Search tips
Search criteria

Results 1-16 (16)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  A Caenorhabditis elegans developmental decision requires insulin signaling-mediated neuron-intestine communication 
Development (Cambridge, England)  2014;141(8):1767-1779.
Adverse environmental conditions trigger C. elegans larvae to activate an alternative developmental program, termed dauer diapause, which renders them stress resistant. High-level insulin signaling prevents constitutive dauer formation. However, it is not fully understood how animals assess conditions to choose the optimal developmental program. Here, we show that insulin-like peptide (ILP)-mediated neuron-intestine communication plays a role in this developmental decision. Consistent with, and extending, previous findings, we show that the simultaneous removal of INS-4, INS-6 and DAF-28 leads to fully penetrant constitutive dauer formation, whereas the removal of INS-1 and INS-18 significantly inhibits constitutive dauer formation. These ligands are processed by the proprotein convertases PC1/KPC-1 and/or PC2/EGL-3. The agonistic and antagonistic ligands are expressed by, and function in, neurons to prevent or promote dauer formation. By contrast, the insulin receptor DAF-2 and its effector, the FOXO transcription factor DAF-16, function solely in the intestine to regulate the decision to enter diapause. These results suggest that the nervous system normally establishes an agonistic ILP-dominant paradigm to inhibit intestinal DAF-16 activation and allow reproductive development. Under adverse conditions, a switch in the agonistic-antagonistic ILP balance activates intestinal DAF-16, which commits animals to diapause.
PMCID: PMC3978837  PMID: 24671950
EGL-3; KPC-1; Dauer formation; Insulin
2.  Hierarchical assembly of presynaptic components in defined C. elegans synapses 
Nature neuroscience  2006;9(12):1488-1498.
The presynaptic regions of axons accumulate synaptic vesicles, active zone proteins and periactive zone proteins. However, the rules for orderly recruitment of presynaptic components are not well understood. We systematically examined molecular mechanisms of presynaptic development in egg-laying synapses of Caenorhabditis elegans, demonstrating that two scaffolding molecules, SYD-1 and SYD-2, have key roles in presynaptic assembly. SYD-2 (liprin-α) was previously shown to regulate the size and the shape of active zones. We now show that in syd-1 and syd-2 mutants, synaptic vesicles and numerous other presynaptic proteins fail to accumulate at presynaptic sites. SYD-1 and SYD-2 function cell-autonomously at presynaptic terminals, downstream of synaptic specificity molecule SYG-1. SYD-1 is likely to act upstream of SYD-2 to positively regulate its synaptic assembly activity. These data imply a hierarchical organization of presynaptic assembly, in which transmembrane specificity molecules initiate synaptogenesis by recruiting a few key scaffolding proteins, which in turn assemble other presynaptic components.
PMCID: PMC3917495  PMID: 17115039
3.  Proprioceptive coupling within motor neurons drives C. elegans forward locomotion 
Neuron  2012;76(4):750-761.
Locomotion requires coordinated motor activity throughout an animal’s body. In both vertebrates and invertebrates, chains of coupled Central Pattern Generators (CPGs) are commonly evoked to explain local rhythmic behaviors. In C. elegans, we report that proprioception within the motor circuit is responsible for propagating and coordinating rhythmic undulatory waves from head to tail during forward movement. Proprioceptive coupling between adjacent body regions transduces rhythmic movement initiated near the head into bending waves driven along the body by a chain of reflexes. Using optogenetics and calcium imaging to manipulate and monitor motor circuit activity of moving C. elegans held in microfluidic devices, we found that the B-type cholinergic motor neurons transduce the proprioceptive signal. In C. elegans, a sensorimotor feedback loop operating within a specific type of motor neuron both drives and organizes body movement.
PMCID: PMC3508473  PMID: 23177960
4.  ITSN-1 Controls Vesicle Recycling at the Neuromuscular Junction and Functions in Parallel with DAB-1 
Traffic (Copenhagen, Denmark)  2008;9(5):742-754.
Intersectins (Itsn) are conserved EH and SH3 domain containing adaptor proteins. In Drosophila melanogaster, ITSN is required to regulate synaptic morphology, to facilitate efficient synaptic vesicle recycling and for viability. Here, we report our genetic analysis of Caenorhabditis elegans intersectin. In contrast to Drosophila, C. elegans itsn-1 protein null mutants are viable and display grossly normal locomotion and development. However, motor neurons in these mutants show a dramatic increase in large irregular vesicles and accumulate membrane-associated vesicles at putative endocytic hotspots, approximately 300 nm from the presynaptic density. This defect occurs precisely where endogenous ITSN-1 protein localizes in wild-type animals and is associated with a significant reduction in synaptic vesicle number and reduced frequency of endogenous synaptic events at neuromuscular junctions (NMJs). ITSN-1 forms a stable complex with EHS-1 (Eps15) and is expressed at reduced levels in ehs-1 mutants. Thus, ITSN-1 together with EHS-1, coordinate vesicle recycling at C. elegans NMJs. We also found that both itsn-1 and ehs-1 mutants show poor viability and growth in a Disabled (dab-1) null mutant background. These results show for the first time that intersectin and Eps15 proteins function in the same genetic pathway, and appear to function synergistically with the clathrin-coat-associated sorting protein, Disabled, for viability.
PMCID: PMC3791081  PMID: 18298590
Dab; endocytosis; Eps15; intersectin; synaptic vesicle
5.  Hyperactivation of B-type motor neurons results in aberrant synchrony of the C. elegans motor circuit 
Excitatory acetylcholine motor neurons drive C. elegans locomotion. Coordinating the activation states of the backward-driving A and forward-driving B class motor neurons is critical for generating sinusoidal and directional locomotion. Here, we show by in vivo calcium imaging that expression of a hyperactive, somatodendritic ionotropic acetylcholine receptor ACR-2(gf) in A and B class motor neurons induces aberrant synchronous activity in both ventral- and dorsal-innervating B and A class motor neurons. Expression of ACR-2(gf) in either ventral- or dorsal-innervating B neurons is sufficient for triggering the aberrant synchrony that results in arrhythmic convulsions. Silencing of AVB, the pre-motor interneurons that innervate B motor neurons suppresses ACR-2(gf)-dependent convulsion; activating AVB by channelrhodopsin induces the onset of convulsion. These results support that the activity state of B motor neurons plays an instructive role for the coordination of motor circuit.
PMCID: PMC3655201  PMID: 23516296
6.  The C. elegans Flamingo cadherin fmi-1 regulates GABAergic neuronal development 
The Journal of Neuroscience  2012;32(12):4196-4211.
In a genetic screen for regulators of synaptic morphology, we identified the single C. elegans flamingo-like cadherin fmi-1. fmi-1 mutants exhibit defective axon pathfinding, reduced synapse number, aberrant synapse size and morphology, as well as an abnormal accumulation of synaptic vesicles at non-synaptic regions. Although FMI-1 is primarily expressed in the nervous system, it is not expressed in the Ventral D-type (VD) GABAergic motorneurons, which are defective in fmi-1 mutants. The axon and synaptic defects of VD neurons could be rescued when fmi-1 was expressed exclusively in non-VD, neighboring neurons, suggesting a cell non-autonomous action of FMI-1. FMI-1 protein that lacked its intracellular domain still retained its ability to rescue the vesicle accumulation defects of GABAergic motorneurons, indicating that the extracellular domain (ECD) was sufficient for this function of FMI-1 in GABAergic NMJ development. Mutations in cdh-4, a Fat-like cadherin, cause similar defects in GABAergic motorneurons. cdh-4 is expressed by the VD neurons, and appears to function in the same genetic pathway as fmi-1 to regulate GABAergic neuron development. Thus, fmi-1 and cdh-4 cadherins might act together to regulate synapse development and axon pathfinding.
PMCID: PMC3325105  PMID: 22442082
Synaptogenesis; Target Recognition; Flamingo; Cadherin; Axon Guidance
7.  Mutations in a Guanylate Cyclase GCY-35/GCY-36 Modify Bardet-Biedl Syndrome–Associated Phenotypes in Caenorhabditis elegans 
PLoS Genetics  2011;7(10):e1002335.
Ciliopathies are pleiotropic and genetically heterogeneous disorders caused by defective development and function of the primary cilium. Bardet-Biedl syndrome (BBS) proteins localize to the base of cilia and undergo intraflagellar transport, and the loss of their functions leads to a multisystemic ciliopathy. Here we report the identification of mutations in guanylate cyclases (GCYs) as modifiers of Caenorhabditis elegans bbs endophenotypes. The loss of GCY-35 or GCY-36 results in suppression of the small body size, developmental delay, and exploration defects exhibited by multiple bbs mutants. Moreover, an effector of cGMP signalling, a cGMP-dependent protein kinase, EGL-4, also modifies bbs mutant defects. We propose that a misregulation of cGMP signalling, which underlies developmental and some behavioural defects of C. elegans bbs mutants, may also contribute to some BBS features in other organisms.
Author Summary
Bardet-Biedl syndrome (BBS) is a genetically heterogeneous, multisystemic disorder. Defects to the cilium, an evolutionarily conserved organelle, cause ciliopathies, a growing class of diseases that includes BBS. BBS proteins are involved in the vesicular transport of proteins to the cilium and in the process of intraflagellar transport. Here we show that, in addition to sensory defects, Caenorhabditis elegans bbs mutants exhibit reduced body size and delayed developmental timing. The reduced body size phenotype is not fully recapitulated by IFT mutants, suggesting that BBS proteins may have additional functions beyond bridging IFT motors. We further identified that the loss of function mutations in the soluble guanylate cyclase complex, GCY-35/GCY-36, results in a suppression of these defects. Interestingly, GCY-35/GCY-36 influences the body size through a cGMP-dependent protein kinase EGL-4 in a group of body cavity neurons. BBS proteins, on the other hand, function through a non-overlapping set of ciliated sensory neurons to influence cGMP signalling in the body cavity neurons. In conclusion, this study reveals a non-cell autonomous role for sensory cilia in regulating cGMP signalling during development. We propose that aberrant cGMP signalling, essential for a number of cellular processes, may also contribute to some ciliopathy features in other systems.
PMCID: PMC3192831  PMID: 22022287
8.  The presynaptic dense projection of the Caenorhabiditis elegans cholinergic neuromuscular junction localizes synaptic vesicles at the active zone through SYD-2/liprin and UNC-10/RIM-dependent interactions 
The active zone (AZ) of chemical synapses is a specialized area of the presynaptic bouton where vesicles fuse with the plasma membrane and release neurotransmitters. Efficient signaling requires synaptic vesicles (SVs) to be recruited, primed and retained at the AZ, in close proximity to voltage-dependent calcium channels that are activated upon presynaptic depolarization. The electron-dense specializations at the AZ might provide a molecular platform for the spatial coordination of these different processes. To investigate this hypothesis, we examined high-resolution 3D models of C. elegans cholinergic neuromuscular junctions generated by electron tomography. First, we found that SVs are interconnected within the bouton by filaments similar to those described in vertebrates. Second, we resolved the 3D structure of the dense projection centered in the AZ. The dense projection is a more complex structure than previously anticipated, with filaments radiating from a core structure that directly contact SVs in the interior of the bouton as well as SVs docked at the plasma membrane. Third, we investigated the functional correlate of these contacts by analyzing mutants disrupting two key AZ proteins: UNC-10/RIM and SYD-2/liprin. In both mutants, the number of contacts between SVs and the dense projection was significantly reduced. Similar to unc-10 mutants, the dependence of SV fusion on extracellular calcium concentration was exacerbated in syd-2 mutants when compared to the wild type. Hence we propose that the dense projection ensures proper coupling of primed vesicles with calcium signaling by retaining them at the AZ via UNC-10/RIM and SYD-2/liprin-dependent mechanisms.
PMCID: PMC3077722  PMID: 21430140
electron tomography; dense projections; presynaptic cytomatrix; C. elegans; unc-10/RIM; syd-2/liprin
9.  ALS mutations in FUS cause neuronal dysfunction and death in Caenorhabditis elegans by a dominant gain-of-function mechanism 
Human Molecular Genetics  2011;21(1):1-9.
It is unclear whether mutations in fused in sarcoma (FUS) cause familial amyotrophic lateral sclerosis via a loss-of-function effect due to titrating FUS from the nucleus or a gain-of-function effect from cytoplasmic overabundance. To investigate this question, we generated a series of independent Caenorhabditis elegans lines expressing mutant or wild-type (WT) human FUS. We show that mutant FUS, but not WT-FUS, causes cytoplasmic mislocalization associated with progressive motor dysfunction and reduced lifespan. The severity of the mutant phenotype in C. elegans was directly correlated with the severity of the illness caused by the same mutation in humans, arguing that this model closely replicates key features of the human illness. Importantly, the mutant phenotype could not be rescued by overexpression of WT-FUS, even though WT-FUS had physiological intracellular localization, and was not recruited to the cytoplasmic mutant FUS aggregates. Our data suggest that FUS mutants cause neuronal dysfunction by a dominant gain-of-function effect related either to neurotoxic aggregates of mutant FUS in the cytoplasm or to dysfunction in its RNA-binding functions.
PMCID: PMC3235006  PMID: 21949354
10.  A Co-operative Regulation of Neuronal Excitability by UNC-7 Innexin and NCA/NALCN Leak Channel 
Molecular Brain  2011;4:16.
Gap junctions mediate the electrical coupling and intercellular communication between neighboring cells. Some gap junction proteins, namely connexins and pannexins in vertebrates, and innexins in invertebrates, may also function as hemichannels. A conserved NCA/Dmα1U/NALCN family cation leak channel regulates the excitability and activity of vertebrate and invertebrate neurons. In the present study, we describe a genetic and functional interaction between the innexin UNC-7 and the cation leak channel NCA in Caenorhabditis elegans neurons. While the loss of the neuronal NCA channel function leads to a reduced evoked postsynaptic current at neuromuscular junctions, a simultaneous loss of the UNC-7 function restores the evoked response. The expression of UNC-7 in neurons reverts the effect of the unc-7 mutation; moreover, the expression of UNC-7 mutant proteins that are predicted to be unable to form gap junctions also reverts this effect, suggesting that UNC-7 innexin regulates neuronal activity, in part, through gap junction-independent functions. We propose that, in addition to gap junction-mediated functions, UNC-7 innexin may also form hemichannels to regulate C. elegans' neuronal activity cooperatively with the NCA family leak channels.
PMCID: PMC3102621  PMID: 21489288
11.  The long and the short of SAD-1 kinase 
The Ser/Thr SAD kinases are evolutionarily conserved, critical regulators of neural development. Exciting findings in recent years have significantly advanced our understanding of the mechanism through which SAD kinases regulate neural development. Mammalian SAD-A and SAD-B, activated by a master kinase LKB1, regulate microtubule dynamics and polarize neurons. In C. elegans, the sad-1 gene encodes two isoforms, namely the long and the short, which exhibit overlapping and yet distinct functions in neuronal polarity and synaptic organization. Surprisingly, our most recent findings in C. elegans revealed a SAD-1-independent LKB1 activity in neuronal polarity. We also found that the long SAD-1 isoform directly interacts with a STRADα pseudokinase, STRD-1, to regulate neuronal polarity and synaptic organization. We elaborate here a working model of SAD-1 in which the two isoforms dimer/oligomerize to form a functional complex, and STRD-1 clusters and localizes the SAD-1 complex to synapses. While the mechanistic difference between the vertebrate and invertebrate SAD kinases may be puzzling, a recent discovery of the functionally distinct SAD-B isoforms predicts that the difference likely arises from our incomplete understanding of the SAD kinase mechanism and may eventually be reconciled as the revelation continues.
PMCID: PMC2918770  PMID: 20714407
SAD kinases; SAD-1; C. elegans; neural development; neuronal polarity; synapse; isoform
12.  MTH1745, a protein disulfide isomerase-like protein from thermophilic archaea, Methanothermobacter thermoautotrophicum involving in stress response 
Cell Stress & Chaperones  2008;13(2):239-246.
MTH1745 is a putative protein disulfide isomerase characterized with 151 amino acid residues and a CPAC active-site from the anaerobic archaea Methanothermobacter thermoautotrophicum. The potential functions of MTH1745 are not clear. In the present study, we show a crucial role of MTH1745 in protecting cells against stress which may be related to its functions as a disulfide isomerase and its chaperone properties. Using real-time polymerase chain reaction analyses, the level of MTH1745 messenger RNA (mRNA) in the thermophilic archaea M. thermoautotrophicum was found to be stress-induced in that it was significantly higher under low (50°C) and high (70°C) growth temperatures than under the optimal growth temperature for the organism (65°C). Additionally, the expression of MTH1745 mRNA was up-regulated by cold shock (4°C). Furthermore, the survival of MTH1745 expressing Escherichia coli cells was markedly higher than that of control cells in response to heat shock (51.0°C). These results indicated that MTH1745 plays an important role in the resistance of stress. By assay of enzyme activities in vitro, MTH1745 also exhibited a chaperone function by promoting the functional folding of citrate synthase after thermodenaturation. On the other hand, MTH1745 was also shown to function as a disulfide isomerase on the refolding of denatured and reduced ribonuclease A. On the basis of its single thioredoxin domain, function as a disulfide isomerase, and its chaperone activity, we suggest that MTH1745 may be an ancient protein disulfide isomerase. These studies may provide clues to the understanding of the function of protein disulfide isomerase in archaea.
PMCID: PMC2673884  PMID: 18759006
Archaea; Methanothermobacter thermoautotrophicum; Stress; Chaperone activity; Protein disulfide isomerase
13.  A chemical-genetic strategy reveals distinct temporal requirements for SAD-1 kinase in neuronal polarization and synapse formation 
Neural Development  2008;3:23.
Neurons assemble into a functional network through a sequence of developmental processes including neuronal polarization and synapse formation. In Caenorhabditis elegans, the serine/threonine SAD-1 kinase is essential for proper neuronal polarity and synaptic organization. To determine if SAD-1 activity regulates the establishment or maintenance of these neuronal structures, we examined its temporal requirements using a chemical-genetic method that allows for selective and reversible inactivation of its kinase activity in vivo.
We generated a PP1 analog-sensitive variant of SAD-1. Through temporal inhibition of SAD-1 kinase activity we show that its activity is required for the establishment of both neuronal polarity and synaptic organization. However, while SAD-1 activity is needed strictly when neurons are polarizing, the temporal requirement for SAD-1 is less stringent in synaptic organization, which can also be re-established during maintenance.
This study reports the first temporal analysis of a neural kinase activity using the chemical-genetic system. It reveals that neuronal polarity and synaptic organization have distinct temporal requirements for SAD-1.
PMCID: PMC2564922  PMID: 18808695
14.  An Essential Role for DYF-11/MIP-T3 in Assembling Functional Intraflagellar Transport Complexes 
PLoS Genetics  2008;4(3):e1000044.
MIP-T3 is a human protein found previously to associate with microtubules and the kinesin-interacting neuronal protein DISC1 (Disrupted-in-Schizophrenia 1), but whose cellular function(s) remains unknown. Here we demonstrate that the C. elegans MIP-T3 ortholog DYF-11 is an intraflagellar transport (IFT) protein that plays a critical role in assembling functional kinesin motor-IFT particle complexes. We have cloned a loss of function dyf-11 mutant in which several key components of the IFT machinery, including Kinesin-II, as well as IFT subcomplex A and B proteins, fail to enter ciliary axonemes and/or mislocalize, resulting in compromised ciliary structures and sensory functions, and abnormal lipid accumulation. Analyses in different mutant backgrounds further suggest that DYF-11 functions as a novel component of IFT subcomplex B. Consistent with an evolutionarily conserved cilia-associated role, mammalian MIP-T3 localizes to basal bodies and cilia, and zebrafish mipt3 functions synergistically with the Bardet-Biedl syndrome protein Bbs4 to ensure proper gastrulation, a key cilium- and basal body-dependent developmental process. Our findings therefore implicate MIP-T3 in a previously unknown but critical role in cilium biogenesis and further highlight the emerging role of this organelle in vertebrate development.
Author Summary
The transport of protein complexes and associated cargo along microtubule tracks represents an essential eukaryotic process responsible for a multitude of cellular functions, including cell division, vesicle movement to membranes, and trafficking along dendrites, axons, and cilia. The latter organelles are hair-like cellular appendages implicated in cell and fluid motility, sensing and transducing information from their environment, and development. Their biogenesis and maintenance depends on a kinesin- and dynein-mediated motility process termed intraflagellar transport (IFT). In addition to comprising these specialized molecular motors, the IFT machinery consists of large multisubunit complexes whose exact composition and organization has not been fully defined. Here we identify a protein, DYF-11/MIP-T3, that is conserved in all ciliated organisms and is associated with IFT in C. elegans. Disruption of C. elegans DYF-11 results in structurally compromised cilia, likely as a result of IFT motor and subunit misassembly. Animals lacking DYF-11 display chemosensory anomalies, consistent with a role for the protein in cilia-associated sensory processes. In zebrafish, MIP-T3 is essential for gastrulation movements during development, similar to that observed for other ciliary components, including Bardet-Biedl syndrome proteins. In conclusion, we have identified a novel IFT machinery component that is also essential for development in vertebrates.
PMCID: PMC2268012  PMID: 18369462
15.  A Putative Cation Channel, NCA-1, and a Novel Protein, UNC-80, Transmit Neuronal Activity in C. elegans  
PLoS Biology  2008;6(3):e55.
Voltage-gated cation channels regulate neuronal excitability through selective ion flux. NALCN, a member of a protein family that is structurally related to the α1 subunits of voltage-gated sodium/calcium channels, was recently shown to regulate the resting membrane potentials by mediating sodium leak and the firing of mouse neurons. We identified a role for the Caenorhabditis elegans NALCN homologues NCA-1 and NCA-2 in the propagation of neuronal activity from cell bodies to synapses. Loss of NCA activities leads to reduced synaptic transmission at neuromuscular junctions and frequent halting in locomotion. In vivo calcium imaging experiments further indicate that while calcium influx in the cell bodies of egg-laying motorneurons is unaffected by altered NCA activity, synaptic calcium transients are significantly reduced in nca loss-of-function mutants and increased in nca gain-of-function mutants. NCA-1 localizes along axons and is enriched at nonsynaptic regions. Its localization and function depend on UNC-79, and UNC-80, a novel conserved protein that is also enriched at nonsynaptic regions. We propose that NCA-1 and UNC-80 regulate neuronal activity at least in part by transmitting depolarization signals to synapses in C. elegans neurons.
Author Summary
Neurons communicate to their targets through synapses that are activated by the electrical signals conveyed along neuronal processes. The tightly regulated ion flux across the cell membrane drives the generation of these electrical signals; it is therefore important to identify ion channels that regulate the excitability of neurons. In the C. elegans nervous system, we reveal that a putative channel complex, consisting of ion-conducting, pore-forming proteins called NCAs and two auxiliary components called UNC-79 and UNC-80, regulates neuronal function. We first show that an increase or decrease of the activity of this channel causes physiological changes that indicate corresponding alterations in neuronal activity. We then demonstrate by in vivo calcium imaging that the NCA channel, localizing along axons, specifically regulates excitation of synapses. We speculate that this channel participates in the propagation of electric signals that activate synapses.
A putative cation channel NCA/UNC-79/UNC-80 modulates the propagation of excitation signals along axons in C. elegans neurons. Components conserved throughout evolution, these channel complexes may play similar roles in other nervous systems.
PMCID: PMC2265767  PMID: 18336069
16.  Recent advances in basic neurosciences and brain disease: from synapses to behavior 
Molecular Pain  2006;2:38.
Understanding basic neuronal mechanisms hold the hope for future treatment of brain disease. The 1st international conference on synapse, memory, drug addiction and pain was held in beautiful downtown Toronto, Canada on August 21–23, 2006. Unlike other traditional conferences, this new meeting focused on three major aims: (1) to promote new and cutting edge research in neuroscience; (2) to encourage international information exchange and scientific collaborations; and (3) to provide a platform for active scientists to discuss new findings. Up to 64 investigators presented their recent discoveries, from basic synaptic mechanisms to genes related to human brain disease. This meeting was in part sponsored by Molecular Pain, together with University of Toronto (Faculty of Medicine, Department of Physiology as well as Center for the Study of Pain). Our goal for this meeting is to promote future active scientific collaborations and improve human health through fundamental basic neuroscience researches. The second international meeting on Neurons and Brain Disease will be held in Toronto (August 29–31, 2007).
PMCID: PMC1769477  PMID: 17196111

Results 1-16 (16)