Search tips
Search criteria

Results 1-25 (67)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Molecular Heterogeneity Within the Clinical Diagnosis of Pericentral Retinal Degeneration 
To characterize in detail the phenotype and genotype of patients with pericentral retinal degeneration (PRD).
Patients were screened for an annular ring scotoma ranging from 3° to 40° (n = 28, ages 24–71) with kinetic perimetry. All patients had pigmentary retinopathy in the region of the dysfunction. Further studies included cross-sectional and en face imaging, static chromatic perimetry, and electroretinography. Molecular screening was performed.
Genotypes of 14 of 28 PRD patients were identified: There were mutations in eight different genes previously associated with autosomal dominant or autosomal recessive RDs. Kinetic fields monitored in some patients over years to more than a decade could be stable or show increased extent of the scotoma. Electroretinograms were recordable but with different severities of dysfunction. Patterns of photoreceptor outer nuclear layer (ONL) loss corresponded to the distribution of visual dysfunction. Outer nuclear layer thickness topography and en face imaging indicated that the greatest disease expression was in the area of known highest rod photoreceptor density.
Molecular heterogeneity was a feature of the PRD phenotype. Many of the molecular causes were also associated with other phenotypes, such as maculopathies, typical retinitis pigmentosa (RP) and cone–rod dystrophy. The pericentral pattern of retinal degeneration is thus confirmed to be an uncommon phenotype of many different genotypes rather than a distinct disease entity.
Pericentral retinal degeneration patients were studied for visual function and retinal structure. Molecular diagnoses were identified in one-half the patients. This pericentral pattern is thus confirmed to be an uncommon phenotype of many different genotypes rather than a distinct disease entity.
PMCID: PMC4585343  PMID: 26393467
cone; optical coherence tomography; perimetry; rod
2.  Drusen and Photoreceptor Abnormalities in African-Americans with Intermediate Non-neovascular Age-related Macular Degeneration 
Current eye research  2014;40(4):398-406.
To investigate the relationship of drusen and photoreceptor abnormalities in African-American (AA) patients with intermediate non-neovascular age-related macular degeneration (AMD).
Materials and methods
AA patients with intermediate AMD (n=11; ages 52-77 years) were studied with spectral-domain optical coherence tomography. Macular location and characteristics of large drusen (≥125 μm) were determined. Thickness of photoreceptor laminae was quantified overlying drusen and in other macular regions. A patient with advanced AMD (age 87) was included to illustrate the disease spectrum.
In this AA patient cohort, the spectrum of changes known to occur in AMD, including large drusen, sub-retinal drusenoid deposits and geographic atrophy, were identified. In intermediate AMD eyes (n=17), there were 183 large drusen, the majority of which were pericentral in location. Overlying the drusen there was significant thinning of the photoreceptor outer nuclear layer (termed ONL+) as well as the inner and outer segments (IS+OS). The reductions in IS+OS thickness were directly related to ONL+ thickness. In a fraction (~8%) of paradrusen locations with normal lamination sampled within ~280 μm of peak drusen height, ONL+ was significantly thickened compared to age and retinal-location-matched normal values. Topographical maps of the macula confirmed ONL thickening in regions neighboring and distant to large drusen.
We confirm there is a pericentral distribution of drusen across AA-AMD maculae rather than the central localization in Caucasian AMD. Reductions in the photoreceptor laminae overlying drusen are evident. ONL+ thickening in some macular areas of AA-AMD eyes may be an early phenotypic marker for photoreceptor stress.
PMCID: PMC4489141  PMID: 24912073
drusen; optical coherence tomography; photoreceptor outer nuclear layer; African-American age-related macular degeneration
3.  TULP1 Mutations Causing Early-Onset Retinal Degeneration: Preserved but Insensitive Macular Cones 
To investigate visual function and outer and inner retinal structure in the rare form of retinal degeneration (RD) caused by TULP1 (tubby-like protein 1) mutations.
Retinal degeneration patients with TULP1 mutations (n = 5; age range, 5–36 years) were studied by kinetic and chromatic static perimetry, en face autofluorescence imaging, and spectral-domain optical coherence tomography (OCT) scans. Outer and inner retinal laminar thickness were measured and mapped across the central retina. Comparisons were made with results from patients with RD associated with four ciliopathy genotypes (MAK, RPGR, BBS1, and USH2A).
The TULP1-RD patients were severely affected already in the first decade of life and there was rapidly progressive visual loss. No evidence of rod function was present at any age. Small central islands showed melanized retinal pigment epithelium by autofluorescence imaging and well-preserved photoreceptor laminar thickness by OCT imaging. There was extracentral loss of laminar architecture and increased inner retinal thickening. Structure-function relationships in residual foveal cone islands were made in TULP1-RD patients and in other retinopathies considered ciliopathies. Patients with TULP1-RD, unlike the others, had greater dysfunction for the degree of foveal structural preservation.
Retinal degeneration with TULP1 mutations leads to a small central island of residual foveal cones at early ages. These cones are less sensitive than expected from the residual structure. The human phenotype is consistent with experimental evidence in the Tulp1 knockout mouse model that visual dysfunction could be complicated by abnormal processes proximal to cone outer segments.
Retinal degeneration caused by TULP1 mutations was studied for visual function and retinal microstructure. Rods were not detectable early in life. Foveal cone structure was retained despite severe visual loss. Deficiency of TULP1 has a more complex pathogenic effect on the photoreceptor than occurs in many ciliopathies.
PMCID: PMC4580213  PMID: 25074776
cilia; optical coherence tomography; Leber congenital amaurosis; rod; cone
4.  Human Cone Visual Pigment Deletions Spare Sufficient Photoreceptors to Warrant Gene Therapy 
Human Gene Therapy  2013;24(12):993-1006.
Human X-linked blue-cone monochromacy (BCM), a disabling congenital visual disorder of cone photoreceptors, is a candidate disease for gene augmentation therapy. BCM is caused by either mutations in the red (OPN1LW) and green (OPN1MW) cone photoreceptor opsin gene array or large deletions encompassing portions of the gene array and upstream regulatory sequences that would predict a lack of red or green opsin expression. The fate of opsin-deficient cone cells is unknown. We know that rod opsin null mutant mice show rapid postnatal death of rod photoreceptors. Using in vivo histology with high-resolution retinal imaging, we studied a cohort of 20 BCM patients (age range 5–58) with large deletions in the red/green opsin gene array. Already in the first years of life, retinal structure was not normal: there was partial loss of photoreceptors across the central retina. Remaining cone cells had detectable outer segments that were abnormally shortened. Adaptive optics imaging confirmed the existence of inner segments at a spatial density greater than that expected for the residual blue cones. The evidence indicates that human cones in patients with deletions in the red/green opsin gene array can survive in reduced numbers with limited outer segment material, suggesting potential value of gene therapy for BCM.
PMCID: PMC3868405  PMID: 24067079
5.  Predicting Progression of ABCA4-Associated Retinal Degenerations Based on Longitudinal Measurements of the Leading Disease Front 
To evaluate the progression of the earliest stage of disease in ABCA4-associated retinal degenerations (RDs).
Near-infrared excited reduced-illuminance autofluorescence imaging was acquired across the retina up to 80 degrees eccentricity in 44 patients with two ABCA4 alleles. The eccentricity of the leading disease front (LDF) corresponding to the earliest stage of disease was measured along the four meridians. A mathematical model describing the expansion of the LDF was developed based on 6 years of longitudinal follow-up.
The extent of LDF along the superior, inferior, and temporal meridians showed a wide spectrum from 3.5 to 70 degrees. In patients with longitudinal data, the average centrifugal expansion rate was 2 degrees per year. The nasal extent of LDF between the fovea and ONH ranged from 4.3 to 16.5 degrees and expanded at 0.35 degrees per year. The extent of LDF beyond ONH ranged from 19 to 75 degrees and expanded on average at 2 degrees per year. A mathematical model fit well to the longitudinal data describing the expansion of the LDF.
The eccentricity of the LDF in ABCA4-RD shows a continuum from parafovea to far periphery along all four meridians consistent with a wide spectrum of severity observed clinically. The model of progression may provide a quantitative prediction of the LDF expansion based on the age and eccentricity of the LDF at a baseline visit, and thus contribute significantly to the enrollment of candidates appropriate for clinical trials planning specific interventions, efficacy outcomes, and durations.
Centrifugal expansion rate of the earliest ABCA4 disease stages were studied in patients followed for 6 years. A predictive model of progression was developed based on the age and the eccentricity of the leading disease front.
PMCID: PMC4572941  PMID: 26377081
lipofuscin; melanin; atrophy; photoreceptors; autofluorescence; Stargardt disease; disease progression
6.  Inner and Outer Retinal Changes in Retinal Degenerations Associated With ABCA4 Mutations 
To investigate in vivo inner and outer retinal microstructure and effects of structural abnormalities on visual function in patients with retinal degeneration caused by ABCA4 mutations (ABCA4-RD).
Patients with ABCA4-RD (n = 45; age range, 9–71 years) were studied by spectral-domain optical coherence tomography (OCT) scans extending from the fovea to 30° eccentricity along horizontal and vertical meridians. Thicknesses of outer and inner retinal laminae were analyzed. Serial OCT measurements available over a mean period of 4 years (range, 2–8 years) allowed examination of the progression of outer and inner retinal changes. A subset of patients had dark-adapted chromatic static threshold perimetry.
There was a spectrum of photoreceptor layer thickness changes from localized central retinal abnormalities to extensive thinning across central and near midperipheral retina. The inner retina also showed changes. There was thickening of the inner nuclear layer (INL) that was mainly associated with regions of photoreceptor loss. Serial data documented only limited change in some patients while others showed an increase in outer nuclear layer (ONL) thinning accompanied by increased INL thickening in some regions imaged. Visual function in regions both with and without INL thickening was describable with a previously defined model based on photoreceptor quantum catch.
Inner retinal laminar abnormalities, as in other human photoreceptor diseases, can be a feature of ABCA4-RD. These changes are likely due to the retinal remodeling that accompanies photoreceptor loss. Rod photoreceptor-mediated visual loss in retinal regionswith inner laminopathy at the stages studied did not exceed the prediction from photoreceptor loss alone.
ABCA4-retinal degenerations were studied for inner retinal microstructural changes in patients representing a wide spectrum of outer retinopathy. Inner retinal laminar defects were associated with outer retinal abnormality. Visual dysfunction in retina with inner laminopathy was not more than expected from photoreceptor loss alone.
PMCID: PMC3968929  PMID: 24550365
retinal remodeling; optical coherence tomography; Stargardt disease
7.  Mutation Detection in Patients with Retinal Dystrophies Using Targeted Next Generation Sequencing 
PLoS ONE  2016;11(1):e0145951.
Retinal dystrophies (RD) constitute a group of blinding diseases that are characterized by clinical variability and pronounced genetic heterogeneity. The different nonsyndromic and syndromic forms of RD can be attributed to mutations in more than 200 genes. Consequently, next generation sequencing (NGS) technologies are among the most promising approaches to identify mutations in RD. We screened a large cohort of patients comprising 89 independent cases and families with various subforms of RD applying different NGS platforms. While mutation screening in 50 cases was performed using a RD gene capture panel, 47 cases were analyzed using whole exome sequencing. One family was analyzed using whole genome sequencing. A detection rate of 61% was achieved including mutations in 34 known and two novel RD genes. A total of 69 distinct mutations were identified, including 39 novel mutations. Notably, genetic findings in several families were not consistent with the initial clinical diagnosis. Clinical reassessment resulted in refinement of the clinical diagnosis in some of these families and confirmed the broad clinical spectrum associated with mutations in RD genes.
PMCID: PMC4713063  PMID: 26766544
8.  Improvement and Decline in Vision with Gene Therapy in Childhood Blindness 
The New England journal of medicine  2015;372(20):1920-1926.
Retinal gene therapy for Leber’s congenital amaurosis, an autosomal recessive childhood blindness, has been widely considered to be safe and efficacious. Three years after therapy, improvement in vision was maintained, but the rate of loss of photoreceptors in the treated retina was the same as that in the untreated retina. Here we describe long-term follow-up data from three treated patients. Topographic maps of visual sensitivity in treated regions, nearly 6 years after therapy for two of the patients and 4.5 years after therapy for the third patient, indicate progressive diminution of the areas of improved vision.
PMCID: PMC4450362  PMID: 25936984
9.  Rare and common variants in extracellular matrix gene Fibrillin 2 (FBN2) are associated with macular degeneration 
Human Molecular Genetics  2014;23(21):5827-5837.
Neurodegenerative diseases affecting the macula constitute a major cause of incurable vision loss and exhibit considerable clinical and genetic heterogeneity, from early-onset monogenic disease to multifactorial late-onset age-related macular degeneration (AMD). As part of our continued efforts to define genetic causes of macular degeneration, we performed whole exome sequencing in four individuals of a two-generation family with autosomal dominant maculopathy and identified a rare variant p.Glu1144Lys in Fibrillin 2 (FBN2), a glycoprotein of the elastin-rich extracellular matrix (ECM). Sanger sequencing validated the segregation of this variant in the complete pedigree, including two additional affected and one unaffected individual. Sequencing of 192 maculopathy patients revealed additional rare variants, predicted to disrupt FBN2 function. We then undertook additional studies to explore the relationship of FBN2 to macular disease. We show that FBN2 localizes to Bruch′s membrane and its expression appears to be reduced in aging and AMD eyes, prompting us to examine its relationship with AMD. We detect suggestive association of a common FBN2 non-synonymous variant, rs154001 (p.Val965Ile) with AMD in 10 337 cases and 11 174 controls (OR = 1.10; P-value = 3.79 × 10−5). Thus, it appears that rare and common variants in a single gene—FBN2—can contribute to Mendelian and complex forms of macular degeneration. Our studies provide genetic evidence for a key role of elastin microfibers and Bruch′s membrane in maintaining blood–retina homeostasis and establish the importance of studying orphan diseases for understanding more common clinical phenotypes.
PMCID: PMC4189898  PMID: 24899048
10.  Autofluorescence Imaging With Near-Infrared Excitation:Normalization by Reflectance to Reduce Signal From Choroidal Fluorophores 
We previously developed reduced-illuminance autofluorescence imaging (RAFI) methods involving near-infrared (NIR) excitation to image melanin-based fluorophores and short-wavelength (SW) excitation to image lipofuscin-based flurophores. Here, we propose to normalize NIR-RAFI in order to increase the relative contribution of retinal pigment epithelium (RPE) fluorophores.
Retinal imaging was performed with a standard protocol holding system parameters invariant in healthy subjects and in patients. Normalized NIR-RAFI was derived by dividing NIR-RAFI signal by NIR reflectance point-by-point after image registration.
Regions of RPE atrophy in Stargardt disease, AMD, retinitis pigmentosa, choroideremia, and Leber congenital amaurosis as defined by low signal on SW-RAFI could correspond to a wide range of signal on NIR-RAFI depending on the contribution from the choroidal component. Retinal pigment epithelium atrophy tended to always correspond to high signal on NIR reflectance. Normalizing NIR-RAFI reduced the choroidal component of the signal in regions of atrophy. Quantitative evaluation of RPE atrophy area showed no significant differences between SW-RAFI and normalized NIR-RAFI.
Imaging of RPE atrophy using lipofuscin-based AF imaging has become the gold standard. However, this technique involves bright SW lights that are uncomfortable and may accelerate the rate of disease progression in vulnerable retinas. The NIR-RAFI method developed here is a melanin-based alternative that is not absorbed by opsins and bisretinoid moieties, and is comfortable to view. Further development of this method may result in a nonmydriatic and comfortable imaging method to quantify RPE atrophy extent and its expansion rate.
Retinal pigment epithelium (RPE) lipofuscin imaging has become a standard but discomfort of bright short-wavelength lights and their potential to accelerate retinal disease remain concerning. Here, we use a novel near-infrared–based method to better image RPE melanin.
PMCID: PMC4455314  PMID: 26024124
autofluorescence; melanin; lipofuscin; infrared
11.  Intervisit Variability of Visual Parameters in Leber Congenital Amaurosis Caused by RPE65 Mutations 
To determine the intervisit variability of kinetic visual fields and visual acuity in patients with Leber congenital amaurosis (LCA) caused by mutations in the RPE65 (Retinal Pigment Epithelium–specific protein 65kDa) gene.
RPE65-LCA patients (n = 20; ages 11–40 years) were studied on at least two visits separated by fewer than 120 days using Goldmann visual field (GVF) and ETDRS visual acuity (VA) in a retrospective review. GVFs were quantified by computing the spherical coordinates of their vertices and calculating the solid angle subtended, and reported in normalized solid-angle units (nsu) as a percentage of average normal field extent. Repeatability coefficients were calculated using 95% confidence intervals on log10-converted variables.
Visual field extents in RPE65-LCA spanned a wide range from 4 to 95 nsu. The repeatability coefficient was 0.248 (log10nsu), suggesting cutoffs for significant change (in nsu) of +77% for improvement and −44% for worsening. VA in RPE65-LCA ranged from logMAR = 0.14 to 1.96 (20/40 to 20/1250). The repeatability coefficient was 0.170 (logMAR) (±8.5 ETDRS letters). Comparisons with published studies of ungenotyped retinitis pigmentosa showed that the RPE65-LCA patients had higher variability in kinetic field extent. VA variability in RPE65-LCA fell within reported results for retinitis pigmentosa.
Variability data for GVF and VA are provided to permit interpretation of the significance of increases and decreases of these functional outcomes in ongoing and planned clinical trials of therapy for LCA caused by RPE65 mutations.
RPE65-LCA was studied for intervisit variability of outcome measures currently used in clinical trials. Variability limits for visual acuity were like those in RP, but there was higher variability in kinetic visual fields, suggesting the need for a disease-specific approach.
PMCID: PMC3597193  PMID: 23341016
12.  Gene Therapy for Retinitis Pigmentosa Caused by MFRP Mutations: Human Phenotype and Preliminary Proof of Concept 
Human Gene Therapy  2011;23(4):367-376.
Autosomal recessive retinitis pigmentosa (RP), a heterogeneous group of degenerations of the retina, can be due to mutations in the MFRP (membrane-type frizzled-related protein) gene. A patient with RP with MFRP mutations, one of which is novel and the first splice site mutation reported, was characterized by noninvasive retinal and visual studies. The phenotype, albeit complex, suggested that this retinal degeneration may be a candidate for gene-based therapy. Proof-of-concept studies were performed in the rd6 Mfrp mutant mouse model. The fast-acting tyrosine-capsid mutant AAV8 (Y733F) vector containing the small chicken β-actin promoter driving the wild-type mouse Mfrp gene was used. Subretinal vector delivery on postnatal day 14 prevented retinal degeneration. Treatment rescued rod and cone photoreceptors, as assessed by electroretinography and retinal histology at 2 months of age. This AAV-mediated gene delivery also resulted in robust MFRP expression predominantly in its normal location within the retinal pigment epithelium apical membrane and its microvilli. The clinical features of MFRP-RP and our preliminary data indicating a response to gene therapy in the rd6 mouse suggest that this form of RP is a potential target for gene-based therapy.
In this proof-of-concept study, Dinculescu and colleagues demonstrate that subretinal delivery of a self-complementary tyrosine-capsid mutant AAV serotype 8 (AAV8) (Y733F) vector carrying the mouse Mfrp gene prevents retinal degeneration and rescues rod and cone photoreceptors in a mouse model of autosomal recessive retinitis pigmentosa.
PMCID: PMC3327606  PMID: 22142163
13.  Gene Therapy for Leber Congenital Amaurosis caused by RPE65 mutations: Safety and Efficacy in Fifteen Children and Adults Followed up to Three Years 
Archives of ophthalmology  2011;130(1):9-24.
To determine safety and efficacy of subretinal gene therapy in the RPE65 form of Leber congenital amaurosis using recombinant adeno-associated virus 2 (rAAV2) carrying human RPE65 gene.
Open-label, dose-escalation Phase I study of 15 patients (11-30 years) evaluated after subretinal injection of rAAV2-hRPE65 to the worse-functioning eye. Five cohorts represented four dose levels and two different injection strategies.
Main Outcome Measures
Primary outcomes were systemic and ocular safety. Secondary outcomes assayed visual function with dark-adapted full-field sensitivity testing and ETDRS visual acuity. Further assays included immune responses to the vector, static visual fields, pupillometry, mobility performance and OCT.
No systemic toxicity was detected; ocular adverse events were related to surgery. Visual function improved in all patients to different degrees; improvements were localized to treated areas. Cone and rod sensitivities increased significantly in study eyes but not control eyes. Minor acuity improvements were recorded in many study and control eyes. Major acuity improvements occurred in study eyes with the lowest entry acuities and parafoveal fixation loci treated with subretinal injections. Other patients with better foveal structure lost retinal thickness and acuity after subfoveal injections.
RPE65-LCA gene therapy is sufficiently safe and substantially efficacious to the extrafoveal retina. There is no benefit and some risk in treating the fovea. No evidence of age-dependent effects was found. Our results point to specific treatment strategies for subsequent phases.
Application to Clinical Practice
Gene therapy for inherited retinal disease has the potential to become a future part of clinical practice.
PMCID: PMC3600816  PMID: 21911650
14.  RPGR-Associated Retinal Degeneration in Human X-Linked RP and a Murine Model 
We investigated the retinal disease due to mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene in human patients and in an Rpgr conditional knockout (cko) mouse model.
XLRP patients with RPGR-ORF15 mutations (n = 35, ages at first visit 5–72 years) had clinical examinations, and rod and cone perimetry. Rpgr-cko mice, in which the proximal promoter and first exon were deleted ubiquitously, were back-crossed onto a BALB/c background, and studied with optical coherence tomography and electroretinography (ERG). Retinal histopathology was performed on a subset.
Different patterns of rod and cone dysfunction were present in patients. Frequently, there were midperipheral losses with residual rod and cone function in central and peripheral retina. Longitudinal data indicated that central rod loss preceded peripheral rod losses. Central cone-only vision with no peripheral function was a late stage. Less commonly, patients had central rod and cone dysfunction, but preserved, albeit abnormal, midperipheral rod and cone vision. Rpgr-cko mice had progressive retinal degeneration detectable in the first months of life. ERGs indicated relatively equal rod and cone disease. At late stages, there was greater inferior versus superior retinal degeneration.
RPGR mutations lead to progressive loss of rod and cone vision, but show different patterns of residual photoreceptor disease expression. Knowledge of the patterns should guide treatment strategies. Rpgr-cko mice had onset of degeneration at relatively young ages and progressive photoreceptor disease. The natural history in this model will permit preclinical proof-of-concept studies to be designed and such studies should advance progress toward human therapy.
Progress in treating canine RPGR disease prompted us to characterize patients with RPGR-ORF15 mutations and provide a detailed natural history of a novel Rpgr-mutant mouse for further proof-of-concept experiments.
PMCID: PMC3422104  PMID: 22807293
15.  Whole Exome Sequencing Reveals Mutations in Known Retinal Disease Genes in 33 out of 68 Israeli Families with Inherited Retinopathies 
Scientific Reports  2015;5:13187.
Whole exome sequencing (WES) is a powerful technique for identifying sequence changes in the human genome. The goal of this study was to delineate the genetic defects in patients with inherited retinal diseases (IRDs) using WES. WES was performed on 90 patient DNA samples from 68 families and 226 known genes for IRDs were analyzed. Sanger sequencing was used to validate potential pathogenic variants that were also subjected to segregation analysis in families. Thirty-three causative mutations (19 novel and 14 known) in 25 genes were identified in 33 of the 68 families. The vast majority of mutations (30 out of 33) have not been reported in the Israeli and the Palestinian populations. Nine out of the 33 mutations were detected in additional families from the same ethnic population, suggesting a founder effect. In two families, identified phenotypes were different from the previously reported clinical findings associated with the causative gene. This is the largest genetic analysis of IRDs in the Israeli and Palestinian populations to date. We also demonstrate that WES is a powerful tool for rapid analysis of known disease genes in large patient cohorts.
PMCID: PMC4549705  PMID: 26306921
16.  Outcome measure for the treatment of cone photoreceptor diseases: orientation to a scene with cone-only contrast 
BMC Ophthalmology  2015;15:98.
Inherited retinal degenerations (IRDs) preferentially affecting cone photoreceptor function are being considered for treatment trials aiming to improve day vision. The purpose of the current work was to develop cone-specific visual orientation outcomes that can differentiate day vision improvement in the presence of retained night vision.
A lighted wall (1.4 m wide, 2 m high) resembling a beaded curtain was formed with 900 individually addressable red, blue and green LED triplets placed in 15 vertical strips hanging 0.1 m apart. Under computer control, different combination of colors and intensities were used to produce the appearance of a door on the wall. Scotopically-matched trials were designed to be perceptible to the cone-, but not rod-, photoreceptor based visual systems. Unmatched control trials were interleaved at each luminance level to determine the existence of any vision available for orientation. Testing started with dark-adapted eyes and a scene luminance attenuated 8 log units from the maximum attainable, and continued with progressively increasing levels of luminance. Testing was performed with a three-alternative forced choice method in healthy subjects and patients with Leber congenital amaurosis (LCA) caused by mutations in GUCY2D, the gene that encodes retinal guanylate cyclase-1.
Normal subjects could perform the orientation task using cone vision at 5 log attenuation and brighter luminance levels. Most GUCY2D-LCA patients failed to perform the orientation task with scotopically-matched test trials at any luminance level even though they were able to perform correctly with unmatched control trials. These results were consistent with a lack of cone system vision and use of the rod system under ambient conditions normally associated with cone system activity. Two GUCY2D-LCA patients demonstrated remnant cone vision but at a luminance level 2 log brighter than normal.
The newly developed device can probe the existence or emergence of cone-based vision in patients for an orientation task involving the identification of a door on the wall under free-viewing conditions. This key advance represents progress toward developing an appropriate outcome measure for a clinical trial to treat currently incurable eye diseases severely affecting cone vision despite retained rod vision.
PMCID: PMC4528808  PMID: 26253563
Inherited retinal degenerations; Achromatopsia; Cone dystrophy; Cone-rod dystrophy; Blue-cone monochromacy; Leber congenital amaurosis; Orientation and mobility; Treatment trials; Outcome measures; Low vision
17.  Mutation analysis in the long isoform of USH2A in American patients with Usher Syndrome type II 
Journal of human genetics  2009;54(12):732-738.
Usher syndrome type II (USH2) is an autosomal recessive disorder characterized by moderate to severe hearing impairment and progressive visual loss due to retinitis pigmentosa (RP). To identify novel mutations and determine the frequency of USH2A mutations as a cause of USH2, we have carried out mutation screening of all 72 coding exons and exon–intron splice sites of the USH2A gene. A total of 20 USH2 American probands of European descent were analyzed using single strand conformational polymorphism (SSCP) and direct sequencing methods. Ten different USH2A mutations were identified in 55% of the probands, five of which were novel mutations. The detected mutations include three missense, three frameshifts and four nonsense mutations, with c.2299delG/p.E767fs mutation, accounting for 38.9% of the pathological alleles. Two cases were homozygotes, two cases were compound heterozygotes and one case had complex allele with three variants. In seven probands, only one USH2A mutation was detected and no pathological mutation was found in the remaining eight individuals. Altogether, our data support the fact that c.2299delG/p.E767fs is indeed the most common USH2A mutation found in USH2 patients of European Caucasian background. Thus, if screening for mutations in USH2A is considered, it is reasonable to screen for the c.2299delG mutation first.
PMCID: PMC4511341  PMID: 19881469
mutations; usherin; Usher syndrome; USH2; USH2A
18.  Retinal Disease Course in Usher Syndrome 1B Due to MYO7A Mutations 
The promise of clinical trials of treatment for Usher syndromes requires moving forward from the classic three clinical subtypes to some greater understanding of how the different USH diseases are expressed. Within this study's cohort of USH1B patients, there were differences in severity of rod disease and photoreceptor cell loss, and the study inquired whether the predicted consequence of the mutant MYO7A alleles could help explain the observed variations in phenotype.
To determine the disease course in Usher syndrome type IB (USH1B) caused by myosin 7A (MYO7A) gene mutations.
USH1B patients (n = 33, ages 2–61) representing 25 different families were studied by ocular examination, kinetic and chromatic static perimetry, dark adaptometry, and optical coherence tomography (OCT). Consequences of the mutant alleles were predicted.
All MYO7A patients had severely abnormal ERGs, but kinetic fields revealed regional patterns of visual loss that suggested a disease sequence. Rod-mediated vision could be lost to different degrees in the first decades of life. Cone vision followed a more predictable and slower decline. Central vision ranged from normal to reduced in the first four decades of life and thereafter was severely abnormal. Dark adaptation kinetics was normal. Photoreceptor layer thickness in a wide region of central retina could differ dramatically between patients of comparable ages; and there were examples of severe losses in childhood as well as relative preservation in patients in the third decade of life. Comparisons were made between the mutant alleles in mild versus more severe phenotypes.
A disease sequence in USH1B leads from generally full but impaired visual fields to residual small central islands. At most disease stages, there was preserved temporal peripheral field, a potential target for early phase clinical trials of gene therapy. From data comparing patients' rod disease in this cohort, the authors speculate that null MYO7A alleles could be associated with milder dysfunction and fewer photoreceptor structural losses at ages when other genotypes show more severe phenotypes.
PMCID: PMC3263772  PMID: 21873662
19.  Pseudo-Fovea Formation After Gene Therapy for RPE65-LCA 
The purpose of this study was to evaluate fixation location and oculomotor characteristics of 15 patients with Leber congenital amaurosis (LCA) caused by RPE65 mutations (RPE65-LCA) who underwent retinal gene therapy.
Eye movements were quantified under infrared imaging of the retina while the subject fixated on a stationary target. In a subset of patients, letter recognition under retinal imaging was performed. Cortical responses to visual stimulation were measured using functional magnetic resonance imaging (fMRI) in two patients before and after therapy.
All patients were able to fixate on a 1° diameter visible target in the dark. The preferred retinal locus of fixation was either at the anatomical fovea or at an extrafoveal locus. There were a wide range of oculomotor abnormalities. Natural history showed little change in oculomotor abnormalities if target illuminance was increased to maintain target visibility as the disease progressed. Eleven of 15 study eyes treated with gene therapy showed no differences from baseline fixation locations or instability over an average of follow-up of 3.5 years. Four of 15 eyes developed new pseudo-foveas in the treated retinal regions 9 to 12 months after therapy that persisted for up to 6 years; patients used their pseudo-foveas for letter identification. fMRI studies demonstrated that preservation of light sensitivity was restricted to the cortical projection zone of the pseudo-foveas.
The slow emergence of pseudo-foveas many months after the initial increases in light sensitivity points to a substantial plasticity of the adult visual system and a complex interaction between it and the progression of underlying retinal disease. The visual significance of pseudo-foveas suggests careful consideration of treatment zones for future gene therapy trials. ( number, NCT00481546.)
Oculomotor characteristics were examined in eyes before and after gene therapy. Pseudo-foveas developed slowly in treated regions, and patients learned to use them for letter identification. Cortical projection zones of pseudo-foveas were preserved over time.
PMCID: PMC4303042  PMID: 25537204
gene therapy; nystagmus; retinal degeneration
20.  Improvement in vision: a new goal for treatment of hereditary retinal degenerations 
Expert Opinion on Orphan Drugs  2015;3(5):563-575.
Introduction: Inherited retinal degenerations (IRDs) have long been considered untreatable and incurable. Recently, one form of early-onset autosomal recessive IRD, Leber congenital amaurosis (LCA) caused by mutations in RPE65 (retinal pigment epithelium-specific protein 65 kDa) gene, has responded with some improvement of vision to gene augmentation therapy and oral retinoid administration. This early success now requires refinement of such therapeutics to fully realize the impact of these major scientific and clinical advances.
Areas covered: Progress toward human therapy for RPE65-LCA is detailed from the understanding of molecular mechanisms to preclinical proof-of-concept research to clinical trials. Unexpected positive and complicating results in the patients receiving treatment are explained. Logical next steps to advance the clinical value of the therapeutics are suggested.
Expert opinion: The first molecularly based early-phase therapies for an IRD are remarkably successful in that vision has improved and adverse events are mainly associated with surgical delivery to the subretinal space. Yet, there are features of the gene augmentation therapeutic response, such as slowed kinetics of night vision, lack of foveal cone function improvement and relentlessly progressive retinal degeneration despite therapy, that still require research attention.
PMCID: PMC4487613  PMID: 26246977
gene therapy; Leber congenital amaurosis; photoreceptors; retina; retinal pigment epithelium; retinoid cycle
21.  Human CRB1-Associated Retinal Degeneration: Comparison with the rd8 Crb1-Mutant Mouse Model 
The common form of Leber congenital amaurosis (LCA) due to CRB1 mutations needs further characterization of the human disease and a test of relevance of currently available animal models. A cohort of these patients was evaluated, and the disease expression was compared to that of the rd8 mouse model, to seek answers to questions of how to move CRB1-LCA closer to therapy.
To investigate the human disease due to CRB1 mutations and compare results with the Crb1-mutant rd8 mouse.
Twenty-two patients with CRB1 mutations were studied. Function was assessed with perimetry and electroretinography (ERG) and retinal structure with optical coherence tomography (OCT). Cortical structure and function were quantified with magnetic resonance imaging (MRI). Rd8 mice underwent ERG, OCT, and retinal histopathology.
Visual acuities ranged from 20/25 to light perception. Rod ERGs were not detectable; small cone signals were recordable. By perimetry, small central visual islands were separated by midperipheral scotomas from far temporal peripheral islands. The central islands were cone mediated, whereas the peripheral islands retained some rod function. With OCT, there were small foveal islands of thinned outer nuclear layer (ONL) surrounded by thick delaminated retina with intraretinal hyperreflective lesions. MRI showed structurally normal optic nerves and only subtle changes to occipital lobe white and gray matter. Functional MRI indicated that whole-brain responses from patients were of reduced amplitude and spatial extent compared with those of normal controls. Rd8 mice had essentially normal ERGs; OCT and histopathology showed patchy retinal disorganization with pseudorosettes more pronounced in ventral than in dorsal retina. Photoreceptor degeneration was associated with dysplastic regions.
CRB1 mutations lead to early-onset severe loss of vision with thickened, disorganized, nonseeing retina. Impaired peripheral vision can persist in late disease stages. Rd8 mice also have a disorganized retina, but there is sufficient photoreceptor integrity to produce largely normal retinal function. Differences between human and mouse diseases will complicate proof-of-concept studies intended to advance treatment initiatives.
PMCID: PMC3176016  PMID: 21757580
22.  Blue Cone Monochromacy: Visual Function and Efficacy Outcome Measures for Clinical Trials 
PLoS ONE  2015;10(4):e0125700.
Blue Cone Monochromacy (BCM) is an X-linked retinopathy caused by mutations in the OPN1LW / OPN1MW gene cluster, encoding long (L)- and middle (M)-wavelength sensitive cone opsins. Recent evidence shows sufficient structural integrity of cone photoreceptors in BCM to warrant consideration of a gene therapy approach to the disease. In the present study, the vision in BCM is examined, specifically seeking clinically-feasible outcomes for a future clinical trial.
BCM patients (n = 25, ages 5–72) were studied with kinetic and static chromatic perimetry, full-field sensitivity testing, and eye movement recordings. Vision at the fovea and parafovea was probed with chromatic microperimetry.
Kinetic fields with a Goldmann size V target were generally full. Short-wavelength (S-) sensitive cone function was normal or near normal in most patients. Light-adapted perimetry results on conventional background lights were abnormally reduced; 600-nm stimuli were seen by rods whereas white stimuli were seen by both rods and S-cones. Under dark-adapted conditions, 500-nm stimuli were seen by rods in both BCM and normals. Spectral sensitivity functions in the superior retina showed retained rod and S-cone functions in BCM under dark-adapted and light-adapted conditions. In the fovea, normal subjects showed L/M-cone mediation using a 650-nm stimulus under dark-adapted conditions, whereas BCM patients had reduced sensitivity driven by rod vision. Full-field red stimuli on bright blue backgrounds were seen by L/M-cones in normal subjects whereas BCM patients had abnormally reduced and rod-mediated sensitivities. Fixation location could vary from fovea to parafovea. Chromatic microperimetry demonstrated a large loss of sensitivity to red stimuli presented on a cyan adapting background at the anatomical fovea and surrounding parafovea.
BCM rods continue to signal vision under conditions normally associated with daylight vision. Localized and retina-wide outcome measures were examined to evaluate possible improvement of L/M-cone-based vision in a clinical trial.
PMCID: PMC4409040  PMID: 25909963
23.  Expanded Clinical Spectrum of Enhanced S-Cone Syndrome 
JAMA ophthalmology  2013;131(10):1324-1330.
New funduscopic findings in patients with enhanced S-cone syndrome (ESCS) may help clinicians in diagnosing this rare autosomal recessive retinal dystrophy.
To expand the clinical spectrum of ESCS due to mutations in the NR2E3 gene.
Retrospective, noncomparative case series of 31 patients examined between 1983 and 2012.
Academic and private ophthalmology practices specialized in retinal dystrophies.
A cohort of patients diagnosed with ESCS and harboring known NR2E3 mutations.
Patients had ophthalmic examinations including visual function testing that led to the original diagnosis.
New fundus features captured with imaging modalities.
New clinical observations in ESCS include (1) torpedo-like, deep atrophic lesions with a small hyperpigmented rim, variably sized and predominantly located along the arcades; (2) circumferential fibrotic scars in the posterior pole with a spared center and large fibrotic scars around the optic nerve head; and (3) yellow dots in areas of relatively normal-appearing retina.
Enhanced S-cone syndrome has more pleiotropy than previously appreciated. While the nummular type of pigmentation at the level of the retinal pigment epithelium and cystoid or schisis-like maculopathy with typical functional findings remain classic hallmarks of the disease, changes such as circumferential fibrosis of the macula or peripapillary area and “torpedo-like” lesions along the vascular arcades may also direct the clinical diagnosis and focus on screening the NR2E3 gene for a molecular diagnosis.
PMCID: PMC4405536  PMID: 23989059
25.  Treatment of Leber Congenital Amaurosis Due to RPE65 Mutations by Ocular Subretinal Injection of Adeno-Associated Virus Gene Vector: Short-Term Results of a Phase I Trial 
Human Gene Therapy  2008;19(10):979-990.
Leber congenital amaurosis (LCA) is a group of autosomal recessive blinding retinal diseases that are incurable. One molecular form is caused by mutations in the RPE65 (retinal pigment epithelium-specific 65-kDa) gene. A recombinant adeno-associated virus serotype 2 (rAAV2) vector, altered to carry the human RPE65 gene (rAAV2-CBSB-hRPE65), restored vision in animal models with RPE65 deficiency. A clinical trial was designed to assess the safety of rAAV2-CBSB-hRPE65 in subjects with RPE65-LCA. Three young adults (ages 21–24 years) with RPE65-LCA received a uniocular subretinal injection of 5.96 × 1010 vector genomes in 150 μl and were studied with follow-up examinations for 90 days. Ocular safety, the primary outcome, was assessed by clinical eye examination. Visual function was measured by visual acuity and dark-adapted full-field sensitivity testing (FST); central retinal structure was monitored by optical coherence tomography (OCT). Neither vector-related serious adverse events nor systemic toxicities were detected. Visual acuity was not significantly different from baseline; one patient showed retinal thinning at the fovea by OCT. All patients self-reported increased visual sensitivity in the study eye compared with their control eye, especially noticeable under reduced ambient light conditions. The dark-adapted FST results were compared between baseline and 30–90 days after treatment. For study eyes, sensitivity increases from mean baseline were highly significant (p < 0.001); whereas, for control eyes, sensitivity changes were not significant (p = 0.99). Comparisons are drawn between the present work and two other studies of ocular gene therapy for RPE65-LCA that were carried out contemporaneously and reported.
PMCID: PMC2940541  PMID: 18774912

Results 1-25 (67)