PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-21 (21)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes 
Wheway, Gabrielle | Schmidts, Miriam | Mans, Dorus A. | Szymanska, Katarzyna | Nguyen, Thanh-Minh T. | Racher, Hilary | Phelps, Ian G. | Toedt, Grischa | Kennedy, Julie | Wunderlich, Kirsten A. | Sorusch, Nasrin | Abdelhamed, Zakia A. | Natarajan, Subaashini | Herridge, Warren | van Reeuwijk, Jeroen | Horn, Nicola | Boldt, Karsten | Parry, David A. | Letteboer, Stef J.F. | Roosing, Susanne | Adams, Matthew | Bell, Sandra M. | Bond, Jacquelyn | Higgins, Julie | Morrison, Ewan E. | Tomlinson, Darren C. | Slaats, Gisela G. | van Dam, Teunis J. P. | Huang, Lijia | Kessler, Kristin | Giessl, Andreas | Logan, Clare V. | Boyle, Evan A. | Shendure, Jay | Anazi, Shamsa | Aldahmesh, Mohammed | Al Hazzaa, Selwa | Hegele, Robert A. | Ober, Carole | Frosk, Patrick | Mhanni, Aizeddin A. | Chodirker, Bernard N. | Chudley, Albert E. | Lamont, Ryan | Bernier, Francois P. | Beaulieu, Chandree L. | Gordon, Paul | Pon, Richard T. | Donahue, Clem | Barkovich, A. James | Wolf, Louis | Toomes, Carmel | Thiel, Christian T. | Boycott, Kym M. | McKibbin, Martin | Inglehearn, Chris F. | Stewart, Fiona | Omran, Heymut | Huynen, Martijn A. | Sergouniotis, Panagiotis I. | Alkuraya, Fowzan S. | Parboosingh, Jillian S. | Innes, A Micheil | Willoughby, Colin E. | Giles, Rachel H. | Webster, Andrew R. | Ueffing, Marius | Blacque, Oliver | Gleeson, Joseph G. | Wolfrum, Uwe | Beales, Philip L. | Gibson, Toby | Doherty, Dan | Mitchison, Hannah M. | Roepman, Ronald | Johnson, Colin A.
Nature cell biology  2015;17(8):1074-1087.
Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis and ciliopathy genes, including 44 components of the ubiquitin-proteasome system, 12 G-protein-coupled receptors, and three pre-mRNA processing factors (PRPF6, PRPF8 and PRPF31) mutated in autosomal dominant retinitis pigmentosa. The PRPFs localise to the connecting cilium, and PRPF8- and PRPF31-mutated cells have ciliary defects. Combining the screen with exome sequencing data identified recessive mutations in PIBF1/CEP90 and C21orf2/LRRC76 as causes of the ciliopathies Joubert and Jeune syndromes. Biochemical approaches place C21orf2 within key ciliopathy-associated protein modules, offering an explanation for the skeletal and retinal involvement observed in individuals with C21orf2-variants. Our global, unbiased approaches provide insights into ciliogenesis complexity and identify roles for unanticipated pathways in human genetic disease.
doi:10.1038/ncb3201
PMCID: PMC4536769  PMID: 26167768
cilia; ciliopathies; reverse genetics; whole-genome siRNA screen; Jeune syndrome; Joubert syndrome
2.  TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport 
Nature Communications  2015;6:7074.
The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions.
Severe congenital development defects such as Jeune syndrome can result from the malfunction of primary cilia and dynein. Here Schmidts et al. report unique biallelic null mutations in a gene encoding a dynein light chain, helping to explain the nature of ciliopathies in human patients.
doi:10.1038/ncomms8074
PMCID: PMC4468853  PMID: 26044572
3.  A reach-out system for video microscopy analysis of ciliary motions aiding PCD diagnosis 
BMC Research Notes  2015;8:71.
Backgrounds
High-speed Video-Microscopy Analysis (HVMA) is now being used to aid diagnosis of Primary Ciliary Dyskinesia (PCD). Only a few centers however, are equipped with the available resources and equipment to perform these tests. We describe our experience in HVMA reaching-out to many more peripheral and relatively remote areas.
A portable computer with HVMA software, video camera and a microscope were used. Fourteen disperse pediatric centers were reached and a total of 203 subjects were tested within a relatively short time (Clinical Trial Registration: NCT 01070914 (registered February 6, 2010).
Results
With an average time of 20 minutes per patient, the system enabled us to test approximately 10–15 subjects per day. A valid HVMA result was made in 148 subjects and helped in the diagnosis of PCD in many of the patients who were subsequently confirmed to have PCD by electron microscopy and/or immunofluoresence and/or genetics and/or nasal Nitric Oxide testing. The sensitivity of abnormal HVMA to accurately predict PCD was 90.2%.
Discussion and conclusion
This is the first report of an out-reach system to record HVMA for improved diagnosis of PCD in remote regions that are not within reach of PCD centers and experts. It provides immediate preliminary results and instantaneous feedback to the physician, patient and his/her family members in these areas. Future studies to compare this system to conventional desk top systems are warranted.
Trial registration
NCT 01070914 (registered February 6, 2010).
doi:10.1186/s13104-015-0999-x
PMCID: PMC4363456  PMID: 25869032
Cilia; Video; Microscopy; Portability
4.  Clinical genetics and pathobiology of ciliary chondrodysplasias 
Journal of pediatric genetics  2014;3(2):46-94.
Ciliary chondrodysplasias represent a heterogenous group of rare, nearly exclusively autosomal recessively inherited developmental conditions. While the skeletal phenotype, mainly affecting limbs, ribs and sometimes the craniofacial skeleton, is predominant, extraskeletal disease affecting the kidneys, liver, heart, eyes and other organs and tissues is observed inconsistently. Significant lethality, resulting from cardiorespiratory failure due to thoracic constriction as well as from renal and hepatic insufficiency or primary cardiac failure due to congenital heart disease, is observed with these conditions. The underlying genetic defects as well as developmental biology and cell biology work undertaken using animal model systems, suggest that these rare conditions result from ciliary malfunction. The skeletal phenotype is believed to result from imbalances in the hedgehog signaling pathway that normally occurs in functional cilia in chondrocytes. Although phenotypes have been historically distinguished based on clinical features into short-rib polydactyly syndrome, Jeune asphyxiating thoracic dystrophy, Mainzer-Saldino syndrome, Sensenbrenner syndrome (cranioectodermal dysplasia), oral-facial-digital syndrome and Ellis-van Creveld syndrome, recent research suggests that there is significant genetic as well as phenotypic overlap between the conditions. This review discusses ciliary chondrodysplasias from phenotypic hallmarks to clinical management and summarizes progress in identification of the underlying molecular mechanisms as well as potential future therapeutic perspectives.
doi:10.3233/PGE-14089
PMCID: PMC4262788  PMID: 25506500
Cilia; chondrodysplasia; Jeune syndrome; short-rib polydactyly syndrome; Sensenbrenner syndrome
5.  Combined NGS Approaches Identify Mutations in the Intraflagellar Transport Gene IFT140 in Skeletal Ciliopathies with Early Progressive Kidney Disease 
Human mutation  2013;34(5):714-724.
Ciliopathies are genetically heterogeneous disorders characterized by variable expressivity and overlaps between different disease entities. This is exemplified by the short rib-polydactyly syndromes, Jeune, Sensenbrenner, and Mainzer-Saldino chondrodysplasia syndromes. These three syndromes are frequently caused by mutations in intraflagellar transport (IFT) genes affecting the primary cilia, which play a crucial role in skeletal and chondral development. Here, we identified mutations in IFT140, an IFT complex A gene, in five Jeune asphyxiating thoracic dystrophy (JATD) and two Mainzer-Saldino syndrome (MSS) families, by screening a cohort of 66 JATD/MSS patients using whole exome sequencing and targeted resequencing of a customized ciliopathy gene panel. We also found an enrichment of rare IFT140 alleles in JATD compared with nonciliopathy diseases, implying putative modifier effects for certain alleles. IFT140 patients presented with mild chest narrowing, but all had end-stage renal failure under 13 years of age and retinal dystrophy when examined for ocular dysfunction. This is consistent with the severe cystic phenotype of Ift140 conditional knockout mice, and the higher level of Ift140 expression in kidney and retina compared with the skeleton at E15.5 in the mouse. IFT140 is therefore a major cause of cono-renal syndromes (JATD and MSS). The present study strengthens the rationale for IFT140 screening in skeletal ciliopathy spectrum patients that have kidney disease and/or retinal dystrophy.
doi:10.1002/humu.22294
PMCID: PMC4226634  PMID: 23418020
cilia; Jeune asphyxiating thoracic dystrophy; Mainzer-Saldino syndrome; IFT140; NGS
6.  A founder CEP120 mutation in Jeune asphyxiating thoracic dystrophy expands the role of centriolar proteins in skeletal ciliopathies 
Human Molecular Genetics  2014;24(5):1410-1419.
Jeune asphyxiating thoracic dystrophy (JATD) is a skeletal dysplasia characterized by a small thoracic cage and a range of skeletal and extra-skeletal anomalies. JATD is genetically heterogeneous with at least nine genes identified, all encoding ciliary proteins, hence the classification of JATD as a skeletal ciliopathy. Consistent with the observation that the heterogeneous molecular basis of JATD has not been fully determined yet, we have identified two consanguineous Saudi families segregating JATD who share a single identical ancestral homozygous haplotype among the affected members. Whole-exome sequencing revealed a single novel variant within the disease haplotype in CEP120, which encodes a core centriolar protein. Subsequent targeted sequencing of CEP120 in Saudi and European JATD cohorts identified two additional families with the same missense mutation. Combining the four families in linkage analysis confirmed a significant genome-wide linkage signal at the CEP120 locus. This missense change alters a highly conserved amino acid within CEP120 (p.Ala199Pro). In addition, we show marked reduction of cilia and abnormal number of centrioles in fibroblasts from one affected individual. Inhibition of the CEP120 ortholog in zebrafish produced pleiotropic phenotypes characteristic of cilia defects including abnormal body curvature, hydrocephalus, otolith defects and abnormal renal, head and craniofacial development. We also demonstrate that in CEP120 morphants, cilia are shortened in the neural tube and disorganized in the pronephros. These results are consistent with aberrant CEP120 being implicated in the pathogenesis of JATD and expand the role of centriolar proteins in skeletal ciliopathies.
doi:10.1093/hmg/ddu555
PMCID: PMC4321448  PMID: 25361962
7.  HEATR2 Plays a Conserved Role in Assembly of the Ciliary Motile Apparatus 
PLoS Genetics  2014;10(9):e1004577.
Cilia are highly conserved microtubule-based structures that perform a variety of sensory and motility functions during development and adult homeostasis. In humans, defects specifically affecting motile cilia lead to chronic airway infections, infertility and laterality defects in the genetically heterogeneous disorder Primary Ciliary Dyskinesia (PCD). Using the comparatively simple Drosophila system, in which mechanosensory neurons possess modified motile cilia, we employed a recently elucidated cilia transcriptional RFX-FOX code to identify novel PCD candidate genes. Here, we report characterization of CG31320/HEATR2, which plays a conserved critical role in forming the axonemal dynein arms required for ciliary motility in both flies and humans. Inner and outer arm dyneins are absent from axonemes of CG31320 mutant flies and from PCD individuals with a novel splice-acceptor HEATR2 mutation. Functional conservation of closely arranged RFX-FOX binding sites upstream of HEATR2 orthologues may drive higher cytoplasmic expression of HEATR2 during early motile ciliogenesis. Immunoprecipitation reveals HEATR2 interacts with DNAI2, but not HSP70 or HSP90, distinguishing it from the client/chaperone functions described for other cytoplasmic proteins required for dynein arm assembly such as DNAAF1-4. These data implicate CG31320/HEATR2 in a growing intracellular pre-assembly and transport network that is necessary to deliver functional dynein machinery to the ciliary compartment for integration into the motile axoneme.
Author Summary
Cilia are small, specialized projections extending from a cell's surface that play key sensory and sometimes motility functions, such as generating fluid flow for clearing airways or sperm propulsion necessary for male fertility. Ciliary motility is defective in the inherited disease, Primary Ciliary Dyskinesia (PCD). Although the basic cilium blueprint has been elaborated on during evolution, many of the core genes involved in building or maintaining functional cilia have been conserved. We have used the comparatively simple fruit fly, which has motile cilia on only a handful of touch-sensitive sensory cells, to identify genes involved in ciliary motility and which are therefore candidate genes for causing PCD. We show here that when one such gene (CG31320/HEATR2) is disrupted in either flies or in human PCD patients, cilia form but they cannot move. We show this protein stays in the cytoplasm, where it is acts like a flexible scaffold stabilizing and facilitating interactions during the assembly of large multi-component ciliary motor complexes needed to power cilia movement.
doi:10.1371/journal.pgen.1004577
PMCID: PMC4168999  PMID: 25232951
8.  DYX1C1 is required for axonemal dynein assembly and ciliary motility 
Nature genetics  2013;45(9):995-1003.
SUMMARY
Dyx1c1 has been associated with dyslexia and neuronal migration in the developing neocortex. Unexpectedly, we found that deletion of Dyx1c1 exons 2–4 in mice caused a phenotype resembling primary ciliary dyskinesia (PCD), a genetically heterogeneous disorder characterized by chronic airway disease, laterality defects, and male infertility. This phenotype was confirmed independently in mice with a Dyx1c1c.T2A start codon mutation recovered from an ENU mutagenesis screen. Morpholinos targeting dyx1c1 in zebrafish also created laterality and ciliary motility defects. In humans, recessive loss-of-function DYX1C1 mutations were identified in twelve PCD individuals. Ultrastructural and immunofluorescence analyses of DYX1C1-mutant motile cilia in mice and humans revealed disruptions of outer and inner dynein arms (ODA/IDA). DYX1C1 localizes to the cytoplasm of respiratory epithelial cells, its interactome is enriched for molecular chaperones, and it interacts with the cytoplasmic ODA/IDA assembly factor DNAAF2/KTU. Thus, we propose that DYX1C1 is a newly identified dynein axonemal assembly factor (DNAAF4).
doi:10.1038/ng.2707
PMCID: PMC4000444  PMID: 23872636
9.  Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganisation and absent inner dynein arms 
Human mutation  2013;34(3):462-472.
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder caused by cilia and sperm dysmotility. About 12% of cases show perturbed 9+2 microtubule cilia structure and inner dynein arm (IDA) loss, historically termed ‘radial spoke defect’. We sequenced CCDC39 and CCDC40 in 54 ‘radial spoke defect’ families, as these are the two genes identified so far to cause this defect. We discovered biallelic mutations in a remarkable 69% (37/54) of families, including identification of 25 (19 novel) mutant alleles (12 in CCDC39 and 13 in CCDC40). All the mutations were nonsense, splice and frameshift predicting early protein truncation, which suggests this defect is caused by ‘null’ alleles conferring complete protein loss. Most families (73%; 27/37) had homozygous mutations, including families from outbred populations. A major putative hotspot mutation was identified, CCDC40 c.248delC, as well as several other possible hotspot mutations. Together, these findings highlight the key role of CCDC39 and CCDC40 in PCD with axonemal disorganisation and IDA loss, and these genes represent major candidates for genetic testing in families affected by this ciliary phenotype. We show that radial spoke structures are largely intact in these patients and propose this ciliary ultrastructural abnormality be referred to as ‘IDA and nexin-dynein regulatory complex (N-DRC) defect’, rather than ‘radial spoke defect’.
doi:10.1002/humu.22261
PMCID: PMC3630464  PMID: 23255504
primary ciliary dyskinesia; cilia; CCDC39; CCDC40; radial spoke; dynein regulatory complex; nexin link
10.  Targeted NGS gene panel identifies mutations in RSPH1 causing primary ciliary dyskinesia and a common mechanism for ciliary central pair agenesis due to radial spoke defects 
Human Molecular Genetics  2014;23(13):3362-3374.
Primary ciliary dyskinesia (PCD) is an inherited chronic respiratory obstructive disease with randomized body laterality and infertility, resulting from cilia and sperm dysmotility. PCD is characterized by clinical variability and extensive genetic heterogeneity, associated with different cilia ultrastructural defects and mutations identified in >20 genes. Next generation sequencing (NGS) technologies therefore present a promising approach for genetic diagnosis which is not yet in routine use. We developed a targeted panel-based NGS pipeline to identify mutations by sequencing of selected candidate genes in 70 genetically undefined PCD patients. This detected loss-of-function RSPH1 mutations in four individuals with isolated central pair (CP) agenesis and normal body laterality, from two unrelated families. Ultrastructural analysis in RSPH1-mutated cilia revealed transposition of peripheral outer microtubules into the ‘empty’ CP space, accompanied by a distinctive intermittent loss of the central pair microtubules. We find that mutations in RSPH1, RSPH4A and RSPH9, which all encode homologs of components of the ‘head’ structure of ciliary radial spoke complexes identified in Chlamydomonas, cause clinical phenotypes that appear to be indistinguishable except at the gene level. By high-resolution immunofluorescence we identified a loss of RSPH4A and RSPH9 along with RSPH1 from RSPH1-mutated cilia, suggesting RSPH1 mutations may result in loss of the entire spoke head structure. CP loss is seen in up to 28% of PCD cases, in whom laterality determination specified by CP-less embryonic node cilia remains undisturbed. We propose this defect could arise from instability or agenesis of the ciliary central microtubules due to loss of their normal radial spoke head tethering.
doi:10.1093/hmg/ddu046
PMCID: PMC4049301  PMID: 24518672
11.  Correction: Role of the Polarity Protein Scribble for Podocyte Differentiation and Maintenance 
PLoS ONE  2014;9(1):10.1371/annotation/2c0c1c61-0627-4794-b6f2-01fc4db84dcb.
doi:10.1371/annotation/2c0c1c61-0627-4794-b6f2-01fc4db84dcb
PMCID: PMC3882177
12.  Development of an Automated Imaging Pipeline for the Analysis of the Zebrafish Larval Kidney 
PLoS ONE  2013;8(12):e82137.
The analysis of kidney malformation caused by environmental influences during nephrogenesis or by hereditary nephropathies requires animal models allowing the in vivo observation of developmental processes. The zebrafish has emerged as a useful model system for the analysis of vertebrate organ development and function, and it is suitable for the identification of organotoxic or disease-modulating compounds on a larger scale. However, to fully exploit its potential in high content screening applications, dedicated protocols are required allowing the consistent visualization of inner organs such as the embryonic kidney. To this end, we developed a high content screening compatible pipeline for the automated imaging of standardized views of the developing pronephros in zebrafish larvae. Using a custom designed tool, cavities were generated in agarose coated microtiter plates allowing for accurate positioning and orientation of zebrafish larvae. This enabled the subsequent automated acquisition of stable and consistent dorsal views of pronephric kidneys. The established pipeline was applied in a pilot screen for the analysis of the impact of potentially nephrotoxic drugs on zebrafish pronephros development in the Tg(wt1b:EGFP) transgenic line in which the developing pronephros is highlighted by GFP expression. The consistent image data that was acquired allowed for quantification of gross morphological pronephric phenotypes, revealing concentration dependent effects of several compounds on nephrogenesis. In addition, applicability of the imaging pipeline was further confirmed in a morpholino based model for cilia-associated human genetic disorders associated with different intraflagellar transport genes. The developed tools and pipeline can be used to study various aspects in zebrafish kidney research, and can be readily adapted for the analysis of other organ systems.
doi:10.1371/journal.pone.0082137
PMCID: PMC3852951  PMID: 24324758
13.  Mutations of DNAH11 in Primary Ciliary Dyskinesia Patients with Normal Ciliary Ultrastructure 
Thorax  2011;67(5):433-441.
Rationale
Primary ciliary dyskinesia (PCD) is an autosomal recessive, genetically heterogeneous disorder characterized by oto-sino-pulmonary disease and situs abnormalities (Kartagener syndrome) due to abnormal structure and/or function of cilia. Most patients currently recognized to have PCD have ultrastructural defects of cilia; however, some patients have clinical manifestations of PCD and low levels of nasal nitric oxide, but normal ultrastructure, including a few patients with biallelic mutations in DNAH11.
Objectives
In order to test further for mutant DNAH11 as a cause of PCD, we sequenced DNAH11 in patients with a PCD clinical phenotype, but no known genetic etiology.
Methods
We sequenced 82 exons and intron/exon junctions in DNAH11 in 163 unrelated patients with a clinical phenotype of PCD, including those with normal ciliary ultrastructure (n=58), defects in outer ± inner dynein arms (n=76), radial spoke/central pair defects (n=6), and 23 without definitive ultrastructural results, but who had situs inversus (n=17), or bronchiectasis and/or low nasal nitric oxide (n=6). Additionally, we sequenced DNAH11 in 13 patients with isolated situs abnormalities to see if mutant DNAH11 could cause situs defects without respiratory disease.
Results
Of the 58 unrelated PCD patients with normal ultrastructure, 13 (22%) had two (biallelic) mutations in DNAH11; plus, 2 PCD patients without ultrastructural analysis had biallelic mutations. All mutations were novel and private. None of the patients with dynein arm or radial spoke/central pair defects, or isolated situs abnormalities, had mutations in DNAH11. Of the 35 identified mutant alleles, 24 (69%) were nonsense, insertion/deletion or Ioss-of-function splice-site mutations.
Conclusions
Mutations in DNAH11 are a common cause of PCD in patients without ciliary ultrastructural defects; thus, genetic analysis can be used to ascertain the diagnosis of PCD in this challenging group of patients.
doi:10.1136/thoraxjnl-2011-200301
PMCID: PMC3739700  PMID: 22184204
Cilia; Dynein; Kartagener syndrome; Dextrocardia; Heterotaxy
14.  CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms 
Nature genetics  2012;44(6):714-719.
Cilia are essential for fertilization, respiratory clearance, cerebrospinal fluid circulation, and to establish laterality1. Cilia motility defects cause Primary Ciliary Dyskinesia (PCD, MIM 242650), a disorder affecting 1:15-30,000 births. Cilia motility requires the assembly of multisubunit dynein arms that drive cilia bending2. Despite progress in understanding the genetic basis of PCD, mutations remain to be identified for several PCD linked loci3. Here we show that the zebrafish cilia paralysis mutant schmalhanstn222 (smh) mutant encodes the coiled-coil domain containing 103 protein (Ccdc103), a foxj1a regulated gene. Screening 146 unrelated PCD families identified patients in six families with reduced outer dynein arms, carrying mutations in CCDC103. Dynein arm assembly in smh mutant zebrafish was rescued by wild-type but not mutant human CCDC103. Chlamydomonas Ccdc103 functions as a tightly bound, axoneme-associated protein. The results identify Ccdc103 as a novel dynein arm attachment factor that when mutated causes Primary Ciliary Dyskinesia.
doi:10.1038/ng.2277
PMCID: PMC3371652  PMID: 22581229
15.  CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs 
Nature genetics  2010;43(1):72-78.
Primary ciliary dyskinesia (PCD) is an inherited disorder characterized by recurrent infections of the upper and lower respiratory tract, reduced fertility in males and situs inversus in about 50% of affected individuals (Kartagener syndrome). It is caused by motility defects in the respiratory cilia that are responsible for airway clearance, the flagella that propel sperm cells and the nodal monocilia that determine left-right asymmetry1. Recessive mutations that cause PCD have been identified in genes encoding components of the outer dynein arms, radial spokes and cytoplasmic pre-assembly factors of axonemal dyneins, but these mutations account for only about 50% of cases of PCD. We exploited the unique properties of dog populations to positionally clone a new PCD gene, CCDC39. We found that loss-of-function mutations in the human ortholog underlie a substantial fraction of PCD cases with axonemal disorganization and abnormal ciliary beating. Functional analyses indicated that CCDC39 localizes to ciliary axonemes and is essential for assembly of inner dynein arms and the dynein regulatory complex.
doi:10.1038/ng.726
PMCID: PMC3509786  PMID: 21131972
16.  Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia 
Nature genetics  2012;44(4):381-S2.
Primary Ciliary Dyskinesia (PCD) most often arises from loss of the dynein motors that power ciliary beating. Here we show that PF22/DNAAF3, a previously uncharacterized protein, is essential for the preassembly of dyneins into complexes prior to their transport into cilia. We identified loss-of-function mutations in the human DNAAF3 gene in patients from families with situs inversus and defects in assembly of inner and outer dynein arms. Zebrafish dnaaf3 knockdown likewise disrupts dynein arm assembly and ciliary motility, causing PCD phenotypes including hydrocephalus and laterality malformations. Chlamydomonas reinhardtii PF22 is exclusively cytoplasmic, and a null mutant fails to assemble outer and some inner dynein arms. Altered abundance of dynein subunits in mutant cytoplasm suggests PF22/DNAAF3 acts at a similar stage to other preassembly proteins, PF13/KTU and ODA7/LRRC50, in the dynein preassembly pathway. These results support the existence of a conserved multi-step pathway for cytoplasmic formation of assembly-competent ciliary dynein complexes.
doi:10.1038/ng.1106
PMCID: PMC3315610  PMID: 22387996
Kartagener syndrome; primary ciliary dyskinesia; Chlamydomonas; flagella; dynein assembly; zebrafish
17.  Role of the Polarity Protein Scribble for Podocyte Differentiation and Maintenance 
PLoS ONE  2012;7(5):e36705.
The kidney filter represents a unique assembly of podocyte epithelial cells that tightly enwrap the glomerular capillaries with their complex foot process network. While deficiency of the polarity proteins Crumbs and aPKC result in impaired podocyte foot process architecture, the function of basolateral polarity proteins for podocyte differentiation and maintenance remained unclear. Here we report, that Scribble is expressed in developing podocytes, where it translocates from the lateral aspects of immature podocytes to the basal cell membrane and foot processes of mature podocytes. Immunogold electron microscopy reveals membrane associated localisation of Scribble predominantly at the basolateral site of foot processes. To further study the role of Scribble for podocyte differentiation Scribbleflox/flox mice were generated by introducing loxP-sites into the Scribble introns 1 and 8 and these mice were crossed to NPHS2.Cre mice and Cre deleter mice. Podocyte-specific Scribble knockout mice develop normally and display no histological, ultrastructural or clinical abnormalities up to 12 months of age. In addition, no increased susceptibility to glomerular stress could be detected in these mice. In contrast, constitutive Scribble knockout animals die during embryonic development indicating the fundamental importance of Scribble for embryogenesis. Like in podocyte-specific Scribble knockout mice, the development of podocyte foot processes and the slit diaphragm was unaffected in kidney cultures from constitutive Scribble knockout animals. In summary these results indicate that basolateral polarity signaling via Scribble is dispensable for podocyte function, highlighting the unique feature of podocyte development with its significant apical membrane expansions being dominated by apical polarity complexes rather than by basolateral polarity signaling.
doi:10.1371/journal.pone.0036705
PMCID: PMC3346764  PMID: 22586490
18.  Congenital Central Hypothyroidism due to a Homozygous Mutation in the TSHβ Subunit Gene 
Case Reports in Pediatrics  2011;2011:369871.
Congenital central hypothyroidism (CCH) is a rare condition occurring in 1 : 20000 to 1 : 50000 newborns. As TSH plasma levels are low, CCH is usually not detected by TSH-based neonatal screening for hypothyroidism, and, as a result, diagnosis is often delayed putting affected children at risk for developmental delay and growth failure. We report on a girl with isolated central hypothyroidism due to a homozygous one-base pair deletion (T313del) in exon 3 of the TSHβ subunit gene. The molecular genetic and typical radiologic findings are discussed, and a systematic diagnostic workup for congenital central hypothyroidism is proposed. Physicians need to be aware of this rare condition to avoid diagnostic delay and to install prompt replacement therapy.
doi:10.1155/2011/369871
PMCID: PMC3350182  PMID: 22606512
19.  Nephrin and CD2AP Associate with Phosphoinositide 3-OH Kinase and Stimulate AKT-Dependent Signaling 
Molecular and Cellular Biology  2003;23(14):4917-4928.
Mutations of NPHS1 or NPHS2, the genes encoding nephrin and podocin, as well as the targeted disruption of CD2-associated protein (CD2AP), lead to heavy proteinuria, suggesting that all three proteins are essential for the integrity of glomerular podocytes, the visceral glomerular epithelial cells of the kidney. It has been speculated that these proteins participate in common signaling pathways; however, it has remained unclear which signaling proteins are actually recruited by the slit diaphragm protein complex in vivo. We demonstrate that both nephrin and CD2AP interact with the p85 regulatory subunit of phosphoinositide 3-OH kinase (PI3K) in vivo, recruit PI3K to the plasma membrane, and, together with podocin, stimulate PI3K-dependent AKT signaling in podocytes. Using two-dimensional gel analysis in combination with a phosphoserine-specific antiserum, we demonstrate that the nephrin-induced AKT mediates phosphorylation of several target proteins in podocytes. One such target is Bad; its phosphorylation and inactivation by 14-3-3 protects podocytes against detachment-induced cell death, suggesting that the nephrin-CD2AP-mediated AKT activity can regulate complex biological programs. Our findings reveal a novel role for the slit diaphragm proteins nephrin, CD2AP, and podocin and demonstrate that these three proteins, in addition to their structural functions, initiate PI3K/AKT-dependent signal transduction in glomerular podocytes.
doi:10.1128/MCB.23.14.4917-4928.2003
PMCID: PMC162232  PMID: 12832477
20.  Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement 
Journal of Medical Genetics  2013;50(5):309-323.
Background
Jeune asphyxiating thoracic dystrophy (JATD) is a rare, often lethal, recessively inherited chondrodysplasia characterised by shortened ribs and long bones, sometimes accompanied by polydactyly, and renal, liver and retinal disease. Mutations in intraflagellar transport (IFT) genes cause JATD, including the IFT dynein-2 motor subunit gene DYNC2H1. Genetic heterogeneity and the large DYNC2H1 gene size have hindered JATD genetic diagnosis.
Aims and methods
To determine the contribution to JATD we screened DYNC2H1 in 71 JATD patients JATD patients combining SNP mapping, Sanger sequencing and exome sequencing.
Results and conclusions
We detected 34 DYNC2H1 mutations in 29/71 (41%) patients from 19/57 families (33%), showing it as a major cause of JATD especially in Northern European patients. This included 13 early protein termination mutations (nonsense/frameshift, deletion, splice site) but no patients carried these in combination, suggesting the human phenotype is at least partly hypomorphic. In addition, 21 missense mutations were distributed across DYNC2H1 and these showed some clustering to functional domains, especially the ATP motor domain. DYNC2H1 patients largely lacked significant extra-skeletal involvement, demonstrating an important genotype–phenotype correlation in JATD. Significant variability exists in the course and severity of the thoracic phenotype, both between affected siblings with identical DYNC2H1 alleles and among individuals with different alleles, which suggests the DYNC2H1 phenotype might be subject to modifier alleles, non-genetic or epigenetic factors. Assessment of fibroblasts from patients showed accumulation of anterograde IFT proteins in the ciliary tips, confirming defects similar to patients with other retrograde IFT machinery mutations, which may be of undervalued potential for diagnostic purposes.
doi:10.1136/jmedgenet-2012-101284
PMCID: PMC3627132  PMID: 23456818
Clinical Genetics; Molecular Genetics; Developmental; Diagnostics; Genetic Screening/Counselling
21.  Combined exome and whole-genome sequencing identifies mutations in ARMC4 as a cause of primary ciliary dyskinesia with defects in the outer dynein arm 
Journal of Medical Genetics  2013;51(1):61-67.
Background
Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous ciliopathy disorder affecting cilia and sperm motility. A range of ultrastructural defects of the axoneme underlie the disease, which is characterised by chronic respiratory symptoms and obstructive lung disease, infertility and body axis laterality defects. We applied a next-generation sequencing approach to identify the gene responsible for this phenotype in two consanguineous families.
Methods and results
Data from whole-exome sequencing in a consanguineous Turkish family, and whole-genome sequencing in the obligate carrier parents of a consanguineous Pakistani family was combined to identify homozygous loss-of-function mutations in ARMC4, segregating in all five affected individuals from both families. Both families carried nonsense mutations within the highly conserved armadillo repeat region of ARMC4: c.2675C>A; pSer892* and c.1972G>T; p.Glu658*. A deficiency of ARMC4 protein was seen in patient's respiratory cilia accompanied by loss of the distal outer dynein arm motors responsible for generating ciliary beating, giving rise to cilia immotility. ARMC4 gene expression is upregulated during ciliogenesis, and we found a predicted interaction with the outer dynein arm protein DNAI2, mutations in which also cause PCD.
Conclusions
We report the first use of whole-genome sequencing to identify gene mutations causing PCD. Loss-of-function mutations in ARMC4 cause PCD with situs inversus and cilia immotility, associated with a loss of the distal outer (but not inner) dynein arms. This addition of ARMC4 to the list of genes associated with ciliary outer dynein arm defects expands our understanding of the complexities of PCD genetics.
doi:10.1136/jmedgenet-2013-101938
PMCID: PMC3888613  PMID: 24203976
Clinical Genetics; Developmental; Genetics; Molecular Genetics; Other Respiratory Medicine

Results 1-21 (21)