PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (26)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Acknowledgement of Cilia’s reviewers in 2013 
Cilia  2014;3:1.
Contributing reviewers
We would like to thank the following experts for their assistance with the peer-review in 2013 for manuscripts submitted to Cilia. We greatly appreciate the voluntary contribution made to the journal by all our reviewers.
doi:10.1186/2046-2530-3-1
PMCID: PMC3899740  PMID: 24457102
2.  Dependence of Tumor Cell Lines and Patient-Derived Tumors on the NAD Salvage Pathway Renders Them Sensitive to NAMPT Inhibition with GNE-61812 
Neoplasia (New York, N.Y.)  2013;15(10):1151-1160.
Nicotinamide adenine dinucleotide (NAD) is a critical metabolite that is required for a range of cellular reactions. A key enzyme in the NAD salvage pathway is nicotinamide phosphoribosyl transferase (NAMPT), and here, we describe GNE-618, an NAMPT inhibitor that depletes NAD and induces cell death in vitro and in vivo. While cells proficient for nicotinic acid phosphoribosyl transferase (NAPRT1) can be protected from NAMPT inhibition as they convert nicotinic acid (NA) to NAD independent of the salvage pathway, this protection only occurs if NA is added before NAD depletion. We also demonstrate that tumor cells are unable to generate NAD by de novo synthesis as they lack expression of key enzymes in this pathway, thus providing a mechanistic rationale for the reliance of tumor cells on the NAD salvage pathway. Identifying tumors that are sensitive to NAMPT inhibition is one potential way to enhance the therapeutic effectiveness of an NAMPT inhibitor, and here, we show that NAMPT, but not NAPRT1, mRNA and protein levels inversely correlate with sensitivity to GNE-618 across a panel of 53 non-small cell lung carcinoma cell lines. Finally, we demonstrate that GNE-618 reduced tumor growth in a patient-derived model, which is thought to more closely represent heterogeneous primary patient tumors. Thus, we show that dependence of tumor cells on the NAD salvage pathway renders them sensitive to GNE-618 in vitro and in vivo, and our data support further evaluation of the use of NAMPT mRNA and protein levels as predictors of overall sensitivity.
PMCID: PMC3819631  PMID: 24204194
3.  Our thanks to Cilia’s reviewers 
Cilia  2013;2:4.
Contributing reviewers
We would like to thank all our reviewers for their contribution to the success of Cilia. Their voluntary participation has led to the launch of a new journal consistently publishing high quality articles and an intelligent peer review process for all our authors.
doi:10.1186/2046-2530-2-4
PMCID: PMC3599252  PMID: 23497485
4.  A Specific Form of Phospho Protein Phosphatase 2 Regulates Anaphase-promoting Complex/Cyclosome Association with Spindle Poles 
Molecular Biology of the Cell  2010;21(6):897-904.
The anaphase-promoting complex/cyclosome (APC/C) is phosphorylated in a cell cycle dependent manner. We discovered that a specific form of PPP2 is necessary for APC/C dephosphorylation in mitosis and that this dephosphorylation event regulates the association of the APC/C with mitotic spindle poles.
In early mitosis, the END (Emi1/NuMA/Dynein-dynactin) network anchors the anaphase-promoting complex/cyclosome (APC/C) to the mitotic spindle and poles. Spindle anchoring restricts APC/C activity, thereby limiting the destruction of spindle-associated cyclin B and ensuring maintenance of spindle integrity. Emi1 binds directly to hypophosphorylated APC/C, linking the APC/C to the spindle via NuMA. However, whether the phosphorylation state of the APC/C is important for its association with the spindle and what kinases and phosphatases are necessary for regulating this event remain unknown. Here, we describe the regulation of APC/C-mitotic spindle pole association by phosphorylation. We find that only hypophosphorylated APC/C associates with microtubule asters, suggesting that phosphatases are important. Indeed, a specific form of PPP2 (CA/R1A/R2B) binds APC/C, and PPP2 activity is necessary for Cdc27 dephosphorylation. Screening by RNA interference, we find that inactivation of CA, R1A, or R2B leads to delocalization of APC/C from spindle poles, early mitotic spindle defects, a failure to congress chromosomes, and decreased levels of cyclin B on the spindle. Consistently, inhibition of cyclin B/Cdk1 activity increased APC/C binding to microtubules. Thus, cyclin B/Cdk1 and PPP2 regulate the dynamic association of APC/C with spindle poles in early mitosis, a step necessary for proper spindle formation.
doi:10.1091/mbc.E09-07-0598
PMCID: PMC2836970  PMID: 20089842
5.  A high-content cellular senescence screen identifies candidate tumor suppressors, including EPHA3 
Cell Cycle  2013;12(4):625-634.
Activation of a cellular senescence program is a common response to prolonged oncogene activation or tumor suppressor loss, providing a physiological mechanism for tumor suppression in premalignant cells. The link between senescence and tumor suppression supports the hypothesis that a loss-of-function screen measuring bona fide senescence marker activation should identify candidate tumor suppressors. Using a high-content siRNA screening assay for cell morphology and proliferation measures, we identify 12 senescence-regulating kinases and determine their senescence marker signatures, including elevation of senescence-associated β-galactosidase, DNA damage and p53 or p16INK4a expression. Consistent with our hypothesis, SNP array CGH data supports loss of gene copy number of five senescence-suppressing genes across multiple tumor samples. One such candidate is the EPHA3 receptor tyrosine kinase, a gene commonly mutated in human cancer. We demonstrate that selected intracellular EPHA3 tumor-associated point mutations decrease receptor expression level and/or receptor tyrosine kinase (RTK) activity. Our study therefore describes a new strategy to mine for novel candidate tumor suppressors and provides compelling evidence that EPHA3 mutations may promote tumorigenesis only when key senescence-inducing pathways have been inactivated.
doi:10.4161/cc.23515
PMCID: PMC3594263  PMID: 23324396
DDR; EPHA3; RTK; p16INK4a; p53; senescence; tumor suppressor
6.  Chk1 inhibition in p53-deficient cell lines drives rapid chromosome fragmentation followed by caspase-independent cell death 
Cell Cycle  2013;13(2):303-314.
Activation of Checkpoint kinase 1 (Chk1) following DNA damage mediates cell cycle arrest to prevent cells with damaged DNA from entering mitosis. Here we provide a high-resolution analysis of cells as they undergo S- and G₂-checkpoint bypass in response to Chk1 inhibition with the selective Chk1 inhibitor GNE-783. Within 4–8 h of Chk1 inhibition following gemcitabine induced DNA damage, cells with both sub-4N and 4N DNA content prematurely enter mitosis. Coincident with premature transition into mitosis, levels of DNA damage dramatically increase and chromosomes condense and attempt to align along the metaphase plate. Despite an attempt to congress at the metaphase plate, chromosomes rapidly fragment and lose connection to the spindle microtubules. Gemcitabine mediated DNA damage promotes the formation of Rad51 foci; however, while Chk1 inhibition does not disrupt Rad51 foci that are formed in response to gemcitabine, these foci are lost as cells progress into mitosis. Premature entry into mitosis requires the Aurora, Cdk1/2 and Plk1 kinases and even though caspase-2 and -3 are activated upon mitotic exit, they are not required for cell death. Interestingly, p53, but not p21, deficiency enables checkpoint bypass and chemo-potentiation. Finally, we uncover a differential role for the Wee-1 checkpoint kinase in response to DNA damage, as Wee-1, but not Chk1, plays a more prominent role in the maintenance of S- and G₂-checkpoints in p53 proficient cells.
doi:10.4161/cc.27055
PMCID: PMC3906246  PMID: 24247149
Chk1; GNE-783; p53; gemcitabine; chemo-potentiation; checkpoint-bypass
7.  Cilia, tubby mice, and obesity 
Cilia  2013;2:1.
Primary cilia have been previously linked to the central regulation of satiety. The tubby mouse is characterized by maturity-onset obesity and blindness. A recent paper demonstrates molecular defects in trafficking of ciliary GPCRs in the central neurons of tubby mice, underscoring the role of ciliary signaling in the pathogenesis of this monogenic obesity syndrome.
Please see related Research article by Li et al., http://www.ciliajournal.com/content/1/1/21
doi:10.1186/2046-2530-2-1
PMCID: PMC3626941  PMID: 23351214
8.  The tubby family proteins 
Genome Biology  2011;12(6):225.
The tubby mouse shows a tripartite syndrome characterized by maturity-onset obesity, blindness and deafness. The causative gene Tub is the founding member of a family of related proteins present throughout the animal and plant kingdoms, each characterized by a signature carboxy-terminal tubby domain. This domain consists of a β barrel enclosing a central α helix and binds selectively to specific membrane phosphoinositides. The vertebrate family of tubby-like proteins (TULPs) includes the founding member TUB and the related TULPs, TULP1 to TULP4. Tulp1 is expressed in the retina and mutations in TULP1 cause retinitis pigmentosa in humans; Tulp3 is expressed ubiquitously in the mouse embryo and is important in sonic hedgehog (Shh)-mediated dorso-ventral patterning of the spinal cord. The amino terminus of these proteins is diverse and directs distinct functions. In the best-characterized example, the TULP3 amino terminus binds to the IFT-A complex, a complex important in intraflagellar transport in the primary cilia, through a short conserved domain. Thus, the tubby family proteins seem to serve as bipartite bridges through their phosphoinositide-binding tubby and unique amino-terminal functional domains, coordinating multiple signaling pathways, including ciliary G-protein-coupled receptor trafficking and Shh signaling. Molecular studies on this functionally diverse protein family are beginning to provide us with remarkable insights into the tubby-mouse syndrome and other related diseases.
doi:10.1186/gb-2011-12-6-225
PMCID: PMC3218838  PMID: 21722349
9.  Cilia develop long-lasting contacts, with other cilia 
Cilia  2012;1:5.
doi:10.1186/2046-2530-1-5
PMCID: PMC3541542  PMID: 23351843
10.  Cilia - the prodigal organelle 
Cilia  2012;1:1.
doi:10.1186/2046-2530-1-1
PMCID: PMC3541540  PMID: 23351984
11.  APC/CCdc20 targets E2F1 for degradation in prometaphase 
Cell Cycle  2010;9(19):3956-3964.
The mechanisms that control E2F-1 activity are complex. We previously showed that Chk1 and Chk2 are required for E2F1 stabilization and p73 target gene induction following DNA damage. To gain further insight into the processes regulating E2F1 protein stability, we focused our investigation on the mechanisms responsible for regulating E2F1 turnover. Here we show that E2F1 is a substrate of the anaphase-promoting complex or cyclosome (APC/C), a ubiquitin ligase that plays an important role in cell cycle progression. Ectopic expression of the APC/C activators Cdh1 and Cdc20 reduced the levels of co-expressed E2F-1 protein. Co-expression of DP1 with E2F1 blocked APC/C-induced E2F1 degradation, suggesting that the E2F1/DP1 heterodimer is protected from APC/C regulation. Following Cdc20 knockdown, E2F1 levels increased and remained stable in extracts over a time course, indicating that APC/CCdc20 is a primary regulator of E2F1 stability in vivo. Moreover, cell synchronization experiments showed that siRNA directed against Cdc20 induced an accumulation of E2F1 protein in prometaphase cells. These data suggest that APC/CCdc20 specifically targets E2F1 for degradation in early mitosis and reveal a novel mechanism for limiting free E2F1 levels in cells, failure of which may compromise cell survival and/or homeostasis.
doi:10.4161/cc.9.19.13162
PMCID: PMC3047753  PMID: 20948288
cell cycle; ubiquitination; E2F1; APC/C; Cdc20; Cdh1
12.  Live-Cell Microscopy Reveals Small Molecule Inhibitor Effects on MAPK Pathway Dynamics 
PLoS ONE  2011;6(8):e22607.
Oncogenic mutations in the mitogen activated protein kinase (MAPK) pathway are prevalent in human tumors, making this pathway a target of drug development efforts. Recently, ATP-competitive Raf inhibitors were shown to cause MAPK pathway activation via Raf kinase priming in wild-type BRaf cells and tumors, highlighting the need for a thorough understanding of signaling in the context of small molecule kinase inhibitors. Here, we present critical improvements in cell-line engineering and image analysis coupled with automated image acquisition that allow for the simultaneous identification of cellular localization of multiple MAPK pathway components (KRas, CRaf, Mek1 and Erk2). We use these assays in a systematic study of the effect of small molecule inhibitors across the MAPK cascade either as single agents or in combination. Both Raf inhibitor priming as well as the release from negative feedback induced by Mek and Erk inhibitors cause translocation of CRaf to the plasma membrane via mechanisms that are additive in pathway activation. Analysis of Erk activation and sub-cellular localization upon inhibitor treatments reveals differential inhibition and activation with the Raf inhibitors AZD628 and GDC0879 respectively. Since both single agent and combination studies of Raf and Mek inhibitors are currently in the clinic, our assays provide valuable insight into their effects on MAPK signaling in live cells.
doi:10.1371/journal.pone.0022607
PMCID: PMC3150364  PMID: 21829637
13.  A novel acetylation of β-tubulin by San modulates microtubule polymerization via down-regulating tubulin incorporation 
Molecular Biology of the Cell  2011;22(4):448-456.
We report that San, an acetyltransferase required for sister chromatid cohesion, also acetylates β-tubulin at lysine 252. The acetylation happens only on free tubulin heterodimers, and it delays the incorporation of modified tubulins into microtubules in vivo.
Dynamic instability is a critical property of microtubules (MTs). By regulating the rate of tubulin polymerization and depolymerization, cells organize the MT cytoskeleton to accommodate their specific functions. Among many processes, posttranslational modifications of tubulin are implicated in regulating MT functions. Here we report a novel tubulin acetylation catalyzed by acetyltransferase San at lysine 252 (K252) of β-tubulin. This acetylation, which is also detected in vivo, is added to soluble tubulin heterodimers but not tubulins in MTs. The acetylation-mimicking K252A/Q mutants were incorporated into the MT cytoskeleton in HeLa cells without causing any obvious MT defect. However, after cold-induced catastrophe, MT regrowth is accelerated in San-siRNA cells while the incorporation of acetylation-mimicking mutant tubulins is severely impeded. K252 of β-tubulin localizes at the interface of α-/β-tubulins and interacts with the phosphate group of the α-tubulin-bound GTP. We propose that the acetylation slows down tubulin incorporation into MTs by neutralizing the positive charge on K252 and allowing tubulin heterodimers to adopt a conformation that disfavors tubulin incorporation.
doi:10.1091/mbc.E10-03-0203
PMCID: PMC3038643  PMID: 21177827
14.  The Unique N-terminus of the UbcH10 E2 Enzyme Controls the Threshold for APC Activation and Enhances Checkpoint Regulation of the APC 
Molecular cell  2008;31(4):544.
Summary
In vitro, the Anaphase Promoting Complex (APC) E3 ligase functions with E2 ubiquitin conjugating enzymes of the E2–C and Ubc4/5 families to ubiquitinate substrates. However, only the use of the E2–C family, notably UbcH10, is genetically well validated. Here, we biochemically demonstrate preferential use of UbcH10 by the APC, specified by the E2 core domain. Importantly, an additional E2–E3 interaction mediated by the N-terminal extension of UbcH10 regulates APC activity. Mutating the highly conserved N-terminus increases substrate ubiquitination, the number of substrate lysines targeted, allows ubiquitination of APC substrates lacking their destruction-boxes, increases resistance to the APC inhibitors Emi1 and BubR1 in vitro, and bypasses the spindle checkpoint in vivo. Fusion of the UbcH10 N-terminus to UbcH5 restricts ubiquitination activity, but does not direct specific interactions with the APC. Thus, UbcH10 combines a specific E2–E3 interface and regulation via its N-terminal extension to limit APC activity for substrate selection and checkpoint control.
doi:10.1016/j.molcel.2008.07.014
PMCID: PMC2813190  PMID: 18722180
Mitosis; Emi1; Ubiquitin-Protein Ligases; UbcH10; Anaphase Promoting Complex; Spindle Assembly Checkpoint
15.  Maintenance of CSF arrest: A role for Cdc2 and PP2A-mediated regulation of Emi2 
Current biology : CB  2007;17(3):213-224.
Summary
Background
Vertebrate oocytes are arrested in metaphase II of meiosis prior to fertilization by cytostatic factor (CSF). CSF enforces a cell cycle arrest by inhibiting the anaphase promoting complex (APC), an E3 ubiquitin ligase that targets Cyclin B for degradation. Although Cyclin B synthesis is ongoing during CSF arrest, constant Cyclin B levels are maintained. To achieve this, oocytes allow continuous slow Cyclin B degradation, without eliminating the bulk of Cyclin B, which would induce release from CSF arrest. However, the mechanism that controls this continuous degradation is not understood.
Results
We report here the molecular details of a negative feedback loop wherein Cyclin B promotes its own destruction through Cdc2/Cyclin B-mediated phosphorylation and inhibition of the APC inhibitor, Emi2. Emi2 bound to the core APC and this binding was disrupted by Cdc2/Cyclin B, without affecting Emi2 protein stability. Cdc2 mediated phosphorylation of Emi2 was antagonized by PP2A, which could bind to Emi2 and promote Emi2-APC interactions.
Conclusions
Constant Cyclin B levels are maintained during a CSF arrest through the regulation of Emi2 activity. A balance between Cdc2 and PP2A controls Emi2 phosphorylation, which in turn controls the ability of Emi2 to bind to and inhibit the APC. This balance allows proper maintenance of Cyclin B levels and Cdc2 kinase activity during CSF arrest.
doi:10.1016/j.cub.2006.12.045
PMCID: PMC2790409  PMID: 17276914
16.  Cdc2 and Mos Regulate Emi2 Stability to Promote the Meiosis I–Meiosis II Transition 
Molecular Biology of the Cell  2008;19(8):3536-3543.
The transition of oocytes from meiosis I (MI) to meiosis II (MII) requires partial cyclin B degradation to allow MI exit without S phase entry. Rapid reaccumulation of cyclin B allows direct progression into MII, producing a cytostatic factor (CSF)-arrested egg. It has been reported that dampened translation of the anaphase-promoting complex (APC) inhibitor Emi2 at MI allows partial APC activation and MI exit. We have detected active Emi2 translation at MI and show that Emi2 levels in MI are mainly controlled by regulated degradation. Emi2 degradation in MI depends not on Ca2+/calmodulin-dependent protein kinase II (CaMKII), but on Cdc2-mediated phosphorylation of multiple sites within Emi2. As in MII, this phosphorylation is antagonized by Mos-mediated recruitment of PP2A to Emi2. Higher Cdc2 kinase activity in MI than MII allows sufficient Emi2 phosphorylation to destabilize Emi2 in MI. At MI anaphase, APC-mediated degradation of cyclin B decreases Cdc2 activity, enabling Cdc2-mediated Emi2 phosphorylation to be successfully antagonized by Mos-mediated PP2A recruitment. These data suggest a model of APC autoinhibition mediated by stabilization of Emi2; Emi2 proteins accumulate at MI exit and inhibit APC activity sufficiently to prevent complete degradation of cyclin B, allowing MI exit while preventing interphase before MII entry.
doi:10.1091/mbc.E08-04-0417
PMCID: PMC2488281  PMID: 18550795
17.  Loss of Emi1-Dependent Anaphase-Promoting Complex/Cyclosome Inhibition Deregulates E2F Target Expression and Elicits DNA Damage-Induced Senescence▿ † 
Molecular and Cellular Biology  2007;27(22):7955-7965.
Expression of the anaphase-promoting complex/cyclosome (APC/C) inhibitor Emi1 is required for the accumulation of APC/C substrates crucial for DNA synthesis and mitotic entry. We show that in vivo Emi1 expression correlates with the proliferative status of the cellular compartment and that cells lacking Emi1 undergo cellular senescence. Emi1 depletion leads to strong decreases in E2F target mRNA and APC/C substrate protein abundances. However, cyclin E mRNA and cyclin E protein levels and associated kinase activities are increased. Cells lacking Emi1 undergo DNA damage, likely explained by replication stress upon deregulated cyclin E- and A-associated kinase activities. Inhibition of ATM kinase prevents induction of senescence, implying that senescence is a consequence of DNA damage. Surprisingly, no senescence or no extensive amount of senescence is evident upon depletion of the Emi1-stabilizing factor Evi5 or Pin1, respectively. Our data suggest that maintenance of a protein stabilization/mRNA expression positive-feedback circuit fueled by Emi1 is required for accurate cell cycle progression, maintenance of DNA integrity, and prevention of cellular senescence.
doi:10.1128/MCB.00908-07
PMCID: PMC2169152  PMID: 17875940
18.  Cyclin E overexpression impairs progression through mitosis by inhibiting APCCdh1 
The Journal of Cell Biology  2007;178(3):371-385.
Overexpression of cyclin E, an activator of cyclin-dependent kinase 2, has been linked to human cancer. In cell culture models, the forced expression of cyclin E leads to aneuploidy and polyploidy, which is consistent with a direct role of cyclin E overexpression in tumorigenesis. In this study, we show that the overexpression of cyclin E has a direct effect on progression through the latter stages of mitotic prometaphase before the complete alignment of chromosomes at the metaphase plate. In some cases, such cells fail to divide chromosomes, resulting in polyploidy. In others, cells proceed to anaphase without the complete alignment of chromosomes. These phenotypes can be explained by an ability of overexpressed cyclin E to inhibit residual anaphase-promoting complex (APCCdh1) activity that persists as cells progress up to and through the early stages of mitosis, resulting in the abnormal accumulation of APCCdh1 substrates as cells enter mitosis. We further show that the accumulation of securin and cyclin B1 can account for the cyclin E–mediated mitotic phenotype.
doi:10.1083/jcb.200703202
PMCID: PMC2064850  PMID: 17664332
19.  Prophase I arrest and progression to metaphase I in mouse oocytes are controlled by Emi1-dependent regulation of APCCdh1 
The Journal of Cell Biology  2007;176(1):65-75.
Mammalian oocytes are arrested in prophase of the first meiotic division. Progression into the first meiotic division is driven by an increase in the activity of maturation-promoting factor (MPF). In mouse oocytes, we find that early mitotic inhibitor 1 (Emi1), an inhibitor of the anaphase-promoting complex (APC) that is responsible for cyclin B destruction and inactivation of MPF, is present at prophase I and undergoes Skp1–Cul1–F-box/βTrCP-mediated destruction immediately after germinal vesicle breakdown (GVBD). Exogenous Emi1 or the inhibition of Emi1 destruction in prophase-arrested oocytes leads to a stabilization of cyclin B1–GFP that is sufficient to trigger GVBD. In contrast, the depletion of Emi1 using morpholino oligonucleotides increases cyclin B1–GFP destruction, resulting in an attenuation of MPF activation and a delay of entry into the first meiotic division. Finally, we show that Emi1-dependent effects on meiosis I require the presence of Cdh1. These observations reveal a novel mechanism for the control of entry into the first meiotic division: an Emi1-dependent inhibition of APCCdh1.
doi:10.1083/jcb.200607070
PMCID: PMC2063628  PMID: 17190794
20.  Mouse Emi2 is required to enter meiosis II by reestablishing cyclin B1 during interkinesis 
The Journal of Cell Biology  2006;174(6):791-801.
During interkinesis, a metaphase II (MetII) spindle is built immediately after the completion of meiosis I. Oocytes then remain MetII arrested until fertilization. In mouse, we find that early mitotic inhibitor 2 (Emi2), which is an anaphase-promoting complex inhibitor, is involved in both the establishment and the maintenance of MetII arrest. In MetII oocytes, Emi2 needs to be degraded for oocytes to exit meiosis, and such degradation, as visualized by fluorescent protein tagging, occurred tens of minutes ahead of cyclin B1.
Emi2 antisense morpholino knockdown during oocyte maturation did not affect polar body (PB) extrusion. However, in interkinesis the central spindle microtubules from meiosis I persisted for a short time, and a MetII spindle failed to assemble. The chromatin in the oocyte quickly decondensed and a nucleus formed. All of these effects were caused by the essential role of Emi2 in stabilizing cyclin B1 after the first PB extrusion because in Emi2 knockdown oocytes a MetII spindle was recovered by Emi2 rescue or by expression of nondegradable cyclin B1 after meiosis I.
doi:10.1083/jcb.200604140
PMCID: PMC2064334  PMID: 16966421
21.  Inhibition of the anaphase-promoting complex by the Xnf7 ubiquitin ligase 
The Journal of Cell Biology  2005;169(1):61-71.
Degradation of specific protein substrates by the anaphase-promoting complex/cyclosome (APC) is critical for mitotic exit. We have identified the protein Xenopus nuclear factor 7 (Xnf7) as a novel APC inhibitor able to regulate the timing of exit from mitosis. Immunodepletion of Xnf7 from Xenopus laevis egg extracts accelerated the degradation of APC substrates cyclin B1, cyclin B2, and securin upon release from cytostatic factor arrest, whereas excess Xnf7 inhibited APC activity. Interestingly, Xnf7 exhibited intrinsic ubiquitin ligase activity, and this activity was required for APC inhibition. Unlike other reported APC inhibitors, Xnf7 did not associate with Cdc20, but rather bound directly to core subunits of the APC. Furthermore, Xnf7 was required for spindle assembly checkpoint function in egg extracts. These data suggest that Xnf7 is an APC inhibitor able to link spindle status to the APC through direct association with APC core components.
doi:10.1083/jcb.200411056
PMCID: PMC2171901  PMID: 15824132
22.  Plk1 Regulates Activation of the Anaphase Promoting Complex by Phosphorylating and Triggering SCFβTrCP-dependent Destruction of the APC Inhibitor Emi1 
Molecular Biology of the Cell  2004;15(12):5623-5634.
Progression through mitosis requires activation of cyclin B/Cdk1 and its downstream targets, including Polo-like kinase and the anaphase-promoting complex (APC), the ubiquitin ligase directing degradation of cyclins A and B. Recent evidence shows that APC activation requires destruction of the APC inhibitor Emi1. In prophase, phosphorylation of Emi1 generates a D-pS-G-X-X-pS degron to recruit the SCFβTrCP ubiquitin ligase, causing Emi1 destruction and allowing progression beyond prometaphase, but the kinases directing this phosphorylation remain undefined. We show here that the polo-like kinase Plk1 is strictly required for Emi1 destruction and that overexpression of Plk1 is sufficient to trigger Emi1 destruction. Plk1 stimulates Emi1 phosphorylation, βTrCP binding, and ubiquitination in vitro and cyclin B/Cdk1 enhances these effects. Plk1 binds to Emi1 in mitosis and the two proteins colocalize on the mitotic spindle poles, suggesting that Plk1 may spatially control Emi1 destruction. These data support the hypothesis that Plk1 activates the APC by directing the SCF-dependent destruction of Emi1 in prophase.
doi:10.1091/mbc.E04-07-0598
PMCID: PMC532041  PMID: 15469984
23.  Xenopus Cdc14α/β are localized to the nucleolus and centrosome and are required for embryonic cell division 
BMC Cell Biology  2004;5:27.
Background
The dual specificity phosphatase Cdc14 has been shown to be a critical regulator of late mitotic events in several eukaryotes, including S. cerevisiae, S. pombe. C. elegans and H. sapiens. However, Cdc14 homologs have clearly evolved to regulate distinct cellular processes and to respond to regulatory signals important for these processes. The human paralogs hCdc14A and B are the only vertebrate Cdc14 homologues studied to date, but their functions are not well understood. Therefore, it is of great interest to examine the function Cdc14 homologs in other vertebrate species.
Results
We identified two open reading frames from Xenopus laevis closely related to human Cdc14A, called XCdc14α and XCdc14β, although no obvious paralog of the hCdc14B was found. To begin a functional characterization of Xcdc14α and XCdc14β, we raised polyclonal antibodies against a conserved region. These antibodies stained both the nucleolus and centrosome in interphase Xenopus tissue culture cells, and the mitotic centrosomes. GFP-tagged version of XCdc14α localized to the nucleulus and GFP-XCdc14β localized to the centrosome, although not exclusively. XCdc14α was also both meiotically and mitotically phosphorylated. Injection of antibodies raised against a conserved region of XCdc14/β into Xenopus embryos at the two-cell stage blocked division of the injected blastomeres, suggesting that activities of XCdc14α/β are required for normal cell division.
Conclusion
These results provide evidence that XCdc14α/β are required for normal cellular division and are regulated by at least two mechanisms, subcellular localization and possibly phosphorylation. Due to the high sequence conservation between Xcdc14α and hCdc14A, it seems likely that both mechanisms will contribute to regulation of Cdc14 homologs in vertebrates.
doi:10.1186/1471-2121-5-27
PMCID: PMC481057  PMID: 15251038
24.  Disruption of Centrosome Structure, Chromosome Segregation, and Cytokinesis by Misexpression of Human Cdc14A Phosphatase 
Molecular Biology of the Cell  2002;13(7):2289-2300.
In budding yeast, the Cdc14p phosphatase activates mitotic exit by dephosphorylation of specific cyclin-dependent kinase (Cdk) substrates and seems to be regulated by sequestration in the nucleolus until its release in mitosis. Herein, we have analyzed the two human homologs of Cdc14p, hCdc14A and hCdc14B. We demonstrate that the human Cdc14A phosphatase is selective for Cdk substrates in vitro and that although the protein abundance and intrinsic phosphatase activity of hCdc14A and B vary modestly during the cell cycle, their localization is cell cycle regulated. hCdc14A dynamically localizes to interphase but not mitotic centrosomes, and hCdc14B localizes to the interphase nucleolus. These distinct patterns of localization suggest that each isoform of human Cdc14 likely regulates separate cell cycle events. In addition, hCdc14A overexpression induces the loss of the pericentriolar markers pericentrin and γ-tubulin from centrosomes. Overproduction of hCdc14A also causes mitotic spindle and chromosome segregation defects, defective karyokinesis, and a failure to complete cytokinesis. Thus, the hCdc14A phosphatase appears to play a role in the regulation of the centrosome cycle, mitosis, and cytokinesis, thereby influencing chromosome partitioning and genomic stability in human cells.
doi:10.1091/mbc.01-11-0535
PMCID: PMC117313  PMID: 12134069
25.  Cyclin E Uses Cdc6 as a Chromatin-Associated Receptor Required for DNA Replication 
The Journal of Cell Biology  2001;152(6):1267-1278.
Using an in vitro chromatin assembly assay in Xenopus egg extract, we show that cyclin E binds specifically and saturably to chromatin in three phases. In the first phase, the origin recognition complex and Cdc6 prereplication proteins, but not the minichromosome maintenance complex, are necessary and biochemically sufficient for ATP-dependent binding of cyclin E–Cdk2 to DNA. We find that cyclin E binds the NH2-terminal region of Cdc6 containing Cy–Arg-X-Leu (RXL) motifs. Cyclin E proteins with mutated substrate selection (Met-Arg-Ala-Ile-Leu; MRAIL) motifs fail to bind Cdc6, fail to compete with endogenous cyclin E–Cdk2 for chromatin binding, and fail to rescue replication in cyclin E–depleted extracts. Cdc6 proteins with mutations in the three consensus RXL motifs are quantitatively deficient for cyclin E binding and for rescuing replication in Cdc6-depleted extracts. Thus, the cyclin E–Cdc6 interaction that localizes the Cdk2 complex to chromatin is important for DNA replication. During the second phase, cyclin E–Cdk2 accumulates on chromatin, dependent on polymerase activity. In the third phase, cyclin E is phosphorylated, and the cyclin E–Cdk2 complex is displaced from chromatin in mitosis. In vitro, mitogen-activated protein kinase and especially cyclin B–Cdc2, but not the polo-like kinase 1, remove cyclin E–Cdk2 from chromatin. Rebinding of hyperphosphorylated cyclin E–Cdk2 to interphase chromatin requires dephosphorylation, and the Cdk kinase–directed Cdc14 phosphatase is sufficient for this dephosphorylation in vitro. These three phases of cyclin E association with chromatin may facilitate the diverse activities of cyclin E–Cdk2 in initiating replication, blocking rereplication, and allowing resetting of origins after mitosis.
PMCID: PMC2199215  PMID: 11257126
cyclin-dependent kinases; origin recognition complex; DNA replication; Cdc6; Cdc14

Results 1-25 (26)