report the authors studied five histone modifications on a genome-wide level in cells from different families. Global epigenetic states, as measured by these histone modifications, showed a similar pattern for cells derived from the same family. This study demonstrates that genetic inheritance may be an important factor influencing global chromatin states mediated by histone modifications in humans. These observations illustrate the importance of integrating genetic and epigenetic information into studies of human health and complex diseases.
doi:10.1371/journal.pgen.0030081
PMCID: PMC1868950  PMID: 17511522
13.  Identification and characterization of OGG1 mutations in patients with Alzheimer's disease 
Nucleic Acids Research  2007;35(8):2759-2766.
Patients with Alzheimer's disease (AD) exhibit higher levels of 8-oxo-guanine (8-oxoG) DNA lesions in their brain, suggesting a reduced or defective 8-oxoG repair. To test this hypothesis, this study investigated 14 AD patients and 10 age-matched controls for mutations of the major 8-oxoG removal gene OGG1. Whereas no alterations were detected in any control samples, four AD patients exhibited mutations in OGG1, two carried a common single base (C796) deletion that alters the carboxyl terminal sequence of OGG1, and the other two had nucleotide alterations leading to single amino acid substitutions. In vitro biochemical assays revealed that the protein encoded by the C796-deleted OGG1 completely lost its 8-oxoG glycosylase activity, and that the two single residue-substituted OGG1 proteins showed a significant reduction in the glycosylase activity. These results were consistent with the fact that nuclear extracts derived from a limited number of AD patients with OGG1 mutations exhibited greatly reduced 8-oxoG glycosylase activity compared with age-matched controls and AD patients without OGG1 alterations. Our findings suggest that defects in OGG1 may be important in the pathogenesis of AD in a significant fraction of AD patients and provide new insight into the molecular basis for the disease.
doi:10.1093/nar/gkm189
PMCID: PMC1885677  PMID: 17426120
14.  Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice 
Journal of Clinical Investigation  2000;106(12):1447-1455.
The KvLQT1 gene encodes a voltage-gated potassium channel. Mutations in KvLQT1 underlie the dominantly transmitted Ward-Romano long QT syndrome, which causes cardiac arrhythmia, and the recessively transmitted Jervell and Lange-Nielsen syndrome, which causes both cardiac arrhythmia and congenital deafness. KvLQT1 is also disrupted by balanced germline chromosomal rearrangements in patients with Beckwith-Wiedemann syndrome (BWS), which causes prenatal overgrowth and cancer. Because of the diverse human disorders and organ systems affected by this gene, we developed an animal model by inactivating the murine Kvlqt1. No electrocardiographic abnormalities were observed. However, homozygous mice exhibited complete deafness, as well as circular movement and repetitive falling, suggesting imbalance. Histochemical study revealed severe anatomic disruption of the cochlear and vestibular end organs, suggesting that Kvlqt1 is essential for normal development of the inner ear. Surprisingly, homozygous mice also displayed threefold enlargement by weight of the stomach resulting from mucous neck cell hyperplasia. Finally, there were no features of BWS, suggesting that Kvlqt1 is not responsible for BWS.
PMCID: PMC387258  PMID: 11120752
15.  Comparison of Global Gene Expression of Gastric Cardia and Noncardia Cancers from a High-Risk Population in China 
PLoS ONE  2013;8(5):e63826.
Objective
To profile RNA expression in gastric cancer by anatomic subsites as an initial step in identifying molecular subtypes and providing targets for early detection and therapy.
Methods
We performed transcriptome analysis using the Affymetrix GeneChip U133A in gastric cardia adenocarcinomas (n = 62) and gastric noncardia adenocarcinomas (n = 72) and their matched normal tissues from patients in Shanxi Province, and validated selected dysregulated genes with additional RNA studies. Expression of dysregulated genes was also related to survival of cases.
Results
Principal Component Analysis showed that samples clustered by tumor vs. normal, anatomic location, and histopathologic features. Paired t-tests of tumor/normal tissues identified 511 genes whose expression was dysregulated (P<4.7E-07 and at least two-fold difference in magnitude) in cardia or noncardia gastric cancers, including nearly one-half (n = 239, 47%) dysregulated in both cardia and noncardia, one-fourth dysregulated in cardia only (n = 128, 25%), and about one-fourth in noncardia only (n = 144, 28%). Additional RNA studies confirmed profiling results. Expression was associated with case survival for 20 genes in cardia and 36 genes in noncardia gastric cancers.
Conclusions
The dysregulated genes identified here represent a comprehensive starting point for future efforts to understand etiologic heterogeneity, develop diagnostic biomarkers for early detection, and test molecularly-targeted therapies for gastric cancer.
doi:10.1371/journal.pone.0063826
PMCID: PMC3661768  PMID: 23717493
16.  Global gene expression profiling and validation in esophageal squamous cell carcinoma (ESCC) and its association with clinical phenotypes 
Purpose
Esophageal squamous cell carcinoma (ESCC) is an aggressive tumor with poor prognosis. Understanding molecular changes in ESCC will enable identification of molecular subtypes and provide potential targets for early detection and therapy.
Experimental Design
We followed up a previous array study with additional discovery and confirmatory studies in new ESCC cases using alternative methods. We profiled global gene expression for discovery and confirmation, and validated selected dysregulated genes with additional RNA and protein studies.
Results
A total of 159 genes showed differences with extreme statistical significance (P
Conclusion
We identified an expanded panel of genes dysregulated in ESCC and confirmed previously identified differentially-expressed genes. Microarray-based gene expression results were confirmed by RT-PCR and protein expression studies. These dysregulated genes will facilitate molecular categorization of tumor subtypes and identification of their risk factors, and serve as potential targets for early detection, outcome prediction, and therapy.
doi:10.1158/1078-0432.CCR-10-2724
PMCID: PMC3086948  PMID: 21385931
esophageal squamous cell carcinoma (ESCC); Affymetrix oligomicroarray; RT-PCR; tissue microarray (TMA)
BMC Genomics  2010;11:576.
Background
Genomic instability plays an important role in human cancers. We previously characterized genomic instability in esophageal squamous cell carcinomas (ESCC) in terms of loss of heterozygosity (LOH) and copy number (CN) changes in tumors using the Affymetrix GeneChip Human Mapping 500K array in 30 cases from a high-risk region of China. In the current study we focused on copy number neutral (CN = 2) LOH (CNNLOH) and its relation to gene expression in ESCC.
Results
Overall we found that 70% of all LOH observed was CNNLOH. Ninety percent of ESCCs showed CNNLOH (median frequency in cases = 60%) and this was the most common type of LOH in two-thirds of cases. CNNLOH occurred on all 39 autosomal chromosome arms, with highest frequencies on 19p (100%), 5p (96%), 2p (95%), and 20q (95%). In contrast, LOH with CN loss represented 19% of all LOH, occurred in just half of ESCCs (median frequency in cases = 0%), and was most frequent on 3p (56%), 5q (47%), and 21q (41%). LOH with CN gain was 11% of all LOH, occurred in 93% of ESCCs (median frequency in cases = 13%), and was most common on 20p (82%), 8q (74%), and 3q (42%). To examine the effect of genomic instability on gene expression, we evaluated RNA profiles from 17 pairs of matched normal and tumor samples (a subset of the 30 ESCCs) using Affymetrix U133A 2.0 arrays. In CN neutral regions, expression of 168 genes (containing 1976 SNPs) differed significantly in tumors with LOH versus tumors without LOH, including 101 genes that were up-regulated and 67 that were down-regulated.
Conclusion
Our results indicate that CNNLOH has a profound impact on gene expression in ESCC, which in turn may affect tumor development.
doi:10.1186/1471-2164-11-576
PMCID: PMC3091724  PMID: 20955586
BMC Genomics  2006;7:299.
Background
Esophageal squamous cell carcinoma (ESCC) is a common malignancy worldwide. Comprehensive genomic characterization of ESCC will further our understanding of the carcinogenesis process in this disease.
Results
Genome-wide detection of chromosomal changes was performed using the Affymetrix GeneChip 10 K single nucleotide polymorphism (SNP) array, including loss of heterozygosity (LOH) and copy number alterations (CNA), for 26 pairs of matched germ-line and micro-dissected tumor DNA samples. LOH regions were identified by two methods – using Affymetrix's genotype call software and using Affymetrix's copy number alteration tool (CNAT) software – and both approaches yielded similar results. Non-random LOH regions were found on 10 chromosomal arms (in decreasing order of frequency: 17p, 9p, 9q, 13q, 17q, 4q, 4p, 3p, 15q, and 5q), including 20 novel LOH regions (10 kb to 4.26 Mb). Fifteen CNA-loss regions (200 kb to 4.3 Mb) and 36 CNA-gain regions (200 kb to 9.3 Mb) were also identified.
Conclusion
These studies demonstrate that the Affymetrix 10 K SNP chip is a valid platform to integrate analyses of LOH and CNA. The comprehensive knowledge gained from this analysis will enable improved strategies to prevent, diagnose, and treat ESCC.
doi:10.1186/1471-2164-7-299
PMCID: PMC1687196  PMID: 17134496

Results 1-18 (18)