PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("Lev, doit")
1.  Deficiency of asparagine synthetase causes congenital microcephaly and a progressive form of encephalopathy 
Neuron  2013;80(2):10.1016/j.neuron.2013.08.013.
SUMMARY
We analyzed four families that presented with a similar condition characterized by congenital microcephaly, intellectual disability, progressive cerebral atrophy and intractable seizures. We show that recessive mutations in the ASNS gene are responsible for this syndrome. Two of the identified missense mutations dramatically reduce ASNS protein abundance, suggesting that the mutations cause loss of function. Hypomorphic Asns mutant mice have structural brain abnormalities, including enlarged ventricles and reduced cortical thickness, and show deficits in learning and memory mimicking aspects of the patient phenotype. ASNS encodes asparagine synthetase, which catalyzes the synthesis of asparagine from glutamine and aspartate. The neurological impairment resulting from ASNS deficiency may be explained by asparagine depletion in the brain, or by accumulation of aspartate/glutamate leading to enhanced excitability and neuronal damage. Our study thus indicates that asparagine synthesis is essential for the development and function of the brain but not for that of other organs.
doi:10.1016/j.neuron.2013.08.013
PMCID: PMC3820368  PMID: 24139043
2.  Pathways Mediating the Interaction between Endothelial Progenitor Cells (EPCs) and Platelets 
PLoS ONE  2014;9(6):e95156.
Introduction
Endothelial progenitor cells (EPCs) have an important role in the process of vascular injury repair. Platelets have been shown to mediate EPC recruitment, maturation and differentiation. Yet, the mechanism underlying this interaction is unclear. We, therefore, aimed to examine whether direct contact between platelets and EPCs is essential for the positive platelets-EPC effect, and to investigate the main mediators responsible for the improvement in EPCs function.
Methods
Human EPCs were isolated from donated buffy coats and cultured in either: 1. EPCs co-incubated with platelets placed in a 1 µm-Boyden chamber. 2. EPCs incubated with or without platelets in the presence or absence of bFGF/PDGF Receptor inhibitor (PDGFRI). After 7 days culture, EPCs ability to form colonies, proliferate and differentiate was examined. Culture supernatants were collected and growth factors levels were evaluated using ELISA. Growth factors mRNA levels in EPCs were evaluated using RT-PCR.
Results and Conclusions
After 7 days culture, EPCs functional properties were higher following co-incubation with platelets (directly or indirectly), implying that direct contact is not essential for the platelet’s positive effect on EPCs. This effect was reduced by PDGFRI inhibition. Additionally, higher levels of PDGFB in EPCs-platelets supernatant and higher levels of PDGFC mRNA in EPCs co-incubated with platelets were found. In contrast, FGF and other potential mediators that were examined and inhibited did not significantly affect the interaction between platelets and EPCs. Thus, we conclude that PDGF has a central role in the interaction between platelets and EPCs. Further study is required to examine additional aspects of EPC-platelets interaction.
doi:10.1371/journal.pone.0095156
PMCID: PMC4046960  PMID: 24901498
4.  Heterozygous Mutations in the ADCK3 Gene in Siblings with Cerebellar Atrophy and Extreme Phenotypic Variability 
JIMD Reports  2013;12:103-107.
We describe a highly variable clinical presentation of cerebellar ataxia in two sisters. The younger sister demonstrates early onset rapidly progressive cerebellar ataxia accompanied by motor and nonmotor cerebellar features, as well as cognitive decline and psychiatric problems. Mitochondrial respiratory chain enzyme analysis in muscle showed a decrease in complex I + III. Progressive cerebellar atrophy was demonstrated on serial brain MR imaging. Coenzyme Q10 (CoQ10) supplementation, started at the age of 5 years, led to a significant improvement in motor and cognitive abilities with partial amelioration of the cerebellar signs. Discontinuation of this treatment resulted in worsening of the ataxia, cognitive decline, and severe depression.
The older sister, who is 32 years old, has nonprogressive dysarthria and clumsiness from the age of 10 years and MRI reveals cerebellar atrophy.
Exome sequencing identified compound heterozygosity for a known (p. Thr584delACC (c.1750_1752delACC)) and a novel (p.P502R) mutation in the ACDK3 gene.
Conclusions: Patients with primary CoQ10 deficiency due to ADCK3 mutations can demonstrate a wide spectrum of clinical presentations even in the same family. It is difficult to diagnose CoQ10 deficiency based solely on the clinical presentation.
Exome sequencing can provide the molecular diagnosis but since it is expensive and not readily available, we recommend a trial of CoQ10 treatment in patients with ataxia and cerebellar atrophy even before confirmation of the molecular diagnosis.
doi:10.1007/8904_2013_251
PMCID: PMC3897800  PMID: 24048965
5.  A large homozygous deletion in the SAMHD1 gene causes atypical Aicardi–Goutiéres syndrome associated with mtDNA deletions 
Aicardi–Goutiéres syndrome (AGS) is a genetic neurodegenerative disorder with clinical symptoms mimicking a congenital viral infection. Five causative genes have been described: three prime repair exonuclease1 (TREX1), ribonucleases H2A, B and C, and most recently SAM domain and HD domain 1 (SAMHD1). We performed a detailed clinical and molecular characterization of a family with autosomal recessive neurodegenerative disorder showing white matter destruction and calcifications, presenting in utero and associated with multiple mtDNA deletions. A muscle biopsy was normal and did not show any evidence of respiratory chain dysfunction. Southern blot analysis of tissue from a living child and affected fetuses demonstrated multiple mtDNA deletions. Molecular analysis of genes involved in mtDNA synthesis and maintenance (POLGα, POLGβ, Twinkle, ANT1, TK2, SUCLA1 and DGOUK) revealed normal sequences. Sequencing of TREX1 and ribonucleases H2A, B and C failed to reveal any mutations. Whole-genome homozygosity mapping revealed a candidate region containing the SAMHD1 gene. Sequencing of the gene in the affected child and two affected fetuses revealed a large deletion (9 kb), spanning the promoter, exon1 and intron 1. The parents were found to be heterozygous for this deletion. The identification of a homozygous large deletion in the SAMHD1 gene causing atypical AGS with multiple mtDNA deletions may add information regarding the involvement of mitochondria in self-activation of innate immunity by cell intrinsic components.
doi:10.1038/ejhg.2010.213
PMCID: PMC3062001  PMID: 21102625
Aicardi–Goutiéres; mtDNA; multiple deletions; mitochondria; SAMHD1
6.  Targeted genomic capture and massively parallel sequencing to identify genes for hereditary hearing loss in middle eastern families 
Genome Biology  2011;12(9):R89.
Background
Identification of genes responsible for medically important traits is a major challenge in human genetics. Due to the genetic heterogeneity of hearing loss, targeted DNA capture and massively parallel sequencing are ideal tools to address this challenge. Our subjects for genome analysis are Israeli Jewish and Palestinian Arab families with hearing loss that varies in mode of inheritance and severity.
Results
A custom 1.46 MB design of cRNA oligonucleotides was constructed containing 246 genes responsible for either human or mouse deafness. Paired-end libraries were prepared from 11 probands and bar-coded multiplexed samples were sequenced to high depth of coverage. Rare single base pair and indel variants were identified by filtering sequence reads against polymorphisms in dbSNP132 and the 1000 Genomes Project. We identified deleterious mutations in CDH23, MYO15A, TECTA, TMC1, and WFS1. Critical mutations of the probands co-segregated with hearing loss. Screening of additional families in a relevant population was performed. TMC1 p.S647P proved to be a founder allele, contributing to 34% of genetic hearing loss in the Moroccan Jewish population.
Conclusions
Critical mutations were identified in 6 of the 11 original probands and their families, leading to the identification of causative alleles in 20 additional probands and their families. The integration of genomic analysis into early clinical diagnosis of hearing loss will enable prediction of related phenotypes and enhance rehabilitation. Characterization of the proteins encoded by these genes will enable an understanding of the biological mechanisms involved in hearing loss.
doi:10.1186/gb-2011-12-9-r89
PMCID: PMC3308052  PMID: 21917145
7.  Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes 
Nature genetics  2010;42(7):619-625.
Joubert syndrome (JBTS), related disorders (JSRD) and Meckel syndrome (MKS) are ciliopathies. We now report that MKS2 and JBTS2 loci are allelic and due to mutations in TMEM216, encoding an uncharacterized tetraspan transmembrane protein. JBTS2 patients displayed frequent nephronophthisis and polydactytly, and two cases conformed to the Oro-Facio-Digital type VI phenotype, whereas skeletal dysplasia was common in MKS fetuses. A single p.R73L mutation was identified in all patients of Ashkenazi Jewish descent (n=10). TMEM216 localized to the base of primary cilia, and loss of TMEM216 in patient fibroblasts or following siRNA knockdown caused defective ciliogenesis and centrosomal docking, with concomitant hyperactivation of RhoA and Dishevelled. TMEM216 complexed with Meckelin, encoded by a gene also mutated in JSRD and MKS. Abrogation of tmem216 expression in zebrafish led to gastrulation defects that overlap with other ciliary morphants. The data implicate a new family of proteins in the ciliopathies, and further support allelism between ciliopathy disorders.
doi:10.1038/ng.594
PMCID: PMC2894012  PMID: 20512146
9.  X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment 
Nature genetics  2008;40(6):776-781.
Epilepsy and mental retardation limited to females (EFMR) is a disorder with an X-linked mode of inheritance and an unusual expression pattern. Disorders arising from mutations on the X chromosome are typically characterized by affected males and unaffected carrier females. In contrast, EFMR spares transmitting males and affects only carrier females. Aided by systematic resequencing of 737 X chromosome genes, we identified different protocadherin 19 (PCDH19) gene mutations in seven families with EFMR. Five mutations resulted in the introduction of a premature termination codon. Study of two of these demonstrated nonsense-mediated decay of PCDH19 mRNA. The two missense mutations were predicted to affect adhesiveness of PCDH19 through impaired calcium binding. PCDH19 is expressed in developing brains of human and mouse and is the first member of the cadherin superfamily to be directly implicated in epilepsy or mental retardation.
doi:10.1038/ng.149
PMCID: PMC2756413  PMID: 18469813
10.  Assessment of fetal intracranial pathologies first demonstrated late in pregnancy: cell proliferation disorders 
A considerable number of central nervous system pathologies remain undiagnosed during the first two trimesters of pregnancy. This group of disorders includes anomalies of brain proliferation, migration and cortical organization. Due to the fact that a detailed ultrasound examination of the fetal brain is usually not performed during the third trimester the diagnosis of these disorders is usually only made in families with a previously affected child or in many cases be mere chance. In this article we review the feasibility of prenatal diagnosis of disorders of brain proliferation: microcephaly, macrocephaly, hemimegalencephaly and neoplastic and non-neoplastic abnormal cell types. We discuss the differential diagnosis and offer a stepwise approach to the diagnosis of the more common disorders.
doi:10.1186/1477-7827-1-110
PMCID: PMC293423  PMID: 14617366

Results 1-10 (10)