Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  DYX1C1 is required for axonemal dynein assembly and ciliary motility 
Nature genetics  2013;45(9):995-1003.
Dyx1c1 has been associated with dyslexia and neuronal migration in the developing neocortex. Unexpectedly, we found that deletion of Dyx1c1 exons 2–4 in mice caused a phenotype resembling primary ciliary dyskinesia (PCD), a genetically heterogeneous disorder characterized by chronic airway disease, laterality defects, and male infertility. This phenotype was confirmed independently in mice with a Dyx1c1c.T2A start codon mutation recovered from an ENU mutagenesis screen. Morpholinos targeting dyx1c1 in zebrafish also created laterality and ciliary motility defects. In humans, recessive loss-of-function DYX1C1 mutations were identified in twelve PCD individuals. Ultrastructural and immunofluorescence analyses of DYX1C1-mutant motile cilia in mice and humans revealed disruptions of outer and inner dynein arms (ODA/IDA). DYX1C1 localizes to the cytoplasm of respiratory epithelial cells, its interactome is enriched for molecular chaperones, and it interacts with the cytoplasmic ODA/IDA assembly factor DNAAF2/KTU. Thus, we propose that DYX1C1 is a newly identified dynein axonemal assembly factor (DNAAF4).
PMCID: PMC4000444  PMID: 23872636
2.  Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganisation and absent inner dynein arms 
Human mutation  2013;34(3):462-472.
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder caused by cilia and sperm dysmotility. About 12% of cases show perturbed 9+2 microtubule cilia structure and inner dynein arm (IDA) loss, historically termed ‘radial spoke defect’. We sequenced CCDC39 and CCDC40 in 54 ‘radial spoke defect’ families, as these are the two genes identified so far to cause this defect. We discovered biallelic mutations in a remarkable 69% (37/54) of families, including identification of 25 (19 novel) mutant alleles (12 in CCDC39 and 13 in CCDC40). All the mutations were nonsense, splice and frameshift predicting early protein truncation, which suggests this defect is caused by ‘null’ alleles conferring complete protein loss. Most families (73%; 27/37) had homozygous mutations, including families from outbred populations. A major putative hotspot mutation was identified, CCDC40 c.248delC, as well as several other possible hotspot mutations. Together, these findings highlight the key role of CCDC39 and CCDC40 in PCD with axonemal disorganisation and IDA loss, and these genes represent major candidates for genetic testing in families affected by this ciliary phenotype. We show that radial spoke structures are largely intact in these patients and propose this ciliary ultrastructural abnormality be referred to as ‘IDA and nexin-dynein regulatory complex (N-DRC) defect’, rather than ‘radial spoke defect’.
PMCID: PMC3630464  PMID: 23255504
primary ciliary dyskinesia; cilia; CCDC39; CCDC40; radial spoke; dynein regulatory complex; nexin link
3.  The nexin-dynein regulatory complex subunit DRC 1 is essential for motile cilia function in algae and humans 
Nature genetics  2013;45(3):10.1038/ng.2533.
Primary ciliary dyskinesia (PCD) is characterized by dysfunction in respiratory and reproductive cilia/flagella and random determination of visceral asymmetry. Here, we identify the DRC1 subunit of the Nexin-Dynein Regulatory Complex (N-DRC), an axonemal structure critical for regulation of the dynein motors, and demonstrate that DRC1/CCDC164 mutations are involved in the pathogenesis of PCD. Loss-of-function DRC1/CCDC164 mutations result in severe defects in assembly of the N-DRC structure and defective ciliary movement in Chlamydomonas and humans. Our results highlight the role of N-DRC integrity for regulation of ciliary beating and provide the first direct evidence that drc mutations cause human disease.
PMCID: PMC3818796  PMID: 23354437
cilia; dynein; primary ciliary dyskinesia (PCD); Nexin-Dynein Regulatory Complex (N-DRC)
4.  Mutations of DNAH11 in Primary Ciliary Dyskinesia Patients with Normal Ciliary Ultrastructure 
Thorax  2011;67(5):433-441.
Primary ciliary dyskinesia (PCD) is an autosomal recessive, genetically heterogeneous disorder characterized by oto-sino-pulmonary disease and situs abnormalities (Kartagener syndrome) due to abnormal structure and/or function of cilia. Most patients currently recognized to have PCD have ultrastructural defects of cilia; however, some patients have clinical manifestations of PCD and low levels of nasal nitric oxide, but normal ultrastructure, including a few patients with biallelic mutations in DNAH11.
In order to test further for mutant DNAH11 as a cause of PCD, we sequenced DNAH11 in patients with a PCD clinical phenotype, but no known genetic etiology.
We sequenced 82 exons and intron/exon junctions in DNAH11 in 163 unrelated patients with a clinical phenotype of PCD, including those with normal ciliary ultrastructure (n=58), defects in outer ± inner dynein arms (n=76), radial spoke/central pair defects (n=6), and 23 without definitive ultrastructural results, but who had situs inversus (n=17), or bronchiectasis and/or low nasal nitric oxide (n=6). Additionally, we sequenced DNAH11 in 13 patients with isolated situs abnormalities to see if mutant DNAH11 could cause situs defects without respiratory disease.
Of the 58 unrelated PCD patients with normal ultrastructure, 13 (22%) had two (biallelic) mutations in DNAH11; plus, 2 PCD patients without ultrastructural analysis had biallelic mutations. All mutations were novel and private. None of the patients with dynein arm or radial spoke/central pair defects, or isolated situs abnormalities, had mutations in DNAH11. Of the 35 identified mutant alleles, 24 (69%) were nonsense, insertion/deletion or Ioss-of-function splice-site mutations.
Mutations in DNAH11 are a common cause of PCD in patients without ciliary ultrastructural defects; thus, genetic analysis can be used to ascertain the diagnosis of PCD in this challenging group of patients.
PMCID: PMC3739700  PMID: 22184204
Cilia; Dynein; Kartagener syndrome; Dextrocardia; Heterotaxy
5.  CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms 
Nature genetics  2012;44(6):714-719.
Cilia are essential for fertilization, respiratory clearance, cerebrospinal fluid circulation, and to establish laterality1. Cilia motility defects cause Primary Ciliary Dyskinesia (PCD, MIM 242650), a disorder affecting 1:15-30,000 births. Cilia motility requires the assembly of multisubunit dynein arms that drive cilia bending2. Despite progress in understanding the genetic basis of PCD, mutations remain to be identified for several PCD linked loci3. Here we show that the zebrafish cilia paralysis mutant schmalhanstn222 (smh) mutant encodes the coiled-coil domain containing 103 protein (Ccdc103), a foxj1a regulated gene. Screening 146 unrelated PCD families identified patients in six families with reduced outer dynein arms, carrying mutations in CCDC103. Dynein arm assembly in smh mutant zebrafish was rescued by wild-type but not mutant human CCDC103. Chlamydomonas Ccdc103 functions as a tightly bound, axoneme-associated protein. The results identify Ccdc103 as a novel dynein arm attachment factor that when mutated causes Primary Ciliary Dyskinesia.
PMCID: PMC3371652  PMID: 22581229
6.  CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs 
Nature genetics  2010;43(1):72-78.
Primary ciliary dyskinesia (PCD) is an inherited disorder characterized by recurrent infections of the upper and lower respiratory tract, reduced fertility in males and situs inversus in about 50% of affected individuals (Kartagener syndrome). It is caused by motility defects in the respiratory cilia that are responsible for airway clearance, the flagella that propel sperm cells and the nodal monocilia that determine left-right asymmetry1. Recessive mutations that cause PCD have been identified in genes encoding components of the outer dynein arms, radial spokes and cytoplasmic pre-assembly factors of axonemal dyneins, but these mutations account for only about 50% of cases of PCD. We exploited the unique properties of dog populations to positionally clone a new PCD gene, CCDC39. We found that loss-of-function mutations in the human ortholog underlie a substantial fraction of PCD cases with axonemal disorganization and abnormal ciliary beating. Functional analyses indicated that CCDC39 localizes to ciliary axonemes and is essential for assembly of inner dynein arms and the dynein regulatory complex.
PMCID: PMC3509786  PMID: 21131972
7.  Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia 
Nature genetics  2012;44(4):381-S2.
Primary Ciliary Dyskinesia (PCD) most often arises from loss of the dynein motors that power ciliary beating. Here we show that PF22/DNAAF3, a previously uncharacterized protein, is essential for the preassembly of dyneins into complexes prior to their transport into cilia. We identified loss-of-function mutations in the human DNAAF3 gene in patients from families with situs inversus and defects in assembly of inner and outer dynein arms. Zebrafish dnaaf3 knockdown likewise disrupts dynein arm assembly and ciliary motility, causing PCD phenotypes including hydrocephalus and laterality malformations. Chlamydomonas reinhardtii PF22 is exclusively cytoplasmic, and a null mutant fails to assemble outer and some inner dynein arms. Altered abundance of dynein subunits in mutant cytoplasm suggests PF22/DNAAF3 acts at a similar stage to other preassembly proteins, PF13/KTU and ODA7/LRRC50, in the dynein preassembly pathway. These results support the existence of a conserved multi-step pathway for cytoplasmic formation of assembly-competent ciliary dynein complexes.
PMCID: PMC3315610  PMID: 22387996
Kartagener syndrome; primary ciliary dyskinesia; Chlamydomonas; flagella; dynein assembly; zebrafish
8.  Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins 
Nature  2008;456(7222):611-616.
Cilia/flagella are highly conserved organelles that play diverse roles in cell motility and sensing extracellular signals. Motility defects in cilia/flagella often result in primary ciliary dyskinesia (PCD). However, the mechanisms underlying cilia formation and function, and in particular the cytoplasmic assembly of dyneins that power ciliary motility, are only poorly understood. Here we report a novel gene, kintoun (ktu), involved in this cytoplasmic process. This gene was first identified in a medaka mutant, and found to be mutated in PCD patients from two affected families as well as in the pf13 mutant of Chlamydomonas. In the absence of Ktu/PF13, both outer and inner dynein arms are missing or defective in the axoneme, leading to a loss of motility. Biochemical and immunohistochemical studies show that Ktu/PF13 is one of the long-sought proteins involved in pre-assembly of dynein arm complexes in the cytoplasm before intraflagellar transport loads them for the ciliary compartment.
PMCID: PMC3279746  PMID: 19052621
9.  The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation 
Nature genetics  2010;43(1):79-84.
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous autosomal recessive disorder characterized by recurrent infections of the respiratory tract associated with abnormal function of motile cilia. Approximately half of PCD patients also have alterations in the left-right organization of internal organ positioning including situs inversus and situs ambiguous (Kartagener’s Syndrome, KS). Here we identify an uncharacterized coiled-coil domain containing protein (CCDC40) essential for correct left-right patterning in mouse, zebrafish and humans. Ccdc40 is expressed in tissues that contain motile cilia and mutation of Ccdc40 results in cilia with reduced ranges of motility. Importantly, we demonstrate that CCDC40 deficiency causes a novel PCD variant characterized by misplacement of central pair microtubules and defective axonemal assembly of inner dynein arms (IDAs) and dynein regulator complexes (DRCs). CCDC40 localizes to motile cilia and the apical cytoplasm and is responsible for axonemal recruitment of CCDC39, which is also mutated in a similar PCD variant.
PMCID: PMC3132183  PMID: 21131974
10.  BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas  
The Journal of Clinical Investigation  2008;118(5):1739-1749.
The molecular pathogenesis of pediatric astrocytomas is still poorly understood. To further understand the genetic abnormalities associated with these tumors, we performed a genome-wide analysis of DNA copy number aberrations in pediatric low-grade astrocytomas by using array-based comparative genomic hybridization. Duplication of the BRAF protooncogene was the most frequent genomic aberration, and tumors with BRAF duplication showed significantly increased mRNA levels of BRAF and a downstream target, CCND1, as compared with tumors without duplication. Furthermore, denaturing HPLC showed that activating BRAF mutations were detected in some of the tumors without BRAF duplication. Similarly, a marked proportion of low-grade astrocytomas from adult patients also had BRAF duplication. Both the stable silencing of BRAF through shRNA lentiviral transduction and pharmacological inhibition of MEK1/2, the immediate downstream phosphorylation target of BRAF, blocked the proliferation and arrested the growth of cultured tumor cells derived from low-grade gliomas. Our findings implicate aberrant activation of the MAPK pathway due to gene duplication or mutation of BRAF as a molecular mechanism of pathogenesis in low-grade astrocytomas and suggest inhibition of the MAPK pathway as a potential treatment.
PMCID: PMC2289793  PMID: 18398503
11.  Mutations of DNAI1 in Primary Ciliary Dyskinesia 
Rationale: Primary ciliary dyskinesia (PCD) is a rare, usually autosomal recessive, genetic disorder characterized by ciliary dysfunction, sino-pulmonary disease, and situs inversus. Disease-causing mutations have been reported in DNAI1 and DNAH5 encoding outer dynein arm (ODA) proteins of cilia.
Objectives: We analyzed DNAI1 to identify disease-causing mutations in PCD and to determine if the previously reported IVS1+2_3insT (219+3insT) mutation represents a “founder” or “hot spot” mutation.
Methods: Patients with PCD from 179 unrelated families were studied. Exclusion mapping showed no linkage to DNAI1 for 13 families; the entire coding region was sequenced in a patient from the remaining 166 families. Reverse transcriptase–polymerase chain reaction (RT-PCR) was performed on nasal epithelial RNA in 14 families.
Results: Mutations in DNAI1 including 12 novel mutations were identified in 16 of 179 (9%) families; 14 harbored biallelic mutations. Deep intronic splice mutations were not identified by reverse transcriptase–polymerase chain reaction. The prevalence of mutations in families with defined ODA defect was 13%; no mutations were found in patients without a defined ODA defect. The previously reported IVS1+2_3insT mutation accounted for 57% (17/30) of mutant alleles, and marker analysis indicates a common founder for this mutation. Seven mutations occurred in three exons (13, 16, and 17); taken together with previous reports, these three exons are emerging as mutation clusters harboring 29% (12/42) of mutant alleles.
Conclusions: A total of 10% of patients with PCD are estimated to harbor mutations in DNAI1; most occur as a common founder IVS1+2_3insT or in exons 13, 16, and 17. This information is useful for establishing a clinical molecular genetic test for PCD.
PMCID: PMC2648054  PMID: 16858015
cilia; dynein; dextrocardia; Kartagener syndrome; mutation
12.  DNAH5 Mutations Are a Common Cause of Primary Ciliary Dyskinesia with Outer Dynein Arm Defects 
Rationale: Primary ciliary dyskinesia (PCD) is characterized by recurrent airway infections and randomization of left–right body asymmetry. To date, autosomal recessive mutations have only been identified in a small number of patients involving DNAI1 and DNAH5, which encode outer dynein arm components.
Methods: We screened 109 white PCD families originating from Europe and North America for presence of DNAH5 mutations by haplotype analyses and/or sequencing.
Results: Haplotype analyses excluded linkage in 26 families. In 30 PCD families, we identified 33 novel (12 nonsense, 8 frameshift, 5 splicing, and 8 missense mutations) and two known DNAH5 mutations. We observed clustering of mutations within five exons harboring 27 mutant alleles (52%) of the 52 detected mutant alleles. Interestingly, 6 (32%) of 19 PCD families with DNAH5 mutations from North America carry the novel founder mutation 10815delT. Electron microscopic analyses in 22 patients with PCD with mutations invariably detected outer dynein arm ciliary defects. High-resolution immunofluorescence imaging of respiratory epithelial cells from eight patients with DNAH5 mutations showed mislocalization of mutant DNAH5 and accumulation at the microtubule organizing centers. Mutant DNAH5 was absent throughout the ciliary axoneme in seven patients and remained detectable in the proximal ciliary axoneme in one patient carrying compound heterozygous splicing mutations at the 3′-end (IVS75-2A>T, IVS76+5G>A). In a preselected subpopulation with documented outer dynein arm defects (n = 47), DNAH5 mutations were identified in 53% of patients.
Conclusions: DNAH5 is frequently mutated in patients with PCD exhibiting outer dynein arm defects and mutations cluster in five exons.
PMCID: PMC2662904  PMID: 16627867
cilia; DNAH5; outer dynein arm; primary ciliary dyskinesia
13.  Mislocalization of DNAH5 and DNAH9 in Respiratory Cells from Patients with Primary Ciliary Dyskinesia 
Rationale: Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder characterized by recurrent infections of the airways and situs inversus in half of the affected offspring. The most frequent genetic defects comprise recessive mutations of DNAH5 and DNAI1, which encode outer dynein arm (ODA) components. Diagnosis of PCD usually relies on electron microscopy, which is technically demanding and sometimes difficult to interpret. Methods: Using specific antibodies, we determined the subcellular localization of the ODA heavy chains DNAH5 and DNAH9 in human respiratory epithelial and sperm cells of patients with PCD and control subjects by high-resolution immunofluorescence imaging. We also assessed cilia and sperm tail function by high-speed video microscopy. Results: In normal ciliated airway epithelium, DNAH5 and DNAH9 show a specific regional distribution along the ciliary axoneme, indicating the existence of at least two distinct ODA types. DNAH5 was completely or only distally absent from the respiratory ciliary axoneme in patients with PCD with DNAH5− (n = 3) or DNAI1− (n = 1) mutations, respectively, and instead accumulated at the microtubule-organizing centers. In contrast to respiratory cilia, sperm tails from a patient with DNAH5 mutations had normal ODA heavy chain distribution, suggesting different modes of ODA generation in these cell types. Blinded investigation of a large cohort of patients with PCD and control subjects identified DNAH5 mislocalization in all patients diagnosed with ODA defects by electron microscopy (n = 16). Cilia with complete axonemal DNAH5 deficiency were immotile, whereas cilia with distal DNAH5 deficiency showed residual motility. Conclusions: Immunofluorescence staining can detect ODA defects, which will possibly aid PCD diagnosis.
PMCID: PMC2718478  PMID: 15750039
fluorescent antibody technique; genetics; respiratory tract diseases

Results 1-13 (13)