PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-22 (22)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Characterization of CSF2RA mutation related juvenile pulmonary alveolar proteinosis 
Background
Juvenile pulmonary alveolar proteinosis (PAP) due to CSF2RA mutations is a rare disorder with only a few cases described worldwide.
Methods
We identified nine children with severe diffuse interstitial lung disease due to CSF2RA mutations. Clinical course, diagnostic findings and treatment were evaluated and correlated to the genotype. Functional impairment of the intracellular JAK/pStat5 signaling pathway was assessed using flow-cytometry of peripheral mononuclear cells (PBMC) and granulocytes.
Results
We identified six individuals with homozygous missense/nonsense/frameshift mutations and three individuals homozygous for a deletion of the complete CSF2RA gene locus. Overall, four novel mutations (c.1125 + 1G > A, duplication exon 8, deletion exons 2–13, Xp22.3/Yp11.3) were found. Reduced STAT5 phosphorylation in PBMC and granulocytes was seen in all cases examined (n = 6). Pulmonary symptoms varied from respiratory distress to clinically silent. Early disease onset was associated with a more severe clinical phenotype (p = 0.0092). No association was seen between severity of phenotype at presentation and future clinical course or extent of genetic damage. The clinical course was favorable in all subjects undergoing whole lung lavage (WLL) treatment.
Conclusions
Our cohort broadens the spectrum of knowledge about the clinical variability and genotype-phenotype correlations of juvenile PAP, and illustrates the favorable outcome of WLL treatment in severely affected patients.
Electronic supplementary material
The online version of this article (doi:10.1186/s13023-014-0171-z) contains supplementary material, which is available to authorized users.
doi:10.1186/s13023-014-0171-z
PMCID: PMC4254258  PMID: 25425184
2.  Functional modelling of a novel mutation in BBS5 
Cilia  2014;3:3.
Background
Bardet-Biedl syndrome (BBS) is an autosomal recessive ciliopathy disorder with 18 known causative genes (BBS1-18). The primary clinical features are renal abnormalities, rod-cone dystrophy, post-axial polydactyly, learning difficulties, obesity and male hypogonadism.
Results
We describe the clinical phenotype in three Saudi siblings in whom we have identified a novel mutation in exon 12 of BBS5 (c.966dupT; p.Ala323CysfsX57). This single nucleotide duplication creates a frame shift results in a predicted elongated peptide. Translation blocking Morpholino oligonucleotides were used to create zebrafish bbs5 morphants. Morphants displayed retinal layering defects, abnormal cardiac looping and dilated, cystic pronephric ducts with reduced cilia expression. Morphants also displayed significantly reduced dextran clearance via the pronephros compared to wildtype embryos, suggesting reduced renal function in morphants. The eye, kidney and heart defects reported in morphant zebrafish resemble the human phenotype of BBS5 mutations. The pathogenicity of the novel BBS5 mutation was determined. Mutant mRNA was unable to rescue pleiotropic phenotypes of bbs5 morphant zebrafish and in cell culture we demonstrate a mislocalisation of mutant BBS5 protein which fails to localise discretely with the basal body.
Conclusions
We conclude that this novel BBS5 mutation has a deleterious function that accounts for the multisystem ciliopathy phenotype seen in affected human patients.
doi:10.1186/2046-2530-3-3
PMCID: PMC3931281  PMID: 24559376
BBS; Zebrafish; Pronephros; Cilia; Situs inversus; Retinopathy
3.  Genetic testing can resolve diagnostic confusion in Alport syndrome 
Clinical Kidney Journal  2013;7(2):197-200.
Alport syndrome (AS) is a familial glomerular disorder resulting from mutations in the genes encoding several members of the type IV collagen protein family. Despite advances in molecular genetics, renal biopsy remains an important initial diagnostic tool. Histological diagnosis is challenging as features may be non-specific, particularly early in the disease course and in females with X-linked disease. We present three families for whom there was difficulty in correctly diagnosing AS or thin basement membrane nephropathy as a result of misinterpretation of non-specific and incomplete histology. We highlight the importance of electron microscopy and immunofluorescence in improving diagnostic yield and also the hazard of interpreting a descriptive histological term as a diagnostic label. Molecular genetic testing allows a definitive diagnosis to be made in index patients and at-risk family members.
doi:10.1093/ckj/sft144
PMCID: PMC3970340  PMID: 24944784
Alport syndrome; COL4A3; COL4A5; haematuria; molecular genetics
4.  A novel CLDN16 mutation in a large family with familial hypomagnesaemia with hypercalciuria and nephrocalcinosis 
BMC Research Notes  2013;6:527.
Background
Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis is a rare tubulopathy leading to renal calcification and progressive renal failure.
Case presentation
We report a consanguineous Arab family (of Qatari origin) with 7 affected siblings with variable phenotypes including hypomagnesaemia, hypercalciuria, nephrocalcinosis and renal stones. Presenting features included haematuria and recurrent urinary tract infections. As the biochemical and clinical phenotypes of this family resembled familial hypomagnesaemia with hypercalciuria and nephrocalcinosis, we performed genetic investigation in order to provide a precise molecular diagnosis. We screened all coding regions of the CLDN16 gene and identified a novel mutation (c.G647A, p.R216H) which was found homozygously in the six severely affected cases, who manifested significant nephrocalcinosis, often nephrolithiasis and sometimes reduced GFR. Parents were both heterozygous for the mutation and, together with children carrying the mutation in its heterozygous state, exhibited mild or no biochemical phenotypes.
Conclusion
Mutations in CLDN16 underlie familial hypomagnesaemia with hypercalciuria and nephrocalcinosis but remain a rare cause of nephrocalcinosis and nephrolithiasis. Management includes reduction of hypercalciuria with thiazide diuretics, correction of serum magnesium and close monitoring of renal function given the significant risk of end stage renal failure with this inherited form of nephrocalcinosis.
doi:10.1186/1756-0500-6-527
PMCID: PMC3867415  PMID: 24321194
CLDN16; Claudin-16; Hypercalciuria; Hypocalcaemia; Hypomagnesaemia; Nephrocalcinosis; End stage renal disease
5.  Identification of compound heterozygous KCNJ1 mutations (encoding ROMK) in a kindred with Bartter's syndrome and a functional analysis of their pathogenicity 
Physiological Reports  2013;1(6):e00160.
A multiplex family was identified with biochemical and clinical features suggestive of Bartter's syndrome (BS). The eldest sibling presented with developmental delay and rickets at 4 years of age with evidence of hypercalciuria and hypokalemia. The second sibling presented at 1 year of age with urinary tract infections, polyuria, and polydipsia. The third child was born after a premature delivery with a history of polyhydramnios and neonatal hypocalcemia. Following corrective treatment she also developed hypercalciuria and a hypokalemic metabolic alkalosis. There was evidence of secondary hyperreninemia and hyperaldosteronism in all three siblings consistent with BS. Known BS genes were screened and functional assays of ROMK (alias KCNJ1, Kir1.1) were carried out in Xenopus oocytes. We detected compound heterozygous missense changes in KCNJ1, encoding the potassium channel ROMK. The S219R/L220F mutation was segregated from father and mother, respectively. In silico modeling of the missense mutations suggested deleterious changes. Studies in Xenopus oocytes revealed that both S219R and L220F had a deleterious effect on ROMK-mediated potassium currents. Coinjection to mimic the compound heterozygosity produced a synergistic decrease in channel function and revealed a loss of PKA-dependent stabilization of PIP2 binding. In conclusion, in a multiplex family with BS, we identified compound heterozygous mutations in KCNJ1. Functional studies of ROMK confirmed the pathogenicity of these mutations and defined the mechanism of channel dysfunction.
doi:10.1002/phy2.160
PMCID: PMC3871474  PMID: 24400161
Hypercalciuria; hypokalemia; KCNJ1; Kir1.1; missense mutation; potassium; ROMK; salt wasting
6.  A meckelin–filamin A interaction mediates ciliogenesis 
Human Molecular Genetics  2011;21(6):1272-1286.
MKS3, encoding the transmembrane receptor meckelin, is mutated in Meckel–Gruber syndrome (MKS), an autosomal-recessive ciliopathy. Meckelin localizes to the primary cilium, basal body and elsewhere within the cell. Here, we found that the cytoplasmic domain of meckelin directly interacts with the actin-binding protein filamin A, potentially at the apical cell surface associated with the basal body. Mutations in FLNA, the gene for filamin A, cause periventricular heterotopias. We identified a single consanguineous patient with an MKS-like ciliopathy that presented with both MKS and cerebellar heterotopia, caused by an unusual in-frame deletion mutation in the meckelin C-terminus at the region of interaction with filamin A. We modelled this mutation and found it to abrogate the meckelin–filamin A interaction. Furthermore, we found that loss of filamin A by siRNA knockdown, in patient cells, and in tissues from FlnaDilp2 null mouse embryos results in cellular phenotypes identical to those caused by meckelin loss, namely basal body positioning and ciliogenesis defects. In addition, morpholino knockdown of flna in zebrafish embryos significantly increases the frequency of dysmorphology and severity of ciliopathy developmental defects caused by mks3 knockdown. Our results suggest that meckelin forms a functional complex with filamin A that is disrupted in MKS and causes defects in neuronal migration and Wnt signalling. Furthermore, filamin A has a crucial role in the normal processes of ciliogenesis and basal body positioning. Concurrent with these processes, the meckelin–filamin A signalling axis may be a key regulator in maintaining correct, normal levels of Wnt signalling.
doi:10.1093/hmg/ddr557
PMCID: PMC3284117  PMID: 22121117
7.  Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling 
Chaki, Moumita | Airik, Rannar | Ghosh, Amiya K. | Giles, Rachel H. | Chen, Rui | Slaats, Gisela G. | Wang, Hui | Hurd, Toby W. | Zhou, Weibin | Cluckey, Andrew | Gee, Heon-Yung | Ramaswami, Gokul | Hong, Chen-Jei | Hamilton, Bruce A. | Červenka, Igor | Ganji, Ranjani Sri | Bryja, Vitezslav | Arts, Heleen H. | van Reeuwijk, Jeroen | Oud, Machteld M. | Letteboer, Stef J.F. | Roepman, Ronald | Husson, Hervé | Ibraghimov-Beskrovnaya, Oxana | Ysunaga, Takayuki | Walz, Gerd | Eley, Lorraine | Sayer, John A. | Schermer, Bernhard | Liebau, Max C. | Benzing, Thomas | Le Corre, Stephanie | Drummond, Iain | Joles, Jaap A. | Janssen, Sabine | Allen, Susan J. | Natarajan, Sivakumar | O Toole, John F. | Attanasio, Massimo | Saunier, Sophie | Antignac, Corinne | Koenekoop, Robert K. | Ren, Huanan | Lopez, Irma | Nayir, Ahmet | Stoetzel, Corinne | Dollfus, Helene | Massoudi, Rustin | Gleeson, Joseph G. | Andreoli, Sharon P. | Doherty, Dan G. | Lindstrad, Anna | Golzio, Christelle | Katsanis, Nicholas | Pape, Lars | Abboud, Emad B. | Al-Rajhi, Ali A. | Lewis, Richard A. | Lupski, James R. | Omran, Heymut | Lee, Eva | Wang, Shaohui | Sekiguchi, JoAnn M. | Saunders, Rudel | Johnson, Colin A. | Garner, Elizabeth | Vanselow, Katja | Andersen, Jens S. | Shlomai, Joseph | Nurnberg, Gudrun | Nurnberg, Peter | Levy, Shawn | Smogorzewska, Agata | Otto, Edgar A. | Hildebrandt, Friedhelm
Cell  2012;150(3):533-548.
SUMMARY
Nephronophthisis-related ciliopathies (NPHP-RC) are degenerative recessive diseases that affect kidney, retina and brain. Genetic defects in NPHP gene products that localize to cilia and centrosomes defined them as ‘ciliopathies’. However, disease mechanisms remain poorly understood. Here we identify by whole exome resequencing, mutations of MRE11, ZNF423, and CEP164 as causing NPHP-RC. All three genes function within the DNA damage response (DDR) pathway, hitherto not implicated in ciliopathies. We demonstrate that, upon induced DNA damage, the NPHP-RC proteins ZNF423, CEP164 and NPHP10 colocalize to nuclear foci positive for TIP60, known to activate ATM at sites of DNA damage. We show that knockdown of CEP164 or ZNF423 causes sensitivity to DNA damaging agents, and that cep164 knockdown in zebrafish results in dysregulated DDR and an NPHP-RC phenotype. We identify TTBK2, CCDC92, NPHP3 and DVL3 as novel CEP164 interaction partners. Our findings link degenerative diseases of kidney and retina, disorders of increasing prevalence, to mechanisms of DDR.
doi:10.1016/j.cell.2012.06.028
PMCID: PMC3433835  PMID: 22863007
8.  Autosomal Dominant Mutation in the Signal Peptide of Renin in a Kindred with Anemia, Hyperuricemia, and CKD 
Homozygous or compound heterozygous Renin (REN) mutations cause renal tubular dysgenesis (RTD), which is characterized by death in utero due to renal failure and pulmonary hypoplasia. The phenotype resembles the fetopathy caused by angiotensin-converting enzyme inhibitor or angiotensin receptor blocker intake during pregnancy. Recently, heterozygous REN mutations were shown to result in early-onset hyperuricemia, anemia and chronic renal failure. So far, only three different heterozygous REN mutations were reported.
We performed mutation analysis of the REN gene in 39 kindreds with hyperuricemia and chronic kidney disease (CKD) previously tested negative for mutations in the UMOD and HNF1β genes. We identified one kindred with a novel c.28T>C (p.W10R) REN mutation in the signal sequence, concluding that REN mutations are rare events in CKD patients. Affected individuals over four generations were identified carrying the novel REN mutation and were characterized by significant anemia, hyperuricemia and CKD. Anemia was severe and disproportional to the degree of renal impairment. Moreover all heterozygous REN mutations are localized in the signal sequence. Therefore, screening of the REN gene for CKD patients with hyperuricemia and anemia may be focusing on exon 1 sequencing, which encodes the signal peptide.
doi:10.1053/j.ajkd.2011.06.029
PMCID: PMC3366501  PMID: 21903317
9.  Investigating Embryonic Expression Patterns and Evolution of AHI1 and CEP290 Genes, Implicated in Joubert Syndrome 
PLoS ONE  2012;7(9):e44975.
Joubert syndrome and related diseases (JSRD) are developmental cerebello-oculo-renal syndromes with phenotypes including cerebellar hypoplasia, retinal dystrophy and nephronophthisis (a cystic kidney disease). We have utilised the MRC-Wellcome Trust Human Developmental Biology Resource (HDBR), to perform in-situ hybridisation studies on embryonic tissues, revealing an early onset neuronal, retinal and renal expression pattern for AHI1. An almost identical pattern of expression is seen with CEP290 in human embryonic and fetal tissue. A novel finding is that both AHI1 and CEP290 demonstrate strong expression within the developing choroid plexus, a ciliated structure important for central nervous system development. To test if AHI1 and CEP290 may have co-evolved, we carried out a genomic survey of a large group of organisms across eukaryotic evolution. We found that, in animals, ahi1 and cep290 are almost always found together; however in other organisms either one may be found independent of the other. Finally, we tested in murine epithelial cells if Ahi1 was required for recruitment of Cep290 to the centrosome. We found no obvious differences in Cep290 localisation in the presence or absence of Ahi1, suggesting that, while Ahi1 and Cep290 may function together in the whole organism, they are not interdependent for localisation within a single cell. Taken together these data support a role for AHI1 and CEP290 in multiple organs throughout development and we suggest that this accounts for the wide phenotypic spectrum of AHI1 and CEP290 mutations in man.
doi:10.1371/journal.pone.0044975
PMCID: PMC3454386  PMID: 23028714
10.  Clinical and Functional Characterization of URAT1 Variants 
PLoS ONE  2011;6(12):e28641.
Idiopathic renal hypouricaemia is an inherited form of hypouricaemia, associated with abnormal renal handling of uric acid. There is excessive urinary wasting of uric acid resulting in hypouricaemia. Patients may be asymptomatic, but the persistent urinary abnormalities may manifest as renal stone disease, and hypouricaemia may manifest as exercise induced acute kidney injury. Here we have identified Macedonian and British patients with hypouricaemia, who presented with a variety of renal symptoms and signs including renal stone disease, hematuria, pyelonephritis and nephrocalcinosis. We have identified heterozygous missense mutations in SLC22A12 encoding the urate transporter protein URAT1 and correlate these genetic findings with functional characterization. Urate handling was determined using uptake experiments in HEK293 cells. This data highlights the importance of the URAT1 renal urate transporter in determining serum urate concentrations and the clinical phenotypes, including nephrolithiasis, that should prompt the clinician to suspect an inherited form of renal hypouricaemia.
doi:10.1371/journal.pone.0028641
PMCID: PMC3241677  PMID: 22194875
11.  Uromodulin is expressed in renal primary cilia and UMOD mutations result in decreased ciliary uromodulin expression 
Human Molecular Genetics  2010;19(10):1985-1997.
Uromodulin (UMOD) mutations are responsible for three autosomal dominant tubulo-interstitial nephropathies including medullary cystic kidney disease type 2 (MCKD2), familial juvenile hyperuricemic nephropathy and glomerulocystic kidney disease. Symptoms include renal salt wasting, hyperuricemia, gout, hypertension and end-stage renal disease. MCKD is part of the ‘nephronophthisis–MCKD complex’, a group of cystic kidney diseases. Both disorders have an indistinguishable histology and renal cysts are observed in either. For most genes mutated in cystic kidney disease, their proteins are expressed in the primary cilia/basal body complex. We identified seven novel UMOD mutations and were interested if UMOD protein was expressed in the primary renal cilia of human renal biopsies and if mutant UMOD would show a different expression pattern compared with that seen in control individuals. We demonstrate that UMOD is expressed in the primary cilia of renal tubules, using immunofluorescent studies in human kidney biopsy samples. The number of UMOD-positive primary cilia in UMOD patients is significantly decreased when compared with control samples. Additional immunofluorescence studies confirm ciliary expression of UMOD in cell culture. Ciliary expression of UMOD is also confirmed by electron microscopy. UMOD localization at the mitotic spindle poles and colocalization with other ciliary proteins such as nephrocystin-1 and kinesin family member 3A is demonstrated. Our data add UMOD to the group of proteins expressed in primary cilia, where mutations of the gene lead to cystic kidney disease.
doi:10.1093/hmg/ddq077
PMCID: PMC2860893  PMID: 20172860
12.  Nephronophthisis: A Genetically Diverse Ciliopathy 
Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease and a leading genetic cause of established renal failure (ERF) in children and young adults. Early presenting symptoms in children with NPHP include polyuria, nocturia, or secondary enuresis, pointing to a urinary concentrating defect. Renal ultrasound typically shows normal kidney size with increased echogenicity and corticomedullary cysts. Importantly, NPHP is associated with extra renal manifestations in 10–15% of patients. The most frequent extrarenal association is retinal degeneration, leading to blindness. Increasingly, molecular genetic testing is being utilised to diagnose NPHP and avoid the need for a renal biopsy. In this paper, we discuss the latest understanding in the molecular and cellular pathogenesis of NPHP. We suggest an appropriate clinical management plan and screening programme for individuals with NPHP and their families.
doi:10.4061/2011/527137
PMCID: PMC3108105  PMID: 21660307
14.  Mutation analysis of NPHP6/CEP290 in patients with Joubert syndrome and Senior–Løken syndrome 
Journal of Medical Genetics  2007;44(10):657-663.
Background
Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease that constitutes the most common genetic cause of renal failure in the first three decades of life. Using positional cloning, six genes (NPHP1‐6) have been identified as mutated in NPHP. In Joubert syndrome (JBTS), NPHP may be associated with cerebellar vermis aplasia/hypoplasia, retinal degeneration and mental retardation. In Senior–Løken syndrome (SLSN), NPHP is associated with retinal degeneration. Recently, mutations in NPHP6/CEP290 were identified as a new cause of JBTS.
Methods
Mutational analysis was performed on a worldwide cohort of 75 families with SLSN, 99 families with JBTS and 21 families with isolated nephronophthisis.
Results
Six novel and six known truncating mutations, one known missense mutation and one novel 3 bp pair in‐frame deletion were identified in a total of seven families with JBTS, two families with SLSN and one family with isolated NPHP.
doi:10.1136/jmg.2007.052027
PMCID: PMC2597962  PMID: 17617513
NPHP6/CEP290 ; Joubert syndrome; Senior–Løken syndrome; nephronophthisis; mutational analysis
17.  Individuals with mutations in XPNPEP3, which encodes a mitochondrial protein, develop a nephronophthisis-like nephropathy  
The autosomal recessive kidney disease nephronophthisis (NPHP) constitutes the most frequent genetic cause of terminal renal failure in the first 3 decades of life. Ten causative genes (NPHP1–NPHP9 and NPHP11), whose products localize to the primary cilia-centrosome complex, support the unifying concept that cystic kidney diseases are “ciliopathies”. Using genome-wide homozygosity mapping, we report here what we believe to be a new locus (NPHP-like 1 [NPHPL1]) for an NPHP-like nephropathy. In 2 families with an NPHP-like phenotype, we detected homozygous frameshift and splice-site mutations, respectively, in the X-prolyl aminopeptidase 3 (XPNPEP3) gene. In contrast to all known NPHP proteins, XPNPEP3 localizes to mitochondria of renal cells. However, in vivo analyses also revealed a likely cilia-related function; suppression of zebrafish xpnpep3 phenocopied the developmental phenotypes of ciliopathy morphants, and this effect was rescued by human XPNPEP3 that was devoid of a mitochondrial localization signal. Consistent with a role for XPNPEP3 in ciliary function, several ciliary cystogenic proteins were found to be XPNPEP3 substrates, for which resistance to N-terminal proline cleavage resulted in attenuated protein function in vivo in zebrafish. Our data highlight an emerging link between mitochondria and ciliary dysfunction, and suggest that further understanding the enzymatic activity and substrates of XPNPEP3 will illuminate novel cystogenic pathways.
doi:10.1172/JCI40076
PMCID: PMC2827951  PMID: 20179356
18.  Genetic and physical interaction between the NPHP5 and NPHP6 gene products 
Human molecular genetics  2008;17(23):3655-3662.
Nephronophthisis is an autosomal recessive cystic kidney disease, caused by mutations of at least nine different genes. Several extrarenal manifestations characterize this disorder, including cerebellar defects, situs inversus, and retinitis pigmentosa. While the clinical manifestations vary significantly in nephronophthisis, mutations of NPHP5 and NPHP6 are always associated with progressive blindness. This clinical finding suggests that the gene products, nephrocystin-5 and nephrocystin-6, participate in overlapping signaling pathways to maintain photoreceptor homeostasis. To analyze the genetic interaction between these two proteins in more detail, we studied zebrafish embryos after depletion of NPHP5 and NPHP6. Knockdown of zebrafish zNPHP5 and zNPHP6 produced similar phenotypes, and synergistic effects were observed after the combined knockdown of zNPHP5 and zNPHP6. The N-terminal domain of nephrocystin-6 bound nephrocystin-5, and mapping studies delineated the interacting site to amino acid 696 to 896 of NPHP6. In Xenopus laevis, knockdown of NPHP5 caused substantial neural tube closure defects. This phenotype was copied by expression of the nephrocystin-5-binding fragment of nephrocystin-6, and rescued by co-expression of nephrocystin-5, supporting a physical interaction between both gene products in vivo. Since the N- and C-terminal fragments of nephrocystin-6 engage in the formation of homo- and heteromeric protein complexes, conformational changes seem to regulate the interaction of nephrocystin-6 with its binding partners.
doi:10.1093/hmg/ddn260
PMCID: PMC2802281  PMID: 18723859
19.  Genetic and physical interaction between the NPHP5 and NPHP6 gene products 
Human Molecular Genetics  2008;17(23):3655-3662.
Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease, caused by mutations of at least nine different genes. Several extrarenal manifestations characterize this disorder, including cerebellar defects, situs inversus and retinitis pigmentosa. While the clinical manifestations vary significantly in NPHP, mutations of NPHP5 and NPHP6 are always associated with progressive blindness. This clinical finding suggests that the gene products, nephrocystin-5 and nephrocystin-6, participate in overlapping signaling pathways to maintain photoreceptor homeostasis. To analyze the genetic interaction between these two proteins in more detail, we studied zebrafish embryos after depletion of NPHP5 and NPHP6. Knockdown of zebrafish zNPHP5 and zNPHP6 produced similar phenotypes, and synergistic effects were observed after the combined knockdown of zNPHP5 and zNPHP6. The N-terminal domain of nephrocystin-6-bound nephrocystin-5, and mapping studies delineated the interacting site from amino acid 696 to 896 of NPHP6. In Xenopus laevis, knockdown of NPHP5 caused substantial neural tube closure defects. This phenotype was copied by expression of the nephrocystin-5-binding fragment of nephrocystin-6, and rescued by co-expression of nephrocystin-5, supporting a physical interaction between both gene products in vivo. Since the N- and C-terminal fragments of nephrocystin-6 engage in the formation of homo- and heteromeric protein complexes, conformational changes seem to regulate the interaction of nephrocystin-6 with its binding partners.
doi:10.1093/hmg/ddn260
PMCID: PMC2802281  PMID: 18723859
20.  Nephronophthisis 
Nephronophthisis (NPHP) is an autosomal recessive kidney disorder characterized by chronic tubulointerstitial nephritis and leading to end-stage renal failure. NPHP as a renal entity is often part of a multisystem disorder and has been associated with many syndromes including Joubert syndrome (and related disorders) and Senior–Loken syndrome. Recent molecular genetic advances have allowed identification of several genes underlying NPHP. Most of these genes express their protein products, named nephrocystins, in primary cilial/basal body structures. Some nephrocystins are part of adherens junction and focal adhesion kinase protein complexes. This shared localization suggests that common pathogenic mechanisms within the kidney underlie this disease. Functional studies implicate nephrocystins in planar cell polarity pathways, which may be crucial for renal development and maintenance of tubular architecture.
doi:10.1038/ejhg.2008.238
PMCID: PMC2986221  PMID: 19066617
primary cilia; collecting duct; planar-cell polarity; urine concentrating defect; tubulointerstitial nephritis
21.  In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse 
Human molecular genetics  2006;15(11):1847-1857.
Centrosome- and cilia-associated proteins play crucial roles in establishing polarity and regulating intracellular transport in post-mitotic cells. Using genetic mapping and positional candidate strategy, we have identified an in-frame deletion in a novel centrosomal protein CEP290 (also called NPHP6), leading to early-onset retinal degeneration in a newly identified mouse mutant, rd16. We demonstrate that CEP290 localizes primarily to centrosomes of dividing cells and to the connecting cilium of retinal photoreceptors. We show that, in the retina, CEP290 associates with several microtubule-based transport proteins including RPGR, which is mutated in ~15% of patients with retinitis pigmentosa. A truncated CEP290 protein (ΔCEP290) is detected in the rd16 retina, but in considerably reduced amounts; however, the mutant protein exhibits stronger association with specific RPGR isoform(s). Immunogold labeling studies demonstrate the redistribution of RPGR and of phototransduction proteins in the photoreceptors of rd16 retina. Our findings suggest a critical function for CEP290 in ciliary transport and provide insights into the mechanism of early-onset photoreceptor degeneration.
doi:10.1093/hmg/ddl107
PMCID: PMC1592550  PMID: 16632484
22.  Acute renal failure from contrast medium 
BMJ : British Medical Journal  2006;333(7569):653.
PMCID: PMC1570803  PMID: 16990332

Results 1-22 (22)