PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Incidental Medical Information in Whole-Exome Sequencing 
Pediatrics  2012;129(6):e1605-e1611.
Genomic technologies, such as whole-exome sequencing, are a powerful tool in genetic research. Such testing yields a great deal of incidental medical information, or medical information not related to the primary research target. We describe the management of incidental medical information derived from whole-exome sequencing in the research context. We performed whole-exome sequencing on a monozygotic twin pair in which only 1 child was affected with congenital anomalies and applied an institutional review board–approved algorithm to determine what genetic information would be returned. Whole-exome sequencing identified 79 525 genetic variants in the twins. Here, we focus on novel variants. After filtering artifacts and excluding known single nucleotide polymorphisms and variants not predicted to be pathogenic, the twins had 32 novel variants in 32 genes that were felt to be likely to be associated with human disease. Eighteen of these novel variants were associated with recessive disease and 18 were associated with dominantly manifesting conditions (variants in some genes were potentially associated with both recessive and dominant conditions), but only 1 variant ultimately met our institutional review board–approved criteria for return of information to the research participants.
doi:10.1542/peds.2011-0080
PMCID: PMC3362899  PMID: 22585771
whole-exome sequencing; incidental medical information
2.  Personalized Genomic Medicine: Lessons from the Exome 
Molecular genetics and metabolism  2011;104(1-2):189-191.
While genomic sequencing methods are powerful tools in the discovery of the genetic underpinnings of human disease, incidentally-revealed novel genomic risk factors may be equally important, both scientifically, and as relates to direct patient care. We performed whole-exome sequencing on a child with VACTERL association who suffered severe post-surgical neonatal pulmonary hypertension, and identified a potential novel genetic risk factor for this complication: a heterozygous mutation in CPSI. Newborn screening results from this patient’s monozygotic twin provided evidence that this mutation, in combination with an environmental trigger (in this case, surgery), may have resulted in pulmonary artery hypertension due to inadequate nitric oxide production. Identification of this genetic risk factor allows for targeted medical preventative measures in this patient as well as relatives with the same mutation, and illustrates the power of incidental medical information unearthed by whole-exome sequencing.
doi:10.1016/j.ymgme.2011.06.022
PMCID: PMC3171610  PMID: 21767969
Whole-exome sequencing; CPSI; pulmonary artery hypertension; VACTERL
3.  TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum 
Nature genetics  2011;43(3):189-196.
Ciliary dysfunction leads to a broad range of overlapping phenotypes, termed collectively as ciliopathies. This grouping is underscored by genetic overlap, where causal genes can also contribute modifying alleles to clinically distinct disorders. Here we show that mutations in TTC21B/IFT139, encoding a retrograde intraflagellar transport (IFT) protein, cause both isolated nephronophthisis (NPHP) and syndromic Jeune Asphyxiating Thoracic Dystrophy (JATD). Moreover, although systematic medical resequencing of a large, clinically diverse ciliopathy cohort and matched controls showed a similar frequency of rare changes, in vivo and in vitro evaluations unmasked a significant enrichment of pathogenic alleles in cases, suggesting that TTC21B contributes pathogenic alleles to ∼5% of ciliopathy patients. Our data illustrate how genetic lesions can be both causally associated with diverse ciliopathies, as well as interact in trans with other disease-causing genes, and highlight how saturated resequencing followed by functional analysis of all variants informs the genetic architecture of disorders.
doi:10.1038/ng.756
PMCID: PMC3071301  PMID: 21258341
4.  Topographical and Temporal Diversity of the Human Skin Microbiome 
Science (New York, N.Y.)  2009;324(5931):1190-1192.
Human skin is a large, heterogeneous organ that protects the body from pathogens while sustaining microorganisms that influence human health and disease. Our analysis of 16S ribosomal RNA gene sequences obtained from 20 distinct skin sites of healthy humans revealed that physiologically comparable sites harbor similar bacterial communities. The complexity and stability of the microbial community are dependent on the specific characteristics of the skin site. This topographical and temporal survey provides a baseline for studies that examine the role of bacterial communities in disease states and the microbial interdependencies required to maintain healthy skin.
doi:10.1126/science.1171700
PMCID: PMC2805064  PMID: 19478181
5.  Systematic sequencing of cDNA clones using the transposon Tn5 
Nucleic Acids Research  2002;30(11):2469-2477.
In parallel with the production of genomic sequence data, attention is being focused on the generation of comprehensive cDNA-sequence resources. Such efforts are increasingly emphasizing the production of high-accuracy sequence corresponding to the entire insert of cDNA clones, especially those presumed to reflect the full-length mRNA. The complete sequencing of cDNA clones on a large scale presents unique challenges because of the generally small, yet heterogeneous, sizes of the cloned inserts. We have developed a strategy for high-throughput sequencing of cDNA clones using the transposon Tn5. This approach has been tailored for implementation within an existing large-scale ‘shotgun-style’ sequencing program, although it could be readily adapted for use in virtually any sequencing environment. In addition, we have developed a modified version of our strategy that can be applied to cDNA clones with large cloning vectors, thereby overcoming a potential limitation of transposon-based approaches. Here we describe the details of our cDNA-sequencing pipeline, including a summary of the experience in sequencing more than 4200 cDNA clones to produce more than 8 million base pairs of high-accuracy cDNA sequence. These data provide both convincing evidence that the insertion of Tn5 into cDNA clones is sufficiently random for its effective use in large-scale cDNA sequencing as well as interesting insight about the sequence context preferred for insertion by Tn5.
PMCID: PMC117195  PMID: 12034835
6.  Gene-Based Sequencing Identifies Lipid-Influencing Variants with Ethnicity-Specific Effects in African Americans 
PLoS Genetics  2014;10(3):e1004190.
Although a considerable proportion of serum lipids loci identified in European ancestry individuals (EA) replicate in African Americans (AA), interethnic differences in the distribution of serum lipids suggest that some genetic determinants differ by ethnicity. We conducted a comprehensive evaluation of five lipid candidate genes to identify variants with ethnicity-specific effects. We sequenced ABCA1, LCAT, LPL, PON1, and SERPINE1 in 48 AA individuals with extreme serum lipid concentrations (high HDLC/low TG or low HDLC/high TG). Identified variants were genotyped in the full population-based sample of AA (n = 1694) and tested for an association with serum lipids. rs328 (LPL) and correlated variants were associated with higher HDLC and lower TG. Interestingly, a stronger effect was observed on a “European” vs. “African” genetic background at this locus. To investigate this effect, we evaluated the region among West Africans (WA). For TG, the effect size among WA was the same in AA with only African local ancestry (2–3% lower TG), while the larger association among AA with local European ancestry matched previous reports in EA (10%). For HDLC, there was no association with rs328 in AA with only African local ancestry or in WA, while the association among AA with European local ancestry was much greater than what has been observed for EA (15 vs. ∼5 mg/dl), suggesting an interaction with an environmental or genetic factor that differs by ethnicity. Beyond this ancestry effect, the importance of African ancestry-focused, sequence-based work was also highlighted by serum lipid associations of variants that were in higher frequency (or present only) among those of African ancestry. By beginning our study with the sequence variation present in AA individuals, investigating local ancestry effects, and seeking replication in WA, we were able to comprehensively evaluate the role of a set of candidate genes in serum lipids in AA.
Author Summary
Most of the work on the genetic epidemiology of serum lipids in African Americans (AA) has focused on replicating findings that were identified in European ancestry individuals. While this can be very informative about the generalizability of lipids loci across populations, African ancestry-specific variation will be missed using this approach. Our aim was to comprehensively evaluate five lipid candidate genes in an AA population, from the identification of variants of interest to population-level analysis of high-density lipoprotein cholesterol (HDLC) and triglycerides (TG). We sequenced five genes in individuals with extreme lipids (n = 48) drawn from a population-based study of AA. The variants identified were genotyped in 1,694 AA and analyzed. Notable among the findings were the observation of ancestry specific effect for several variants in the LPL gene among these admixed individuals, with a greater effect observed among those with European ancestry in this region. These associations were further elucidated by replication in West Africans. By beginning with the sequence variation present among AA, investigating ancestry effects, and seeking replication in West Africans, we were able to comprehensively evaluate these candidate genes with a focus on African ancestry individuals.
doi:10.1371/journal.pgen.1004190
PMCID: PMC3945436  PMID: 24603370
7.  Light whole genome sequence for SNP discovery across domestic cat breeds 
BMC Genomics  2010;11:406.
Background
The domestic cat has offered enormous genomic potential in the veterinary description of over 250 hereditary disease models as well as the occurrence of several deadly feline viruses (feline leukemia virus -- FeLV, feline coronavirus -- FECV, feline immunodeficiency virus - FIV) that are homologues to human scourges (cancer, SARS, and AIDS respectively). However, to realize this bio-medical potential, a high density single nucleotide polymorphism (SNP) map is required in order to accomplish disease and phenotype association discovery.
Description
To remedy this, we generated 3,178,297 paired fosmid-end Sanger sequence reads from seven cats, and combined these data with the publicly available 2X cat whole genome sequence. All sequence reads were assembled together to form a 3X whole genome assembly allowing the discovery of over three million SNPs. To reduce potential false positive SNPs due to the low coverage assembly, a low upper-limit was placed on sequence coverage and a high lower-limit on the quality of the discrepant bases at a potential variant site. In all domestic cats of different breeds: female Abyssinian, female American shorthair, male Cornish Rex, female European Burmese, female Persian, female Siamese, a male Ragdoll and a female African wildcat were sequenced lightly. We report a total of 964 k common SNPs suitable for a domestic cat SNP genotyping array and an additional 900 k SNPs detected between African wildcat and domestic cats breeds. An empirical sampling of 94 discovered SNPs were tested in the sequenced cats resulting in a SNP validation rate of 99%.
Conclusions
These data provide a large collection of mapped feline SNPs across the cat genome that will allow for the development of SNP genotyping platforms for mapping feline diseases.
doi:10.1186/1471-2164-11-406
PMCID: PMC2996934  PMID: 20576142

Results 1-7 (7)