Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("Goyal, mera")
2.  Individuals with mutations in XPNPEP3, which encodes a mitochondrial protein, develop a nephronophthisis-like nephropathy  
The autosomal recessive kidney disease nephronophthisis (NPHP) constitutes the most frequent genetic cause of terminal renal failure in the first 3 decades of life. Ten causative genes (NPHP1–NPHP9 and NPHP11), whose products localize to the primary cilia-centrosome complex, support the unifying concept that cystic kidney diseases are “ciliopathies”. Using genome-wide homozygosity mapping, we report here what we believe to be a new locus (NPHP-like 1 [NPHPL1]) for an NPHP-like nephropathy. In 2 families with an NPHP-like phenotype, we detected homozygous frameshift and splice-site mutations, respectively, in the X-prolyl aminopeptidase 3 (XPNPEP3) gene. In contrast to all known NPHP proteins, XPNPEP3 localizes to mitochondria of renal cells. However, in vivo analyses also revealed a likely cilia-related function; suppression of zebrafish xpnpep3 phenocopied the developmental phenotypes of ciliopathy morphants, and this effect was rescued by human XPNPEP3 that was devoid of a mitochondrial localization signal. Consistent with a role for XPNPEP3 in ciliary function, several ciliary cystogenic proteins were found to be XPNPEP3 substrates, for which resistance to N-terminal proline cleavage resulted in attenuated protein function in vivo in zebrafish. Our data highlight an emerging link between mitochondria and ciliary dysfunction, and suggest that further understanding the enzymatic activity and substrates of XPNPEP3 will illuminate novel cystogenic pathways.
PMCID: PMC2827951  PMID: 20179356
3.  Nephron Injury Induced by Diagnostic Ultrasound Imaging at High Mechanical Index with Gas Body Contrast Agent 
Ultrasound in medicine & biology  2007;33(8):1336-1344.
The right kidney of anaesthetized rats was imaged with intermittent diagnostic ultrasound (1.5 MHz; 1 sec trigger interval) under exposure conditions simulating those encountered in human perfusion imaging. The rats were infused intravenously with 10 μl/kg/min Definity® while being exposed to Mechanical Index (MI) values of up to 1.5 for 1 min. Suprathreshold MI values ruptured glomerular capillaries resulting in blood filling Bowman’s space and proximal convoluted tubules of many nephrons. The re-establishment of a pressure gradient following hemostasis caused the uninjured portions of the glomerular capillaries to resume the production of urinary filtrate which washed some or all of the erythrocytes out of Bowman’s space and cleared blood cells from some nephrons into urine within six hours. However, many of the injured nephrons remained plugged with tightly packed red cell casts 24 hours after imaging and also showed degeneration of tubular epithelium indicative of acute tubular necrosis. The additional damage caused by the extravasated blood amplified that caused by the original cavitating gas body. Human nephrons are virtually identical to those of the rat and so it is probable that similar glomerular capillary rupture followed by transient blockage and/or epithelial degeneration will occur following clinical exposures using similar high MI intermittent imaging with gas body contrast agents. The detection of blood in post-imaging urine samples using standard hematuria tests would confirm whether or not clinical protocols need to be developed to avoid this potential for iatrogenic injury.
PMCID: PMC1986772  PMID: 17507144
diagnostic ultrasound adverse effects; bioeffects; safety; glomerular hemorrhage; ultrasound contrast agent; ultrasound perfusion imaging; flash replenishment
4.  The Maguk protein, Pals1, functions as an adapter, linking mammalian homologues of Crumbs and Discs Lost 
The Journal of Cell Biology  2002;157(1):161-172.
Membrane-associated guanylate kinase (Maguk) proteins are scaffold proteins that contain PSD-95–Discs Large–zona occludens-1 (PDZ), Src homology 3, and guanylate kinase domains. A subset of Maguk proteins, such as mLin-2 and protein associated with Lin-7 (Pals)1, also contain two L27 domains: an L27C domain that binds mLin-7 and an L27N domain of unknown function. Here, we demonstrate that the L27N domain targets Pals1 to tight junctions by binding to a PDZ domain protein, Pals1-associated tight junction (PATJ) protein, via a unique Maguk recruitment domain. PATJ is a homologue of Drosophila Discs Lost, a protein that is crucial for epithelial polarity and that exists in a complex with the apical polarity determinant, Crumbs. PATJ and a human Crumbs homologue, CRB1, colocalize with Pals1 to tight junctions, and CRB1 interacts with PATJ albeit indirectly via binding the Pals1 PDZ domain. In agreement, we find that a Drosophila homologue of Pals1 participates in identical interactions with Drosophila Crumbs and Discs Lost. This Drosophila Pals1 homologue has been demonstrated recently to represent Stardust, a crucial polarity gene in Drosophila. Thus, our data identifies a new multiprotein complex that appears to be evolutionarily conserved and likely plays an important role in protein targeting and cell polarity.
PMCID: PMC2173254  PMID: 11927608
Maguk; PDZ domain; Discs Lost; Stardust; Crumbs
5.  Altered podocyte structure in GLEPP1 (Ptpro)-deficient mice associated with hypertension and low glomerular filtration rate 
Journal of Clinical Investigation  2000;106(10):1281-1290.
Glomerular epithelial protein 1 (GLEPP1) is a receptor tyrosine phosphatase present on the apical cell surface of the glomerular podocyte. The GLEPP1 gene (Ptpro) was disrupted at an exon coding for the NH2-terminal region by gene targeting in embryonic stem cells. Heterozygote mating produced the expected genotypic ratio of 1:2:1, indicating that the Ptpro–/– genotype does not lead to embryonic or neonatal lethality. Kidney and glomerular structure was normal at the gross and light microscopic levels. Scanning and transmission electron microscopy showed that Ptpro–/– mice had an amoeboid rather than the typical octopoid structure seen in the wild-type mouse podocyte and that there were blunting and widening of the minor (foot) processes in association with altered distribution of the podocyte intermediate cytoskeletal protein vimentin. Reduced filtration surface area in association with these structural changes was confirmed by finding reduced glomerular nephrin content and reduced glomerular filtration rate in Ptpro–/– mice. There was no detectable increase in the urine albumin excretion of Ptpro–/– mice. After removal of one or more kidneys, Ptpro–/– mice had higher blood pressure than did their wild-type littermates. These data support the conclusion that the GLEPP1 (Ptpro) receptor plays a role in regulating the glomerular pressure/filtration rate relationship through an effect on podocyte structure and function.
PMCID: PMC381432  PMID: 11086029

Results 1-5 (5)