PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (46)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Mutation Analysis of 18 Nephronophthisis-associated Ciliopathy Disease Genes using a DNA Pooling and Next-Generation Sequencing Strategy 
Journal of medical genetics  2010;48(2):105-116.
Background
Nephronophthisis-associated ciliopathies (NPHP-AC) comprise a group of autosomal recessive cystic kidney diseases that includes nephronophthisis (NPHP), Senior-Loken syndrome (SLS), Joubert syndrome (JBTS), and Meckel-Gruber syndrome (MKS). To date, causative mutations in NPHP-AC have been described for 18 different genes, rendering mutation analysis tedious and expensive. To overcome the broad genetic locus heterogeneity we devised a strategy of DNA pooling with consecutive massively parallel resequencing (MPR).
Methods
In 120 patients with severe NPHP-AC phenotypes we prepared 5 pools of genomic DNA with 24 patients each which were used as templates in order to PCR-amplify all 376 exons of 18 NPHP-AC genes (NPHP1, INVS, NPHP3, NPHP4, IQCB1, CEP290, GLIS2, RPGRIP1L, NEK8, TMEM67, INPP5E, TMEM216, AHI1, ARL13B, CC2D2A, TTC21B, MKS1, and XPNPEP3). PCR products were then subjected to MPR on a Illumina Genome-Analyzer and mutations were subsequently assigned to their respective mutation carrier via CEL I endonuclease-based heteroduplex screening and confirmed by Sanger sequencing.
Results
For proof of principle we used DNA from patients with known mutations and demonstrated the detection of 22 out of 24 different alleles (92% sensitivity). MPR led to the molecular diagnosis in 30/120 patients (25%) and we identified 54 pathogenic mutations (27 novel) in 7 different NPHP-AC genes. Additionally, in 24 patients we only found single heterozygous variants of unknown significance.
Conclusions
The combined approach of DNA pooling followed by MPR strongly facilitates mutation analysis in broadly heterogeneous single-gene disorders. The lack of mutations in 75% of patients in our cohort indicates further extensive heterogeneity in NPHP-AC.
doi:10.1136/jmg.2010.082552
PMCID: PMC3913043  PMID: 21068128
Next-generation sequencing; Ciliopathy; Nephronophthisis
2.  ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3 
Nature genetics  2013;45(8):951-956.
Nephronophthisis (NPH) is an autosomal recessive cystic kidney disease that leads to renal failure in childhood or adolescence. Most NPHP gene products form molecular networks. We have identified ANKS6 as a new NPHP family member that connects NEK8 (NPHP9) to INVERSIN (INVS, NPHP2) and NPHP3 to form a distinct NPHP module. ANKS6 localizes to the proximal cilium and knockdown experiments in zebrafish and Xenopus confirmed a role in renal development. Genetic screening identified six families with ANKS6 mutations and NPH, including severe cardiovascular abnormalities, liver fibrosis and situs inversus. The oxygen sensor HIF1AN (FIH) hydroxylates ANKS6 and INVS, while knockdown of Hif1an in Xenopus resembled the loss of other NPHP proteins. HIF1AN altered the composition of the ANKS6/INVS/NPHP3 module. Network analyses, uncovering additional putative NPHP-associated genes, placed ANKS6 at the center of the NPHP module, explaining the overlapping disease manifestation caused by mutations of either ANKS6, NEK8, INVS or NPHP3.
doi:10.1038/ng.2681
PMCID: PMC3786259  PMID: 23793029
3.  Effect of vanillic acid on COQ6 mutants identified in patients with coenzyme Q10 deficiency☆ 
Biochimica et Biophysica Acta  2014;1842(1):1-6.
Human COQ6 encodes a monooxygenase which is responsible for the C5-hydroxylation of the quinone ring of coenzyme Q (CoQ). Mutations in COQ6 cause primary CoQ deficiency, a condition responsive to oral CoQ10 supplementation. Treatment is however still problematic given the poor bioavailability of CoQ10. We employed S. cerevisiae lacking the orthologous gene to characterize the two different human COQ6 isoforms and the mutations found in patients. COQ6 isoform a can partially complement the defective yeast, while isoform b, which lacks part of the FAD-binding domain, is inactive but partially stable, and could have a regulatory/inhibitory function in CoQ10 biosynthesis. Most mutations identified in patients, including the frameshift Q461fs478X mutation, retain residual enzymatic activity, and all patients carry at least one hypomorphic allele, confirming that the complete block of CoQ biosynthesis is lethal. These mutants are also partially stable and allow the assembly of the CoQ biosynthetic complex. In fact treatment with two hydroxylated analogues of 4-hydroxybenzoic acid, namely, vanillic acid or 3-4-hydroxybenzoic acid, restored the respiratory growth of yeast Δcoq6 cells expressing the mutant huCOQ6-isoa proteins. These compounds, and particularly vanillic acid, could therefore represent an interesting therapeutic option for COQ6 patients.
Highlights
•Human COQ6 alleles are hypomorphic•Human COQ6 mutations are catalytically inactive but stable•4-Hydroxybenzoate analogues can bypass the CoQ deficiency due to COQ6 mutations•Vanillic acid could represent a potential therapeutic agent for this condition
doi:10.1016/j.bbadis.2013.10.007
PMCID: PMC3898990  PMID: 24140869
COQ6, flavin-dependent monooxygenase; CoQ, coenzyme Q; CoQ10, coenzyme Q10; 4HB, 4-hydroxybenzoate; VA, vanillic acid; 3,4 diHB, 3,4 dihydroxybenzoic acid; SRNS, steroid resistant nephrotic syndrome; CYC1, cytochrome c1; pHBH, para-hydroxybenzoate hydroxylase; FAD, flavin adenine dinucleotide; COQ8-ADCK3, aarF domain containing kinase 3; Coenzyme Q; Vanillic acid; COQ6; Steroid-resistant nephrotic syndrome
4.  Identification of two novel CAKUT-causing genes by massively parallel exon resequencing of candidate genes in patients with unilateral renal agenesis 
Kidney international  2011;81(2):10.1038/ki.2011.315.
Congenital abnormalities of the kidney and urinary tract (CAKUT) constitute the most frequent cause of chronic kidney disease in children, accounting for ~50% of all cases. Although many forms of CAKUT are likely caused by single-gene defects, only few causative genes have been identified. To identify new causative genes many candidate genes need to be analyzed due to the broad genetic locus heterogeneity of CAKUT. We therefore applied our newly developed approach of DNA pooling with consecutive massively parallel exon resequencing to overcome this problem. We pooled DNA of 20 individuals and amplified by PCR all 313 exons of 30 CAKUT candidate genes. PCR products were then subjected to massively parallel exon resequencing. Mutation carriers were identified using Sanger sequencing. We repeated the experiment to cover 40 patients in total (29 with unilateral renal agenesis and 11 with other CAKUT phenotypes). We detected 5 heterozygous missense mutations in 2 candidate genes that were not previously implicated in non-syndromic CAKUT in humans, 4 mutations in the FRAS1 gene and 1 in FREM2. All mutations were absent from 96 healthy control individuals and had a PolyPhen score of >1.4 (“possibly damaging”). Recessive truncating mutations in FRAS1 and FREM2 were known to cause Fraser syndrome in humans and mice, whereas a phenotype in heterozygous carriers has not been described. We hereby identify heterozygous missense mutations in FRAS1 and FREM2 as a new cause of non-syndromic CAKUT in human.
doi:10.1038/ki.2011.315
PMCID: PMC3836012  PMID: 21900877
5.  Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination 
Nature genetics  2003;34(4):413-420.
Nephronophthisis (NPHP), an autosomal recessive cystic kidney disease, leads to chronic renal failure in children. The genes mutated in NPHP1 and NPHP4 have been identified, and a gene locus associated with infantile nephronophthisis (NPHP2) was mapped. The kidney phenotype of NPHP2 combines clinical features of NPHP and polycystic kidney disease (PKD). Here, we identify inversin (INVS) as the gene mutated in NPHP2 with and without situs inversus. We show molecular interaction of inversin with nephrocystin, the product of the gene mutated in NPHP1 and interaction of nephrocystin with β-tubulin, a main component of primary cilia. We show that nephrocystin, inversin and β-tubulin colocalize to primary cilia of renal tubular cells. Furthermore, we produce a PKD-like renal cystic phenotype and randomization of heart looping by knockdown of invs expression in zebrafish. The interaction and colocalization in cilia of inversin, nephrocystin and β-tubulin connect pathogenetic aspects of NPHP to PKD, to primary cilia function and to left-right axis determination.
doi:10.1038/ng1217
PMCID: PMC3732175  PMID: 12872123
6.  ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling  
The Journal of Clinical Investigation  2013;123(8):3243-3253.
Nephrotic syndrome (NS) is divided into steroid-sensitive (SSNS) and -resistant (SRNS) variants. SRNS causes end-stage kidney disease, which cannot be cured. While the disease mechanisms of NS are not well understood, genetic mapping studies suggest a multitude of unknown single-gene causes. We combined homozygosity mapping with whole-exome resequencing and identified an ARHGDIA mutation that causes SRNS. We demonstrated that ARHGDIA is in a complex with RHO GTPases and is prominently expressed in podocytes of rat glomeruli. ARHGDIA mutations (R120X and G173V) from individuals with SRNS abrogated interaction with RHO GTPases and increased active GTP-bound RAC1 and CDC42, but not RHOA, indicating that RAC1 and CDC42 are more relevant to the pathogenesis of this SRNS variant than RHOA. Moreover, the mutations enhanced migration of cultured human podocytes; however, enhanced migration was reversed by treatment with RAC1 inhibitors. The nephrotic phenotype was recapitulated in arhgdia-deficient zebrafish. RAC1 inhibitors were partially effective in ameliorating arhgdia-associated defects. These findings identify a single-gene cause of NS and reveal that RHO GTPase signaling is a pathogenic mediator of SRNS.
doi:10.1172/JCI69134
PMCID: PMC3726174  PMID: 23867502
7.  MYO1E MUTATIONS AND CHILDHOOD FAMILIAL FOCAL SEGMENTAL GLOMERULOSCLEROSIS 
The New England journal of medicine  2011;365(4):295-306.
Background
Focal segmental glomerulosclerosis (FSGS) is a kidney disease that presents with nephrotic syndrome and is often resistant to glucocorticosteroids and progresses to end-stage kidney disease in 50–70% of patients. Genetic studies in familial FSGS indicate that it is a disease of the podocytes, major components of the glomerular filtration barrier. However the molecular cause of over half of primary FSGS is unknown, and effective treatments have been elusive.
Methods
We performed whole-genome linkage analysis followed by high-throughput sequencing of the positive linkage area in a family with autosomal recessive FSGS and sequenced a newly discovered gene in 52 unrelated FSGS patients. Immunohistochemistry was performed in human kidney biopsies and cultured podocytes. Expression studies in vitro were performed to characterize the functional consequences of the mutations identified.
Results
Two mutations (A159P and Y695X) in MYO1E, encoding the non-muscle class I myosin, myosin 1E (Myo1E), which segregated with FSGS in two independent pedigrees were identified. Patients were homozygous for the mutations and were resistant to glucocorticosteroids. Electron microscopy showed thickening and disorganization of the glomerular basement membrane. Normal expression of Myo1E was documented in control human kidney biopsies in vivo and in glomerular podocytes in vitro. Transfection studies revealed abnormal subcellular localization and function of A159P-Myo1E mutant. The Y695X mutation causes loss of calmodulin binding and the tail domains of Myo1E.
Conclusions
MYO1E mutations lead to childhood onset steroid-resistant FSGS. These data support a role of Myo1E in podocyte function and the consequent integrity of the glomerular permselectivity barrier.
doi:10.1056/NEJMoa1101273
PMCID: PMC3701523  PMID: 21756023
8.  Evolutionarily Assembled cis-Regulatory Module at a Human Ciliopathy Locus 
Science (New York, N.Y.)  2012;335(6071):966-969.
Neighboring genes are often coordinately expressed within cis-regulatory modules, but evidence that nonparalogous genes share functions in mammals is lacking. Here, we report that mutation of either TMEM138 or TMEM216 causes a phenotypically indistinguishable human ciliopathy, Joubert syndrome. Despite a lack of sequence homology, the genes are aligned in a head-to-tail configuration and joined by chromosomal rearrangement at the amphibian-to-reptile evolutionary transition. Expression of the two genes is mediated by a conserved regulatory element in the noncoding intergenic region. Coordinated expression is important for their interdependent cellular role in vesicular transport to primary cilia. Hence, during vertebrate evolution of genes involved in ciliogenesis, nonparalogous genes were arranged to a functional gene cluster with shared regulatory elements.
doi:10.1126/science.1213506
PMCID: PMC3671610  PMID: 22282472
9.  FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair 
Nature genetics  2012;44(8):910-915.
SUMMARY
Chronic kidney disease (CKD) represents a major health burden1. Its central feature of renal fibrosis is not well understood. By whole exome resequencing in a model disorder for renal fibrosis, nephronophthisis (NPHP), we identified mutations of Fanconi anemia-associated nuclease 1 (FAN1) as causing karyomegalic interstitial nephritis (KIN). Renal histology of KIN is indistinguishable from NPHP except for the presence of karyomegaly2. FAN1 has nuclease activity, acting in DNA interstrand crosslinking (ICL) repair within the Fanconi anemia pathway of DNA damage response (DDR)3–6. We demonstrate that cells from individuals with FAN1 mutations exhibit sensitivity to the ICL agent mitomycin C. However, they do not exhibit chromosome breakage or cell cycle arrest after diepoxybutane treatment, unlike cells from patients with Fanconi anemia. We complement ICL sensitivity with wild type FAN1 but not mutant cDNA from individuals with KIN. Depletion of fan1 in zebrafish revealed increased DDR, apoptosis, and kidney cysts akin to NPHP. Our findings implicate susceptibility to environmental genotoxins and inadequate DNA repair as novel mechanisms of renal fibrosis and CKD.
doi:10.1038/ng.2347
PMCID: PMC3412140  PMID: 22772369
10.  Autosomal Dominant Mutation in the Signal Peptide of Renin in a Kindred with Anemia, Hyperuricemia, and CKD 
Homozygous or compound heterozygous Renin (REN) mutations cause renal tubular dysgenesis (RTD), which is characterized by death in utero due to renal failure and pulmonary hypoplasia. The phenotype resembles the fetopathy caused by angiotensin-converting enzyme inhibitor or angiotensin receptor blocker intake during pregnancy. Recently, heterozygous REN mutations were shown to result in early-onset hyperuricemia, anemia and chronic renal failure. So far, only three different heterozygous REN mutations were reported.
We performed mutation analysis of the REN gene in 39 kindreds with hyperuricemia and chronic kidney disease (CKD) previously tested negative for mutations in the UMOD and HNF1β genes. We identified one kindred with a novel c.28T>C (p.W10R) REN mutation in the signal sequence, concluding that REN mutations are rare events in CKD patients. Affected individuals over four generations were identified carrying the novel REN mutation and were characterized by significant anemia, hyperuricemia and CKD. Anemia was severe and disproportional to the degree of renal impairment. Moreover all heterozygous REN mutations are localized in the signal sequence. Therefore, screening of the REN gene for CKD patients with hyperuricemia and anemia may be focusing on exon 1 sequencing, which encodes the signal peptide.
doi:10.1053/j.ajkd.2011.06.029
PMCID: PMC3366501  PMID: 21903317
11.  Integrin α3 Mutations with Kidney, Lung, and Skin Disease 
The New England Journal of Medicine  2012;366(16):1508-1514.
SUMMARY
Integrin α3 is a transmembrane integrin receptor subunit that mediates signals between the cells and their microenvironment. We identified three patients with homozygous mutations in the integrin α3 gene that were associated with disrupted basement-membrane structures and compromised barrier functions in kidney, lung, and skin. The patients had a multiorgan disorder that included congenital nephrotic syndrome, interstitial lung disease, and epidermolysis bullosa. The renal and respiratory features predominated, and the lung involvement accounted for the lethal course of the disease. Although skin fragility was mild, it provided clues to the diagnosis.
doi:10.1056/NEJMoa1110813
PMCID: PMC3341404  PMID: 22512483
12.  Exome Capture and Massively Parallel Sequencing Identifies a Novel HPSE2 Mutation in a Saudi Arabian Child with Ochoa (Urofacial) Syndrome 
Journal of pediatric urology  2011;7(5):569-573.
We describe a child of Middle Eastern descent by first-cousin mating with idiopathic neurogenic bladder and high grade vesicoureteral reflux at 1 year of age, whose characteristic facial grimace led to the diagnosis of Ochoa (Urofacial) syndrome at age 5 years. We used homozygosity mapping, exome capture and paired end sequencing to identify the disease causing mutation in the proband. We reviewed the literature with respect to the urologic manifestations of Ochoa syndrome. A large region of marker homozygosity was observed at 10q24, consistent with known autosomal recessive inheritance, family consanguinity and previous genetic mapping in other families with Ochoa syndrome. A homozygous mutation was identified in the proband in HPSE2: c.1374_1378delTGTGC, a deletion of 5 nucleotides in exon 10 that is predicted to lead to a frameshift followed by replacement of 132 C-terminal amino acids with 153 novel amino acids (p.Ala458Alafsdel132ins153). This mutation is novel relative to very recently published mutations in HPSE2 in other families. Early intervention and recognition of Ochoa syndrome with control of risk factors and close surveillance will decrease complications and renal failure.
doi:10.1016/j.jpurol.2011.02.034
PMCID: PMC3157539  PMID: 21450525
Ochoa syndrome; Urofacial syndrome; HPSE2 mutation; Neurogenic bladder
13.  Spectrum of Clinical Diseases Caused By Disorders of Primary Cilia 
The ciliopathies are a category of diseases caused by disruption of the physiological functions of cilia. Ciliary dysfunction results in a broad range of phenotypes, including renal, hepatic, and pancreatic cyst formation; situs abnormalities; retinal degeneration; anosmia; cerebellar or other brain anomalies; postaxial polydactyly; bronchiectasis; and infertility. The specific clinical features are dictated by the subtype, structure, distribution, and function of the affected cilia. This review highlights the clinical variability caused by dysfunction of motile and nonmotile primary cilia and emphasizes the genetic heterogeneity and phenotypic overlap that are characteristics of these disorders. There is a need for additional research to understand the shared and unique functions of motile and nonmotile cilia and the pathophysiology resulting from mutations in cilia, basal bodies, or centrosomes. Increased understanding of ciliary biology will improve the diagnosis and management of primary ciliary dyskinesia, syndromic ciliopathies, and cilia-related cystic diseases.
doi:10.1513/pats.201103-025SD
PMCID: PMC3209578  PMID: 21926397
primary cilia; ciliopathy; heterotaxy; nephronophthisis; cyst
14.  CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium 
Nature Genetics  2012;44(2):193-199.
Tubulin glutamylation is a post-translational modification (PTM) occurring predominantly on ciliary axonemal tubulin and has been suggested to be important for ciliary function 1,2. However, its relationship to disorders of the primary cilium, termed ‘ciliopathies’, has not been explored. Here, in Joubert syndrome (JBTS) 3, we identify the JBTS15 locus and the responsible gene as CEP41, encoding a centrosomal protein of 41 KDa 4. We show that CEP41 is localized to the basal body/primary cilium, and regulates the ciliary entry of TTLL6, an evolutionarily conserved polyglutamylase enzyme 5. Depletion of CEP41 causes ciliopathy-related phenotypes in zebrafish and mouse, and induces cilia axonemal glutamylation defects. Our data identify loss of CEP41 as a cause of JBTS ciliopathy and highlight involvement of tubulin PTM in pathogenesis of the ciliopathy spectrum.
doi:10.1038/ng.1078
PMCID: PMC3267856  PMID: 22246503
15.  Centrosomes and Cilia in Human Disease 
Trends in genetics : TIG  2011;27(8):307-315.
Centrioles are microtubule-derived structures that are essential to form centrosomes, cilia and flagella. The centrosome is the major microtubule organiser in animal cells, participating in a variety of processes from cell polarization to cell division, while cilia and flagella contribute to several mechanisms in eukaryotic cells from motility to sensing. Although it was suggested more than a century ago that these microtubule-derived structures are involved in human disease, the molecular bases of this association have only recently been discovered. Surprisingly, there is very little overlap between the genes affected in the different diseases, suggesting there are tissue-specific requirements for these microtubule-derived structures. Knowledge of these requirements and disease mechanisms has opened new avenues for therapeutical strategies. Here, we give an overview of recent developments in this field focusing on cancer, diseases of brain development and ciliopathies.
doi:10.1016/j.tig.2011.05.004
PMCID: PMC3144269  PMID: 21680046
16.  Mapping the Nephronophthisis-Joubert-Meckel-Gruber Protein Network Reveals Ciliopathy Disease Genes and Pathways 
Cell  2011;145(4):513-528.
Nephronophthisis (NPHP), Joubert (JBTS) and Meckel-Gruber (MKS) syndromes are autosomal-recessive ciliopathies presenting with cystic kidneys, retinal degeneration, and cerebellar/neural tube malformation. Whether defects in kidney, retinal, or neural disease primarily involve ciliary, Hedgehog, or cell polarity pathways remains unclear. Using high-confidence proteomics, we identified 850 interactors copurifying with nine NPHP/JBTS/MKS proteins, and discovered three connected modules: “NPHP1-4-8” functioning at the apical surface; “NPHP5-6” at centrosomes; and “MKS” linked to Hedgehog signaling. Assays for ciliogenesis and epithelial morphogenesis in 3D renal cultures link renal cystic disease to apical organization defects, whereas ciliary and Hedgehog pathway defects lead to retinal or neural deficits. Using 38 interactors as candidates, linkage and sequencing analysis of 250 patients identified ATXN10 and TCTN2 as new NPHP-JBTS genes and our Tctn2 mouse knockout shows neural tube and Hedgehog signaling defects. Our study further illustrates the power of linking proteomic networks and human genetics to uncover critical disease pathways.
doi:10.1016/j.cell.2011.04.019
PMCID: PMC3383065  PMID: 21565611
17.  Pseudodominant inheritance of nephronophthisis caused by a homozygous NPHP1 deletion 
Nephronophthisis (NPHP) is an autosomal recessive kidney disease characterized by tubular basement membrane disruption, interstitial infiltration, and tubular cysts. NPHP leads to end-stage renal failure in the first two decades of life and is the most frequent genetic cause of chronic renal failure in children and young adults. Mutations in eleven genes (NPHP1-11) have been identified. Extrarenal manifestations are known, such as retinitis pigmentosa (Senior-Løken syndrome, SLS), brainstem and cerebellar anomalies (Joubert syndrome), liver fibrosis, and ocular motor apraxia type Cogan.
We report on a Turkish family with clinical signs of nephronophthisis. The phenotype occurred in two generations and therefore seemed to be inherited in an autosomal dominant pattern. Nevertheless, a deletion analysis of the NPHP1 gene on chromosome 2 was performed and showed a homozygous deletion. Analysis of the family pedigree indicated no obvious consanguinity in the last three generations. However, haplotype analysis demonstrated homozygosity on chromosome 2 indicating a common ancestor to the parents of all affected individuals. NPHP1 deletion analysis should always be considered in patients with apparently dominant nephronophthisis, especially from likely consanguineous families.
doi:10.1007/s00467-011-1761-9
PMCID: PMC3342573  PMID: 21258817
Nephronophthisis; NPHP1; cystic kidney disease
18.  Homozygosity mapping on a single patient--identification of homozygous regions of recent common ancestry by using population data 
Human Mutation  2011;32(3):345-353.
Homozygosity mapping has played an important role in detecting recessive mutations using families of consanguineous marriages. However, detection of homozygous regions identity by descent (HBD) when family data is not available, or when relationship is hidden, is still a challenge. Making use of population data from high-density SNP genotyping may allow detection of regions HBD from recent common founders in singleton patients without genealogy information. We report a novel algorithm that detects such regions by estimating the population haplotype frequencies (HF) for an entire homozygous region. We also developed a simulation method to evaluate the probability of HBD for a homozygous region by examining the best regions in unaffected controls from the host population. The method can be applied to diseases of Mendelian inheritance and can be further extended to complex diseases to detect rare founder mutations using multiplex families or sporadic cases. Testing of the method on both real cases (singleton affected) and simulated data demonstrated its superb sensitivity and great resistance to genetic heterogeneity.
doi:10.1002/humu.21432
PMCID: PMC3357498  PMID: 21309031
homozygosity mapping; recessive mutation; founder mutation; runs of homozygosity; hidden relationship
20.  A Transition Zone Complex Regulates Mammalian Ciliogenesis and Ciliary Membrane Composition 
Nature genetics  2011;43(8):776-784.
Mutations in genes encoding ciliary components cause ciliopathies, but how many of these mutations disrupt ciliary function is unclear. We investigated Tectonic1 (Tctn1), a regulator of mouse Hedgehog signaling, and found that it is essential for ciliogenesis in some, but not all, tissues. Cell types that do not require Tctn1 for ciliogenesis require it to localize select membrane-associated proteins to the cilium, including Arl13b, AC3, Smoothened and Pkd2. Tctn1 forms a complex with multiple ciliopathy proteins associated with Meckel (MKS) and Joubert (JBTS) syndromes, including Mks1, Tmem216, Tmem67, Cep290, B9d1, Tctn2, and Cc2d2a. Components of the Tectonic ciliopathy complex colocalize at the transition zone, a region between the basal body and ciliary axoneme. Like Tctn1, loss of complex components Tctn2, Tmem67 or Cc2d2a causes tissue-specific defects in ciliogenesis and ciliary membrane composition. Consistent with a shared function for complex components, we identified a mutation in TCTN1 that causes JBTS. Thus, a transition zone complex of MKS and JBTS proteins regulates ciliary assembly and trafficking, suggesting that transition zone dysfunction is the cause of these ciliopathies.
doi:10.1038/ng.891
PMCID: PMC3145011  PMID: 21725307
21.  The retinitis pigmentosa protein RP2 interacts with polycystin 2 and regulates cilia-mediated vertebrate development 
Human Molecular Genetics  2010;19(22):4330-4344.
Ciliopathies represent a growing group of human genetic diseases whose etiology lies in defects in ciliogenesis or ciliary function. Given the established entity of renal–retinal ciliopathies, we have been examining the role of cilia-localized proteins mutated in retinitis pigmentosa (RP) in regulating renal ciliogenesis or cilia-dependent signaling cascades. Specifically, this study examines the role of the RP2 gene product with an emphasis on renal and vertebrate development. We demonstrate that in renal epithelia, RP2 localizes to the primary cilium through dual acylation of the amino-terminus. We also show that RP2 forms a calcium-sensitive complex with the autosomal dominant polycystic kidney disease protein polycystin 2. Ablation of RP2 by shRNA promotes swelling of the cilia tip that may be a result of aberrant trafficking of polycystin 2 and other ciliary proteins. Morpholino-mediated repression of RP2 expression in zebrafish results in multiple developmental defects that have been previously associated with ciliary dysfunction, such as hydrocephalus, kidney cysts and situs inversus. Finally, we demonstrate that, in addition to our observed physical interaction between RP2 and polycystin 2, dual morpholino-mediated knockdown of polycystin 2 and RP2 results in enhanced situs inversus, indicating that these two genes also regulate a common developmental process. This work suggests that RP2 may be an important regulator of ciliary function through its association with polycystin 2 and provides evidence of a further link between retinal and renal cilia function.
doi:10.1093/hmg/ddq355
PMCID: PMC2957320  PMID: 20729296
22.  Mechanisms of Nephronophthisis and Related Ciliopathies 
Nephron. Experimental Nephrology  2010;118(1):e9-e14.
An emerging group of human genetic diseases termed ‘ciliopathies’ are caused by dysfunction of two functionally and physically associated organelles, the centrosome and cilium. These organelles are central to perception of the physical environment through detection of a diverse variety of extracellular signals such as growth factors, chemicals, light and fluid flow. Many of the described ciliopathies display multi-organ involvement, with renal and retina being the most commonly affected. Nephronophthisis is a recessive disorder of the kidney that is the leading cause of end-stage renal failure in children. Through positional cloning, many of the causative mutations have been mapped to genes involved in centrosome and cilia function. In this review, we discuss the identified causative mutations that give rise to nephronophthisis and how these are related to the disease etiology in both the kidney and other organs.
doi:10.1159/000320888
PMCID: PMC2992643  PMID: 21071979
Nephronophthisis; NPHP genes; Joubert syndrome; Meckel-Gruber syndrome; Senior-Løken syndrome
23.  Nineteen novel NPHS1 mutations in a worldwide cohort of patients with congenital nephrotic syndrome (CNS) 
Nephrology Dialysis Transplantation  2010;25(9):2970-2976.
Background. Recessive mutations in the NPHS1 gene encoding nephrin account for ∼40% of infants with congenital nephrotic syndrome (CNS). CNS is defined as steroid-resistant nephrotic syndrome (SRNS) within the first 90 days of life. Currently, more than 119 different mutations of NPHS1 have been published affecting most exons.
Methods. We here performed mutational analysis of NPHS1 in a worldwide cohort of 67 children from 62 different families with CNS.
Results. We found bi-allelic mutations in 36 of the 62 families (58%) confirming in a worldwide cohort that about one-half of CNS is caused by NPHS1 mutations. In 26 families, mutations were homozygous, and in 10, they were compound heterozygous. In an additional nine patients from eight families, only one heterozygous mutation was detected. We detected 37 different mutations. Nineteen of the 37 were novel mutations (∼51.4%), including 11 missense mutations, 4 splice-site mutations, 3 nonsense mutations and 1 small deletion. In an additional patient with later manifestation, we discovered two further novel mutations, including the first one affecting a glycosylation site of nephrin.
Conclusions. Our data hereby expand the spectrum of known mutations by 17.6%. Surprisingly, out of the two siblings with the homozygous novel mutation L587R in NPHS1, only one developed nephrotic syndrome before the age of 90 days, while the other one did not manifest until the age of 2 years. Both siblings also unexpectedly experienced an episode of partial remission upon steroid treatment.
doi:10.1093/ndt/gfq088
PMCID: PMC2948833  PMID: 20172850
mutation analysis; nephrotic syndrome; NPHS1
24.  Mutation analysis of the Uromodulin gene in 96 individuals with urinary tract anomalies (CAKUT) 
Uromodulin (UMOD) mutations were described in patients with medullary cystic kidney disease (MCKD2), familial juvenile hyperuricemic nephropathy (FJHN), and glomerulocystic kidney disease (GCKD). UMOD transcription is activated by the transcription factor HNF1B. Mutations in HNF1B cause a phenotype similar to FJHN/GCKD but also congenital anomalies of the kidney and the urinary tract (CAKUT). Moreover, we recently detected UMOD mutations in 2 patients with CAKUT. As HNF1B and UMOD act in the same pathway and cause similar phenotypes we here examined, whether UMOD mutations would be found in patients with CAKUT.
Mutation analysis of UMOD was performed in 96 individuals with CAKUT by direct sequencing of exons 4 and 5 and by heteroduplex analysis following CEL I digestion assay of the exons 3 and 6–12.
The mean age of patients was 11.4 years and in 36.4% of patients the family history was positive for CAKUT. In the CEL I assay 12 aberrant bands were detected in 103 of 960 PCR products and were sequenced. Two previously known and eight new SNPs were detected. As no UMOD mutations were identified in these 96 patients with CAKUT, UMOD mutations do not seem to be a significant cause of CAKUT in this cohort.
doi:10.1007/s00467-008-1016-6
PMCID: PMC3155267  PMID: 18846391
Uromodulin; Tamm-Horsfall protein; urinary tract malformation; CAKUT; mutation analysis
25.  Uromodulin is expressed in renal primary cilia and UMOD mutations result in decreased ciliary uromodulin expression 
Human Molecular Genetics  2010;19(10):1985-1997.
Uromodulin (UMOD) mutations are responsible for three autosomal dominant tubulo-interstitial nephropathies including medullary cystic kidney disease type 2 (MCKD2), familial juvenile hyperuricemic nephropathy and glomerulocystic kidney disease. Symptoms include renal salt wasting, hyperuricemia, gout, hypertension and end-stage renal disease. MCKD is part of the ‘nephronophthisis–MCKD complex’, a group of cystic kidney diseases. Both disorders have an indistinguishable histology and renal cysts are observed in either. For most genes mutated in cystic kidney disease, their proteins are expressed in the primary cilia/basal body complex. We identified seven novel UMOD mutations and were interested if UMOD protein was expressed in the primary renal cilia of human renal biopsies and if mutant UMOD would show a different expression pattern compared with that seen in control individuals. We demonstrate that UMOD is expressed in the primary cilia of renal tubules, using immunofluorescent studies in human kidney biopsy samples. The number of UMOD-positive primary cilia in UMOD patients is significantly decreased when compared with control samples. Additional immunofluorescence studies confirm ciliary expression of UMOD in cell culture. Ciliary expression of UMOD is also confirmed by electron microscopy. UMOD localization at the mitotic spindle poles and colocalization with other ciliary proteins such as nephrocystin-1 and kinesin family member 3A is demonstrated. Our data add UMOD to the group of proteins expressed in primary cilia, where mutations of the gene lead to cystic kidney disease.
doi:10.1093/hmg/ddq077
PMCID: PMC2860893  PMID: 20172860

Results 1-25 (46)