Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Mitochondrial DNA Depletion and Deletions in Paediatric Patients with Neuromuscular Diseases: Novel Phenotypes 
JIMD Reports  2015;23:91-100.
Objective: To study the clinical manifestations and occurrence of mtDNA depletion and deletions in paediatric patients with neuromuscular diseases and to identify novel clinical phenotypes associated with mtDNA depletion or deletions.
Methods: Muscle DNA samples from patients presenting with undefined encephalomyopathies or myopathies were analysed for mtDNA content by quantitative real-time PCR and for deletions by long-range PCR. Direct sequencing of mtDNA maintenance genes and whole-exome sequencing were used to study the genetic aetiologies of the diseases. Clinical and laboratory findings were collected.
Results: Muscle samples were obtained from 104 paediatric patients with neuromuscular diseases. mtDNA depletion was found in three patients with severe early-onset encephalomyopathy or myopathy. Two of these patients presented with novel types of mitochondrial DNA depletion syndromes associated with increased serum creatine kinase (CK) and multiorgan disease without mutations in any of the known mtDNA maintenance genes; one patient had pathologic endoplasmic reticulum (ER) membranes in muscle. The third patient with mtDNA depletion was diagnosed with merosine-deficient muscular dystrophy caused by a homozygous mutation in the LAMA2 gene. Two patients with an early-onset Kearns-Sayre/Pearson-like phenotype harboured a large-scale mtDNA deletion, minor multiple deletions and high mtDNA content.
Conclusions: Novel encephalomyopathic mtDNA depletion syndrome with structural alterations in muscle ER was identified. mtDNA depletion may also refer to secondary mitochondrial changes related to muscular dystrophy. We suggest that a large-scale mtDNA deletion, minor multiple deletions and high mtDNA content associated with Kearns-Sayre/Pearson syndromes may be secondary changes caused by mutations in an unknown nuclear gene.
Electronic supplementary material
The online version of this chapter (doi:10.1007/8904_2015_438) contains supplementary material, which is available to authorized users.
PMCID: PMC4484910  PMID: 25940035
2.  Clinical Characteristics of C9ORF72-Linked Frontotemporal Lobar Degeneration 
The most common genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) has been linked to a hexanucleotide repeat expansion in the C9ORF72 gene. The frequency of the C9ORF72 expansion in Finland is among the highest in the world.
We assessed 73 Finnish patients with FTLD in order to examine the clinical characteristics associated with the expanded C9ORF72. Demographic and clinical features were evaluated. As a potential disease modifier, the apolipoprotein E (APOE) genotype was also assessed. Neuropathological analysis was available on 2 expansion carriers and 1 non-carrier.
The C9ORF72 expansion was present in 20 of 70 (29%) probands. Significant associations with the C9ORF72 expansion were observed for concomitant ALS and positive family history of dementia or ALS. Psychoses were detected in both carriers and non-carriers (21 vs. 10%, p = 0.25). The APOE ε4 allele did not cluster among expansion carriers. Numerous p62-positive neuronal inclusions were detected in the cerebellar cortex of the 2 expansion carriers.
In line with the suggested C9ORF72 core phenotype, we also detected a high frequency of neuropsychiatric symptoms; however, these symptoms seem not be specific to C9ORF72-associated FTLD. FTLD should be considered in cases of middle-age-onset psychosis.
PMCID: PMC3776392  PMID: 24052799
Association study; Clinical features; Frontotemporal dementia; Frontotemporal lobar degeneration; Genetics
3.  Encephalopsin (OPN3) protein abundance in the adult mouse brain 
Encephalopsin belongs to the family of extraretinal opsins having a putative role in CNS tissue photosensitivity. Encephalopsin mRNA has earlier been localized in rodent brains, but expression and localization of the protein has not yet been reported. In this study, we aimed to define encephalopsin protein abundance and localization in the rodent brain. The distribution and localization of encephalopsin protein in a mouse brain and selected peripheral tissues were analysed in ten mice, using Western blotting and immunohistochemistry. The specificity of immunoreaction was validated by primary antibody omitting and immunizing peptide blocking experiment. We found encephalopsin protein abundant in the mouse brain, but not in the periphery. Encephalopsin protein was present in neurons of the mouse cerebral cortex, paraventricular area, and cerebellar cells. Our results show that encephalopsin is expressed at the protein level in different brain areas of the mouse. Therefore, the suggested idea that encephalopsin plays a role in non-visual photic processes seems to be applicable. Evidently, further investigations are needed to find out the signalling mechanisms, and the potential physiological role of encephalopsin in phototransduction due to the changes in ambient light.
PMCID: PMC3478508  PMID: 22991144
Cerebellum; Cerebral cortex; Circadian entrainment; Extraretinal phototransduction; Hypothalamus
4.  POLG1 p.R722H mutation associated with multiple mtDNA deletions and a neurological phenotype 
BMC Neurology  2010;10:29.
The c.2447G>A (p.R722H) mutation in the gene POLG1 of the catalytic subunit of human mitochondrial polymerase gamma has been previously found in a few occasions but its pathogenicity has remained uncertain. We set out to ascertain its contribution to neuromuscular disease.
Probands from two families with probable mitochondrial disease were examined clinically, muscle and buccal epithelial DNA were analyzed for mtDNA deletions, and the POLG1, POLG2, ANT1 and Twinkle genes were sequenced.
An adult proband presented with progressive external ophthalmoplegia, sensorineural hearing impairment, diabetes mellitus, dysphagia, a limb myopathy and dementia. Brain MRI showed central and cortical atrophy, and 18F-deoxyglucose PET revealed reduced glucose uptake. Histochemical analysis of muscle disclosed ragged red fibers and cytochrome c oxidase-negative fibers. Electron microscopy showed subsarcolemmal aggregates of morphologically normal mitochondria. Multiple mtDNA deletions were found in the muscle, and sequencing of the POLG1 gene revealed a homozygous c.2447G>A (p.R722H) mutation. His two siblings were also homozygous with respect to the p.R722H mutation and presented with dementia and sensorineural hearing impairment. In another family the p.R722H mutation was found as compound heterozygosity with the common p.W748S mutation in two siblings with mental retardation, ptosis, epilepsy and psychiatric symptoms. The estimated carrier frequency of the p.R722H mutation was 1:135 in the Finnish population. No mutations in POLG2, ANT1 and Twinkle genes were found. Analysis of the POLG1 sequence by homology modeling supported the notion that the p.R722H mutation is pathogenic.
The recessive c.2447G>A (p.R722H) mutation in the linker region of the POLG1 gene is pathogenic for multiple mtDNA deletions in muscle and is associated with a late-onset neurological phenotype as a homozygous state. The onset of the disease can be earlier in compound heterozygotes.
PMCID: PMC2873323  PMID: 20438629
6.  Individuals with mutations in XPNPEP3, which encodes a mitochondrial protein, develop a nephronophthisis-like nephropathy  
The autosomal recessive kidney disease nephronophthisis (NPHP) constitutes the most frequent genetic cause of terminal renal failure in the first 3 decades of life. Ten causative genes (NPHP1–NPHP9 and NPHP11), whose products localize to the primary cilia-centrosome complex, support the unifying concept that cystic kidney diseases are “ciliopathies”. Using genome-wide homozygosity mapping, we report here what we believe to be a new locus (NPHP-like 1 [NPHPL1]) for an NPHP-like nephropathy. In 2 families with an NPHP-like phenotype, we detected homozygous frameshift and splice-site mutations, respectively, in the X-prolyl aminopeptidase 3 (XPNPEP3) gene. In contrast to all known NPHP proteins, XPNPEP3 localizes to mitochondria of renal cells. However, in vivo analyses also revealed a likely cilia-related function; suppression of zebrafish xpnpep3 phenocopied the developmental phenotypes of ciliopathy morphants, and this effect was rescued by human XPNPEP3 that was devoid of a mitochondrial localization signal. Consistent with a role for XPNPEP3 in ciliary function, several ciliary cystogenic proteins were found to be XPNPEP3 substrates, for which resistance to N-terminal proline cleavage resulted in attenuated protein function in vivo in zebrafish. Our data highlight an emerging link between mitochondria and ciliary dysfunction, and suggest that further understanding the enzymatic activity and substrates of XPNPEP3 will illuminate novel cystogenic pathways.
PMCID: PMC2827951  PMID: 20179356
7.  Amyloid myopathy: a diagnostic challenge 
Neurology International  2009;1(1):e7.
Amyloid myopathy (AM) is a rare manifestation of primary systemic amyloidosis (AL). Like inflammatory myopathies, it presents with proximal muscle weakness and an increased creatine kinase level. We describe a case of AL with severe, rapidly progressive myopathy as the initial symptom. The clinical manifestation and muscle biopsy were suggestive of inclusion body myositis. AM was not suspected until amyloidosis was seen in the gastric mucosal biopsy. The muscle biopsy was then re-examined more specifically, and Congo red staining eventually showed vascular and interstitial amyloid accumulation, which led to a diagnosis of AM. The present case illustrates the fact that the clinical picture of AM can mimic that of inclusion body myositis.
PMCID: PMC3093221  PMID: 21577365
amyloid myopathy; amyloidosis; congo red; magnetic resonance imaging; myopathy
8.  Role of MAPT mutations and haplotype in frontotemporal lobar degeneration in Northern Finland 
BMC Neurology  2008;8:48.
Frontotemporal lobar degeneration (FTLD) consists of a clinically and neuropathologically heterogeneous group of syndromes affecting the frontal and temporal lobes of the brain. Mutations in microtubule-associated protein tau (MAPT), progranulin (PGRN) and charged multi-vesicular body protein 2B (CHMP2B) are associated with familial forms of the disease. The prevalence of these mutations varies between populations. The H1 haplotype of MAPT has been found to be closely associated with tauopathies and with sporadic FTLD. Our aim was to investigate MAPT mutations and haplotype frequencies in a clinical series of patients with FTLD in Northern Finland.
MAPT exons 1, 2 and 9–13 were sequenced in 59 patients with FTLD, and MAPT haplotypes were analysed in these patients, 122 patients with early onset Alzheimer's disease (eoAD) and 198 healthy controls.
No pathogenic mutations were found. The H2 allele frequency was 11.0% (P = 0.028) in the FTLD patients, 9.8% (P = 0.029) in the eoAD patients and 5.3% in the controls. The H2 allele was especially clustered in patients with a positive family history (P = 0.011) but did not lower the age at onset of the disease. The ApoE4 allele frequency was significantly increased in the patients with eoAD and in those with FTLD.
We conclude that although pathogenic MAPT mutations are rare in Northern Finland, the MAPT H2 allele may be associated with increased risks of FTLD and eoAD in the Finnish population.
PMCID: PMC2625345  PMID: 19091059

Results 1-8 (8)