Search tips
Search criteria

Results 1-25 (53)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Cilia in the nervous system: linking cilia function and neurodevelopmental disorders 
Current opinion in neurology  2011;24(2):98-105.
Purpose of review
Ciliopathies are genetic disorders caused by defects of primary ciliary structure and/or function and are characterized by pleiotropic clinical features. The ciliopathies include several partially overlapping syndromes such as Joubert syndrome, Bardet–Biedl syndrome and Meckel–Gruber syndrome, all of which have pronounced neurodevelopmental features. Here we focus on potential roles of cilia in central nervous system function, to explore how impairments may cause brain malformation and neurodevelopmental disease.
Recent findings
Cilia have long been considered as ‘sensory cellular antennae’, responding as chemo-sensors, mechano-sensors and thermo-sensors, although their roles in development were not well understood until recently. The surprising finding that disparate syndromes are all due to defects of the primary cilia, along with the recent advances in genetics, has helped elucidate further roles of primary cilia beyond sensory functions. Several molecules that are associated with key signaling pathways have been discovered in primary cilia. These include sonic hedgehog, wingless, planar cell polarity and fibroblast growth factor, which are essential for many cellular processes. Additionally, mutations in ‘ciliome’ genes have largely shown developmental defects such as abnormal body axis and brain malformation, implying disrupted cilia-related signaling pathways. Accordingly, the emerging theme is that primary cilia may play roles as modulators of signal transduction to help shape cellular responses within the environmental context during both development and homeostasis.
The link between cilia and signal pathways has become a framework for understanding the pathogenesis of ciliopathies. Despite recent progress in ciliary biology, fundamental questions remain about how cilia regulate neuronal function in the central nervous system. Therefore, investigation of ciliary function in the nervous system may reveal cilia-modulating mechanisms in neurodevelopmental processes, as well as suggest new treatments for disease.
PMCID: PMC3984876  PMID: 21386674
brain; central nervous system; cilia; ciliopathy; Joubert syndrome; neuron; signaling pathways
2.  The Sacred Disease: The Puzzling Genetics of Epileptic Disorders 
Neuron  2013;80(1):9-11.
In the September 12, 2013 issue of Nature, the Epi4K consortium and the Epilepsy Phenome/Genome Project (EPGP) reported sequencing 264 patient trios with epileptic encephalopathies. The consortia focused on genes exceptionally intolerant to sequence variations and found substantial interconnections with autism and intellectual disability gene networks.
PMCID: PMC3984878  PMID: 24094099
3.  The ciliopathies in neuronal development: a clinical approach to investigation of Joubert syndrome and Joubert syndrome-related disorders 
A group of disorders with disparate symptomatology, including congenital cerebellar ataxia, retinal blindness, liver fibrosis, polycystic kidney disease, and polydactyly, have recently been united under a single disease mechanism called ‘ciliopathies’. The ciliopathies are due to defects of the cellular antenna known as the primary cilium, a microtubule-based extension of cellular membranes found in nearly all cell types. Key among these ciliopathies is Joubert syndrome, displaying ataxia, oculomotor apraxia, and mental retardation* with a pathognomonic ‘molar tooth sign’ on brain magnetic resonance imaging. The importance of ciliary function in neuronal development has been appreciated only in the last decade with the classification of Joubert syndrome as a ciliopathy. This, together with the identification of many of the clinical features of ciliopathies in individuals with Joubert syndrome and the localization of Joubert syndrome’s causative gene products at or near the primary cilium, have defined a new class of neurological disease. Cilia are involved in diverse cellular processes including protein trafficking, photoreception, embryonic axis patterning, and cell cycle regulation. Ciliary dysfunction can affect a single tissue or manifest as multi-organ involvement. Ciliary defects have been described in retinopathies such as retinitis pigmentosa and Leber congenital amaurosis (defects in photoreceptor ciliary protein complexes), renal syndromes with nephronophthisis and cystic dysplastic kidneys, and liver conditions such as fibrosis and biliary cirrhosis. Recognizing the diverse presentations of the ciliopathies and screening strategies following diagnosis is an important part of the treatment plan of children with cilia-related disorders.
PMCID: PMC3984879  PMID: 21679365
4.  A homozygous PDE6D mutation in Joubert syndrome impairs targeting of farnesylated INPP5E protein to the primary cilium 
Human mutation  2014;35(1):137-146.
Joubert syndrome (JS) is characterized by a distinctive cerebellar structural defect, namely the « molar tooth sign ». JS is genetically heterogeneous, involving 18 genes identified to date, which are all required for cilia biogenesis and/or function. In a consanguineous family with JS associated with optic nerve coloboma, kidney hypoplasia and polydactyly, combined exome sequencing and mapping identified a homozygous splice site mutation in PDE6D, encoding a prenyl-binding protein. We found that pde6d depletion in zebrafish leads to renal and retinal developmental anomalies and wild-type but not mutant PDE6D is able to rescue this phenotype. Proteomic analysis identified INPP5E, whose mutations also lead to JS or MORM syndromes, as novel prenyl-dependent cargo of PDE6D. Mutant PDE6D shows reduced binding to INPP5E, which fails to localize to primary cilia in patient fibroblasts and tissues. Furthermore, mutant PDE6D is unable to bind to GTP-bound ARL3, which acts as a cargo-release factor for PDE6D-bound INPP5E. Altogether, these results indicate that PDE6D is required for INPP5E ciliary targeting and suggest a broader role for PDE6D in targeting other prenylated proteins to the cilia. This study identifies PDE6D as a novel JS disease gene and provides the first evidence of prenyl-binding dependent trafficking in ciliopathies.
PMCID: PMC3946372  PMID: 24166846
Joubert syndrome; primary cilia; PDE6D; INPP5E; prenylation
5.  Phenotypic spectrum and prevalence of INPP5E mutations in Joubert Syndrome and related disorders 
European Journal of Human Genetics  2013;21(10):1074-1078.
Joubert syndrome and related disorders (JSRD) are clinically and genetically heterogeneous ciliopathies sharing a peculiar midbrain–hindbrain malformation known as the ‘molar tooth sign'. To date, 19 causative genes have been identified, all coding for proteins of the primary cilium. There is clinical and genetic overlap with other ciliopathies, in particular with Meckel syndrome (MKS), that is allelic to JSRD at nine distinct loci. We previously identified the INPP5E gene as causative of JSRD in seven families linked to the JBTS1 locus, yet the phenotypic spectrum and prevalence of INPP5E mutations in JSRD and MKS remain largely unknown. To address this issue, we performed INPP5E mutation analysis in 483 probands, including 408 JSRD patients representative of all clinical subgroups and 75 MKS fetuses. We identified 12 different mutations in 17 probands from 11 JSRD families, with an overall 2.7% mutation frequency among JSRD. The most common clinical presentation among mutated families (7/11, 64%) was Joubert syndrome with ocular involvement (either progressive retinopathy and/or colobomas), while the remaining cases had pure JS. Kidney, liver and skeletal involvement were not observed. None of the MKS fetuses carried INPP5E mutations, indicating that the two ciliopathies are not allelic at this locus.
PMCID: PMC3778343  PMID: 23386033
INPP5E; Joubert syndrome and related disorders; Meckel syndrome; ciliopathies
6.  Exome Sequencing Links Corticospinal Motor Neuron Disease to Common Neurodegenerative Disorders 
Science (New York, N.Y.)  2014;343(6170):506-511.
Hereditary spastic paraplegias (HSPs) are neurodegenerative motor neuron diseases characterized by progressive age-dependent loss of corticospinal motor tract function. Although the genetic basis is partly understood, only a fraction of cases can receive a genetic diagnosis, and a global view of HSP is lacking. By using whole-exome sequencing in combination with network analysis, we identified 18 previously unknown putative HSP genes and validated nearly all of these genes functionally or genetically. The pathways highlighted by these mutations link HSP to cellular transport, nucleotide metabolism, and synapse and axon development. Network analysis revealed a host of further candidate genes, of which three were mutated in our cohort. Our analysis links HSP to other neurodegenerative disorders and can facilitate gene discovery and mechanistic understanding of disease.
PMCID: PMC4157572  PMID: 24482476
7.  Deletion 16p13.11 uncovers NDE1 mutations on the non-deleted homolog and extends the spectrum of severe microcephaly to include fetal brain disruption 
Deletions of 16p13.11 have been associated with a variety of phenotypes, and have been also found in normal individuals. We report on two unrelated patients with severe microcephaly, agenesis of the corpus callosum, scalp rugae, and a fetal brain disruption-like phenotype with inherited deletions of 16p13.11. The first patient was subsequently found on whole exome sequencing to have a nonsense mutation (p.R44X) in NDE1 with the non-deleted chromosome 16 homolog. We then undertook copy number studies of 16p13.11 and sequencing of NDE1 in nine additional patients with a similar severe microcephaly, agenesis of the corpus callosum, and fetal brain disruption-like phenotype. The second patient was found to have an inherited deletion of the entire NDE1 gene combined with a frameshift mutation (c.1020-1021het_delGA) in the non-deleted NDE1. These observations broaden the phenotype seen in NDE1-related microcephaly to include fetal brain disruption. These data also represent the second described syndrome, after Bernard-Soulier syndrome, where an autosomal recessive condition combines an inherited segmental duplication mediated deletion with a mutation in a gene within the non-deleted homolog. Finally, we performed informatics analysis of the 16p13.11 gene content, and found that there are many genes with in the region with evidence for role(s) in brain development. Sequencing of other candidate genes in this region in patients with deletion 16p13.11 and more severe neurophenotypes may be warranted.
PMCID: PMC3689850  PMID: 23704059
Deletion 16p13.11; NDE1; whole exome sequencing; fetal brain disruption; microcephaly; agenesis of the corpus callosum
8.  Doublecortin-like kinase enhances dendritic remodelling and negatively regulates synapse maturation 
Nature communications  2013;4:1440.
Dendritic morphogenesis and formation of synapses at appropriate dendritic locations are essential for the establishment of proper neuronal connectivity. Recent imaging studies provide evidence for stabilization of dynamic distal branches of dendrites by the addition of new synapses. However, molecules involved in both dendritic growth and suppression of synapse maturation remain to be identified. Here we report two distinct functions of doublecortin-like kinases, chimeric proteins containing both a microtubule-binding domain and a kinase domain in postmitotic neurons. First, doublecortin-like kinases localize to the distal dendrites and promote their growth by enhancing microtubule bundling. Second, doublecortin-like kinases suppress maturation of synapses through multiple pathways, including reduction of PSD-95 by the kinase domain and suppression of spine structural maturation by the microtubule-binding domain. Thus, doublecortin-like kinases are critical regulators of dendritic development by means of their specific targeting to the distal dendrites, and their local control of dendritic growth and synapse maturation.
PMCID: PMC4017031  PMID: 23385585
9.  Primary cilia in neurodevelopmental disorders 
Nature reviews. Neurology  2013;10(1):27-36.
Primary cilia are generally solitary organelles that emanate from the surface of almost all vertebrate cell types. Until recently, details regarding the function of these structures were lacking; however, extensive evidence now suggests that primary cilia have critical roles in sensing the extracellular environment, and in coordinating developmental and homeostatic signalling pathways. Furthermore, disruption of these functions seems to underlie a diverse spectrum of disorders, known as primary ciliopathies. These disorders are characterized by wide-ranging clinical and genetic heterogeneity, but with substantial overlap among distinct conditions. Indeed, ciliopathies are associated with a large variety of manifestations that often include distinctive neurological findings. Herein, we review neurological features associated with primary ciliopathies, highlight genotype–phenotype correlations, and discuss potential mechanisms underlying these findings.
PMCID: PMC3989897  PMID: 24296655
10.  AMPD2 Regulates GTP Synthesis and is Mutated in a Potentially-Treatable Neurodegenerative Brainstem Disorder 
Cell  2013;154(3):10.1016/j.cell.2013.07.005.
Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acids synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a new distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH), due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a new, potentially treatable early-onset neurodegenerative disease.
PMCID: PMC3815927  PMID: 23911318
Purine; pyrimidine; deaminase; salvage; translation; GTP; de novo synthesis; neurodegeneration
11.  Cystic Kidney Disease: the Role of Wnt Signaling 
Trends in molecular medicine  2010;16(8):349-360.
Wnt signaling encompasses a variety of signaling cascades that can be activated by secreted Wnt ligands. Two such pathways, the canonical or β-catenin pathway and the planar cell polarity pathway, have recently received attention for their roles in multiple cellular processes within the kidney. Both of these pathways are important for kidney development as well as homeostasis and injury repair. Disruption of either pathway can lead to cystic kidney disease, a class of genetic diseases that includes the most common hereditary life-threatening syndrome polycystic kidney disease. Recent evidence implicates canonical and noncanonical Wnt pathways in cyst formation and points to a remarkable role for developmental processes in the adult kidney.
PMCID: PMC2919646  PMID: 20576469
cyst; Wnt; cilia; ciliopathy; signaling; planar cell polarity; kidney; injury; repair; development
12.  The primary cilium as a cellular signaling center: lessons from disease 
Genetic diseases known as ciliopathies have recently entered the limelight, placing new importance on a previously mysterious organelle: the primary cilium. Mutations affecting the primary cilium in both humans and animal models can lead to a plethora of distinct phenotypes including retinal degeneration, kidney cysts, and brain malformations. New findings are quickly lending insight into the functions of this cellular extension that seems to be especially important in modulation of subcellular signaling cascades at various stages of development and adult homeostasis.
PMCID: PMC2953615  PMID: 19477114
13.  Functional genomic screen for modulators of ciliogenesis and cilium length 
Nature  2010;464(7291):1048-1051.
Primary cilia are evolutionarily conserved cellular organelles that organize diverse signaling pathways1,2. Defects in the formation or function of primary cilia are associated with a spectrum of human diseases and developmental abnormalities3. Genetic screens in model organisms have discovered core machineries of cilium assembly and maintenance4. However, regulatory molecules that coordinate the biogenesis of primary cilia with other cellular processes, including cytoskeletal organization, vesicle trafficking and cell-cell adhesion, remain to be identified. Here we report the results of a functional genomic screen using RNA interference (RNAi) to identify human genes involved in ciliogenesis control. The screen identified 36 positive and 13 negative ciliogenesis modulators, which include molecules involved in actin dynamics and vesicle trafficking. Further investigation demonstrated that blocking actin assembly facilitates ciliogenesis by stabilizing the pericentrosomal preciliary compartment (PPC), a previously uncharacterized compact vesiculotubular structure storing transmembrane proteins destined for cilia during the early phase of ciliogenesis. PPC was labeled by recycling endosome markers. Moreover, knockdown of modulators that are involved in the endocytic recycling pathway affected the formation of PPC as well as ciliogenesis. Our results uncover a critical regulatory step that couples actin dynamics and endocytic recycling with ciliogenesis, and also provide potential target molecules for future study.
PMCID: PMC2929961  PMID: 20393563
14.  A homozygous IER3IP1 mutation causes microcephaly with simplified gyral pattern, epilepsy and permanent neonatal diabetes syndrome (MEDS) 
Walcott-Rallison syndrome (WRS) and the recently delineated microcephaly with simplified gyration, epilepsy and permanent neonatal diabetes syndrome (MEDS) are clinically overlapping autosomal recessive disorders characterized by early-onset diabetes, skeletal defects, and growth retardation. While liver and renal symptoms are more severe in WRS, neurodevelopmental characteristics are more pronounced in MEDS patients, in which microcephaly and uncontrolled epilepsy are uniformly present. Mutations in the EIF2AK3 gene were described in patients with WRS and defects in this gene lead to increased susceptibility to apoptotic cell death. Mutations in IER3IP1 have been reported in patients with MEDS and similarly, loss of activity results in apoptosis of neurons and pancreatic beta cells in patients. Here we report on a homozygous mutation of the IER3IP1 gene in four patients from two unrelated consanguineous Egyptian families presenting with MEDS who display burst suppression patterns on EEG. All patients presented with mildly elevated liver enzymes, microalbuminuria, and skeletal changes such as scoliosis and osteopenia, leading to repeated bone fractures. We expand the phenotypic spectrum of MEDS caused by IER3IP1 gene mutations and propose that WRS and MEDS are overlapping clinical syndromes, displaying significant gene-dependent clinical variability.
PMCID: PMC3477270  PMID: 22991235
microcephaly; epilepsy; autosomal recessive; infantile diabetes mellitus; burst suppression; Walcott-Rallison syndrome
15.  The molecular and genetic mechanisms of neocortex development 
Clinics in perinatology  2009;36(3):503-512.
We review some of the key recent findings in the field of human cortical development. This development is divided into three major time-dependent phases: neural proliferation, migration, and maturation. The cells that constitute the cerebral cortex, including both inhibitory and excitatory neurons, proliferate in spatially distinct regions. These cells then migrate through multiple cellular boundaries, one of which is known as the subplate, before achieving final positioning within the 6-layered cerebral cortex. Following this migration, neurons undergo morphological changes that result in elaboration of dendrites and axons, and establish the multitude of cellular contacts that underlie neuronal processing. Many of the neurocognitive disorders that we treat in the clinic can trace their origin to a disorder in one or more of these key steps. Along with this update, we also highlight work that offers a glimpse at the future of therapy for developmental brain disorders that can result from disorders of these cellular events.
PMCID: PMC2771632  PMID: 19732610
neocortex; development
16.  MKS3/TMEM67 Mutations Are a Major Cause of COACH Syndrome, a Joubert Syndrome Related Disorder with Liver Involvement 
Human mutation  2009;30(2):E432-E442.
The acronym COACH defines an autosomal recessive condition of Cerebellar vermis hypo/aplasia, Oligophrenia, congenital Ataxia, Coloboma and Hepatic fibrosis. Patients present the “molar tooth sign”, a midbrain-hindbrain malformation pathognomonic for Joubert Syndrome (JS) and Related Disorders (JSRDs). The main feature of COACH is congenital hepatic fibrosis (CHF), resulting from malformation of the embryonic ductal plate. CHF is invariably found also in Meckel syndrome (MS), a lethal ciliopathy already found to be allelic with JSRDs at the CEP290 and RPGRIP1L genes. Recently, mutations in the MKS3 gene (approved symbol TMEM67), causative of about 7% MS cases, have been detected in few Meckel-like and pure JS patients. Analysis of MKS3 in 14 COACH families identified mutations in 8 (57%). Features such as colobomas and nephronophthisis were found only in a subset of mutated cases. These data confirm COACH as a distinct JSRD subgroup with core features of JS plus CHF, which major gene is MKS3, and further strengthen gene-phenotype correlates in JSRDs.
PMCID: PMC2635428  PMID: 19058225
COACH syndrome; MKS3; TMEM67; Joubert syndrome and related disorders; congenital hepatic fibrosis
17.  Virmid: accurate detection of somatic mutations with sample impurity inference 
Genome Biology  2013;14(8):R90.
Detection of somatic variation using sequence from disease-control matched data sets is a critical first step. In many cases including cancer, however, it is hard to isolate pure disease tissue, and the impurity hinders accurate mutation analysis by disrupting overall allele frequencies. Here, we propose a new method, Virmid, that explicitly determines the level of impurity in the sample, and uses it for improved detection of somatic variation. Extensive tests on simulated and real sequencing data from breast cancer and hemimegalencephaly demonstrate the power of our model. A software implementation of our method is available at
PMCID: PMC4054681  PMID: 23987214
18.  Diencephalic–mesencephalic junction dysplasia: a novel recessive brain malformation 
Brain  2012;135(8):2416-2427.
We describe six cases from three unrelated consanguineous Egyptian families with a novel characteristic brain malformation at the level of the diencephalic–mesencephalic junction. Brain magnetic resonance imaging demonstrated a dysplasia of the diencephalic–mesencephalic junction with a characteristic ‘butterfly’-like contour of the midbrain on axial sections. Additional imaging features included variable degrees of supratentorial ventricular dilatation and hypoplasia to complete agenesis of the corpus callosum. Diffusion tensor imaging showed diffuse hypomyelination and lack of an identifiable corticospinal tract. All patients displayed severe cognitive impairment, post-natal progressive microcephaly, axial hypotonia, spastic quadriparesis and seizures. Autistic features were noted in older cases. Talipes equinovarus, non-obstructive cardiomyopathy and persistent hyperplastic primary vitreous were additional findings in two families. One of the patients required shunting for hydrocephalus; however, this yielded no change in ventricular size suggestive of dysplasia rather than obstruction. We propose the term ‘diencephalic–mesencephalic junction dysplasia’ to characterize this autosomal recessive malformation.
PMCID: PMC3407423  PMID: 22822038
diencephalon; mesencephalon; mental retardation; brainstem malformation; brain wiring
19.  NSun2-Mediated Cytosine-5 Methylation of Vault Noncoding RNA Determines Its Processing into Regulatory Small RNAs 
Cell Reports  2013;4(2):255-261.
Autosomal-recessive loss of the NSUN2 gene has been identified as a causative link to intellectual disability disorders in humans. NSun2 is an RNA methyltransferase modifying cytosine-5 in transfer RNAs (tRNAs), yet the identification of cytosine methylation in other RNA species has been hampered by the lack of sensitive and reliable molecular techniques. Here, we describe miCLIP as an additional approach for identifying RNA methylation sites in transcriptomes. miCLIP is a customized version of the individual-nucleotide-resolution crosslinking and immunoprecipitation (iCLIP) method. We confirm site-specific methylation in tRNAs and additional messenger and noncoding RNAs (ncRNAs). Among these, vault ncRNAs contained six NSun2-methylated cytosines, three of which were confirmed by RNA bisulfite sequencing. Using patient cells lacking the NSun2 protein, we further show that loss of cytosine-5 methylation in vault RNAs causes aberrant processing into Argonaute-associated small RNA fragments that can function as microRNAs. Thus, impaired processing of vault ncRNA may contribute to the etiology of NSun2-deficiency human disorders.
Graphical Abstract
•miCLIP detects NSun2-mediated cytosine-5 methylation in RNA•Vault noncoding RNA is methylated by NSun2•Cytosine-5 in Vault RNA determines its processing into small RNA (svRNA)•svRNAs bind to Argonaute proteins and exhibit microRNA-like functions
Comprehensive analyses of cytosine-5 methylation in the RNA transcriptome have previously been hampered by the lack of sensitive and reliable molecular techniques. In this work, Ule, Frye, and colleagues describe the methylation-iCLIP (miCLIP) method that they used to identify target sites of the RNA methyltransferase, NSun2. Among the targeted noncoding RNAs were vault RNAs, previously associated with resistance to chemotherapy in cancer. They further show how NSun2-mediated methylation of vault ncRNAs influences their processing into small microRNA-like molecules.
PMCID: PMC3730056  PMID: 23871666
20.  Mutations in BCKD-kinase Lead to a Potentially Treatable Form of Autism with Epilepsy 
Science (New York, N.Y.)  2012;338(6105):394-397.
Autism spectrum disorders are a genetically heterogeneous constellation of syndromes characterized by impairments in reciprocal social interaction. Available somatic treatments have limited efficacy. We have identified inactivating mutations in the gene BCKDK (Branched Chain Ketoacid Dehydrogenase Kinase) in consanguineous families with autism, epilepsy, and intellectual disability. The encoded protein is responsible for phosphorylation-mediated inactivation of the E1α subunit of branched-chain ketoacid dehydrogenase (BCKDH). Patients with homozygous BCKDK mutations display reductions in BCKDK messenger RNA and protein, E1α phosphorylation, and plasma branched-chain amino acids. Bckdk knockout mice show abnormal brain amino acid profiles and neurobehavioral deficits that respond to dietary supplementation. Thus, autism presenting with intellectual disability and epilepsy caused by BCKDK mutations represents a potentially treatable syndrome.
PMCID: PMC3704165  PMID: 22956686
21.  Evolutionarily Assembled cis-Regulatory Module at a Human Ciliopathy Locus 
Science (New York, N.Y.)  2012;335(6071):966-969.
Neighboring genes are often coordinately expressed within cis-regulatory modules, but evidence that nonparalogous genes share functions in mammals is lacking. Here, we report that mutation of either TMEM138 or TMEM216 causes a phenotypically indistinguishable human ciliopathy, Joubert syndrome. Despite a lack of sequence homology, the genes are aligned in a head-to-tail configuration and joined by chromosomal rearrangement at the amphibian-to-reptile evolutionary transition. Expression of the two genes is mediated by a conserved regulatory element in the noncoding intergenic region. Coordinated expression is important for their interdependent cellular role in vesicular transport to primary cilia. Hence, during vertebrate evolution of genes involved in ciliogenesis, nonparalogous genes were arranged to a functional gene cluster with shared regulatory elements.
PMCID: PMC3671610  PMID: 22282472
23.  Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling 
Chaki, Moumita | Airik, Rannar | Ghosh, Amiya K. | Giles, Rachel H. | Chen, Rui | Slaats, Gisela G. | Wang, Hui | Hurd, Toby W. | Zhou, Weibin | Cluckey, Andrew | Gee, Heon-Yung | Ramaswami, Gokul | Hong, Chen-Jei | Hamilton, Bruce A. | Červenka, Igor | Ganji, Ranjani Sri | Bryja, Vitezslav | Arts, Heleen H. | van Reeuwijk, Jeroen | Oud, Machteld M. | Letteboer, Stef J.F. | Roepman, Ronald | Husson, Hervé | Ibraghimov-Beskrovnaya, Oxana | Ysunaga, Takayuki | Walz, Gerd | Eley, Lorraine | Sayer, John A. | Schermer, Bernhard | Liebau, Max C. | Benzing, Thomas | Le Corre, Stephanie | Drummond, Iain | Joles, Jaap A. | Janssen, Sabine | Allen, Susan J. | Natarajan, Sivakumar | O Toole, John F. | Attanasio, Massimo | Saunier, Sophie | Antignac, Corinne | Koenekoop, Robert K. | Ren, Huanan | Lopez, Irma | Nayir, Ahmet | Stoetzel, Corinne | Dollfus, Helene | Massoudi, Rustin | Gleeson, Joseph G. | Andreoli, Sharon P. | Doherty, Dan G. | Lindstrad, Anna | Golzio, Christelle | Katsanis, Nicholas | Pape, Lars | Abboud, Emad B. | Al-Rajhi, Ali A. | Lewis, Richard A. | Lupski, James R. | Omran, Heymut | Lee, Eva | Wang, Shaohui | Sekiguchi, JoAnn M. | Saunders, Rudel | Johnson, Colin A. | Garner, Elizabeth | Vanselow, Katja | Andersen, Jens S. | Shlomai, Joseph | Nurnberg, Gudrun | Nurnberg, Peter | Levy, Shawn | Smogorzewska, Agata | Otto, Edgar A. | Hildebrandt, Friedhelm
Cell  2012;150(3):533-548.
Nephronophthisis-related ciliopathies (NPHP-RC) are degenerative recessive diseases that affect kidney, retina and brain. Genetic defects in NPHP gene products that localize to cilia and centrosomes defined them as ‘ciliopathies’. However, disease mechanisms remain poorly understood. Here we identify by whole exome resequencing, mutations of MRE11, ZNF423, and CEP164 as causing NPHP-RC. All three genes function within the DNA damage response (DDR) pathway, hitherto not implicated in ciliopathies. We demonstrate that, upon induced DNA damage, the NPHP-RC proteins ZNF423, CEP164 and NPHP10 colocalize to nuclear foci positive for TIP60, known to activate ATM at sites of DNA damage. We show that knockdown of CEP164 or ZNF423 causes sensitivity to DNA damaging agents, and that cep164 knockdown in zebrafish results in dysregulated DDR and an NPHP-RC phenotype. We identify TTBK2, CCDC92, NPHP3 and DVL3 as novel CEP164 interaction partners. Our findings link degenerative diseases of kidney and retina, disorders of increasing prevalence, to mechanisms of DDR.
PMCID: PMC3433835  PMID: 22863007
24.  Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration 
The Journal of Cell Biology  2004;165(5):709-721.
Humans with mutations in either DCX or LIS1 display nearly identical neuronal migration defects, known as lissencephaly. To define subcellular mechanisms, we have combined in vitro neuronal migration assays with retroviral transduction. Overexpression of wild-type Dcx or Lis1, but not patient-related mutant versions, increased migration rates. Dcx overexpression rescued the migration defect in Lis1+/− neurons. Lis1 localized predominantly to the centrosome, and after disruption of microtubules, redistributed to the perinuclear region. Dcx outlined microtubules extending from the perinuclear “cage” to the centrosome. Lis1+/− neurons displayed increased and more variable separation between the nucleus and the preceding centrosome during migration. Dynein inhibition resulted in similar defects in both nucleus–centrosome (N-C) coupling and neuronal migration. These N-C coupling defects were rescued by Dcx overexpression, and Dcx was found to complex with dynein. These data indicate Lis1 and Dcx function with dynein to mediate N-C coupling during migration, and suggest defects in this coupling may contribute to migration defects in lissencephaly.
PMCID: PMC2172383  PMID: 15173193
migration; Lis1; doublecortin; centrosome; nucleus
25.  Modeling Human Disease in Humans: the Ciliopathies 
Cell  2011;147(1):70-79.
PMCID: PMC3202432  PMID: 21962508

Results 1-25 (53)