Search tips
Search criteria

Results 1-22 (22)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  A reduction of cytochrome c mediates an age-related decline of oxidative phosphorylation in rat kidney mitochondria 
The Biochemical journal  2010;427(1):105-112.
Kidney function declines with advancing age and mitochondria have been implicated. We have examined the integrated function of mitochondria isolated from kidneys of 6 and 24 month Fischer 344 rats. Oxidative phosphorylation (OXPHOS) of intact mitochondria and cytochrome c oxidase activity in permeabilized mitochondria were determined with polarographic assays. The activities of the electron transport chain (ETC) complexes and the cytochrome content in solubilized mitochondria were measured using spectrophotometric methods. The respiratory complexes were evaluated with blue-native gel electrophoresis. Mitochondrial preparations were evaluated by immunoblotting for cytochrome c, Smac/Diablo, and the voltage dependant ion channel (VDAC). Mitochondrial morphology was examined by electron microscopy. OXPHOS of mitochondria isolated from 24 month animals was decreased 15–25% with complex I, II, III, IV and fatty acid substrates. The electron microscopic appearance of mitochondria, the activity of the ETC complexes and the protein abundance of individual complexes and supercomplexes were unchanged. The content of cytochrome c was decreased by 37% in aged mitochondria as determined by spectrophotometric methods and confirmed with immunoblotting. Polarographic determination of cytochrome c oxidase activity with endogenous cytochrome c demonstrated a 23% reduction in aged mitochondria, which was corrected with the addition of exogenous cytochrome c. Renal mitochondrial OXPHOS decreased with aging in the Fischer 344 rat. Decreased mitochondrial cytochrome c content is a major factor contributing to the OXPHOS defect of mitochondria isolated from kidneys of elderly animals.
PMCID: PMC3759985  PMID: 20100174
Aging; mitochondria; oxidative phosphorylation; electron transport chain; cytochrome c; cytochrome c oxidase
2.  Mitochondrial Division in Rat Cardiomyocytes: An Electron Microscope Study* 
In cardiomyocytes of rats, two distinct mitochondrial division processes are in operation. The predominant process involves extension of a single crista until it spans the full width of a mitochondrion. Ingrowth of the outer membrane ultimately results in scission. The second division process involves “pinching”, in which narrowing of the organelle at specific surface locations leads to its attenuation. When limiting membranes from opposite sides meet, mitochondrial fission ensues. When pinching is the operative mode, elements of sarcoplasmic reticulum always are associated with the membrane constrictions. The nuclear control mechanisms that determine which modality of mitochondrial division will prevail are unknown.
PMCID: PMC3744323  PMID: 22753088
mitochondrial division; mitochondrial pinching; cardiac; heart
3.  Decreased Cytochrome c Oxidase Subunit VIIa in Aged Rat Heart Mitochondria: Immunocytochemistry 
Aging decreases oxidative phosphorylation through cytochrome oxidase (COX) in cardiac interfibrillar mitochondria (IFM) in 24-month old (aged) rats compared to 6-month old adult Fischer 344 rats, whereas subsarcolemmal mitochondria (SSM) located beneath the plasma membrane remain unaffected. Immunoelectron microscopy (IEM) reveals in aged rats a 25% reduction in cardiac COX subunit VIIa in cardiac IFM, but not in SSM. In contrast, the content of subunit IV remains unchanged in both SSM and IFM, irrespective of age. These subunits are localized mainly on cristae membranes. In contrast, semi-quantitative immunoblotting, which detects denatured protein, indicates that the content of COX VIIa is similar in IFM and SSM from both aged and adult hearts. IEM provides a sensitive method for precise localizing and quantifying specific mitochondrial proteins. The lack of immunoreaction of COX VIIa subunit by IEM in aged IFM is not explained by a reduction in protein, but rather by a masking phenomenon or by an in situ change in protein structure affecting COX activity.
PMCID: PMC3744322  PMID: 21972221
immunoelectron microscopy; cytochrome c; mitochondria; oxidative phosphorylation; electron transport chain; aged heart
4.  Parkinson's disease-associated DJ-1 mutations impair mitochondrial dynamics and cause mitochondrial dysfunction 
Journal of neurochemistry  2012;121(5):830-839.
Mitochondrial dysfunction represents a critical event during the pathogenesis of Parkinson’s disease (PD) and expanding evidences demonstrate that an altered balance in mitochondrial fission/fusion is likely an important mechanism leading to mitochondrial and neuronal dysfunction/degeneration. In this study, we investigated whether DJ-1 is involved in the regulation of mitochondrial dynamics and function in neuronal cells. Confocal and electron microscopic analysis demonstrated that M17 human neuroblastoma cells over-expressing wild-type DJ-1 (WT DJ-1 cells) displayed elongated mitochondria while M17 cells over-expressing PD-associated DJ-1 mutants (R98Q, D149A and L166P) (mutant DJ-1 cells) showed significant increase of fragmented mitochondria. Similar mitochondrial fragmentation was also noted in primary hippocampal neurons overexpressing PD-associated mutant forms of DJ-1. Functional analysis revealed that over-expression of PD-associated DJ- 1 mutants resulted in mitochondria dysfunction and increased neuronal vulnerability to oxidative stress (H2O2) or neurotoxin. Further immunoblot studies demonstrated that levels of dynamin-like protein (DLP1), also known as Drp1, a regulator of mitochondrial fission, was significantly decreased in WT DJ-1 cells but increased in mutant DJ-1 cells. Importantly, DLP1 knockdown in these mutant DJ-1 cells rescued the abnormal mitochondria morphology and all associated mitochondria/neuronal dysfunction. Taken together, these studies suggest that DJ-1 is involved in the regulation of mitochondrial dynamics through modulation of DLP1 expression and PD-associated DJ-1 mutations may cause PD by impairing mitochondrial dynamics and function.
PMCID: PMC3740560  PMID: 22428580
DJ-1; Drp1; mitochondrial elongation; mitochondrial fragmentation; mitochondrial fusion; Parkinson disease
5.  Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis 
During intra-erythrocytic development, malaria trophozoites digest hemoglobin, which leads to parasite growth and asexual replication while accumulating toxic heme. To avoid death, the parasite synthesizes insoluble hemozoin crystals in the digestive vacuole through polymerization of β-hematin dimers. In the process, the heme is converted to a high-spin ferriheme whose magnetic properties were studied as early as 1936 by Pauling et al. Here, by magnetophoretic cell motion analysis, we provide evidence for a graduated increase of live cell magnetic susceptibility with developing blood-stage parasites, compatible with the increase in hemozoin content and the mechanism used by P. falciparum to avoid heme toxicity. The measured magnetophoretic mobility of the erythrocyte infected with a late-stage schizont form was m = 2.94 × 10−6 mm3 s/kg, corresponding to the net volume magnetic susceptibility (relative to water) of Δχ = 1.80 × 10−6, significantly higher than that of the oxygenated erythrocyte (−0.18×10−6) but lower than that of the fully deoxygenated erythrocyte (3.33×10−6). The corresponding fraction of hemoglobin converted to hemozoin, calculated based on the known magnetic susceptibilities of hemoglobin heme and hemozoin ferriheme, was 0.50, in agreement with the published biochemical and crystallography data. Magnetophoretic analysis of live erythrocytes could become significant for antimalarial drug susceptibility and resistance determination.
PMCID: PMC3728832  PMID: 16461330
erythrocyte magnetic susceptibility; plasmodium falciparum; hemozoin; ferriheme; heme; toxicity
Although malaria contributes to a significant public health burden, malaria diagnosis relies heavily on either non-specific clinical symptoms or blood smear microscopy methods developed in the 1930s. These approaches severely misrepresent the number of infected individuals and the reservoir of parasites in malaria-endemic communities and undermine efforts to control disease. Limitations of conventional microscopy-based diagnosis center on time required to examine slides, time required to attain expertise sufficient to diagnose infection accurately, and attrition from the limited number of existing malaria microscopy experts. Earlier studies described magnetic properties of Plasmodium falciparum but did not refine methods to diagnosis infection by all four human malaria parasite species. Here, following specific technical procedures, we show that it is possible to concentrate all four human malaria parasite species, at least 40-fold, on microscope slides using very inexpensive magnets through an approach termed magnetic deposition microscopy. This approach delivered greater sensitivity than a thick smear preparation while maintaining the clarity of a thin smear to simplify species-specific diagnosis. Because the magnetic force necessary to concentrate parasites on the slide is focused at a precise position relative to the magnet surface, it is possible to examine a specific region of the slide for parasitized cells and avoid the time-consuming process of scanning the entire slide surface. These results provide insight regarding new strategies for performing malaria blood smear microscopy.
PMCID: PMC3728894  PMID: 16606985
7.  LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1 
Human Molecular Genetics  2012;21(9):1931-1944.
The leucine-rich repeat kinase 2 (LRRK2) mutations are the most common cause of autosomal-dominant Parkinson disease (PD). Mitochondrial dysfunction represents a critical event in the pathogenesis of PD. We demonstrated that wild-type (WT) LRRK2 expression caused mitochondrial fragmentation along with increased mitochondrial dynamin-like protein (DLP1, also known as DRP1), a fission protein, which was further exacerbated by expression of PD-associated mutants (R1441C or G2019S) in both SH-SY5Y and differentiated primary cortical neurons. We also found that LRRK2 interacted with DLP1, and LRRK2–DLP1 interaction was enhanced by PD-associated mutations that probably results in increased mitochondrial DLP1 levels. Co-expression of dominant-negative DLP1 K38A or WT Mfn2 blocked LRRK2-induced mitochondrial fragmentation, mitochondrial dysfunction and neuronal toxicity. Importantly, mitochondrial fragmentation and dysfunction were not observed in cells expressing either GTP-binding deficient mutant LRRK2 K1347A or kinase-dead mutant D1994A which has minimal interaction with DLP1 and did not increase the mitochondrial DLP1 level. We concluded that LRRK2 regulates mitochondrial dynamics by increasing mitochondrial DLP1 through its direct interaction with DLP1, and LRRK2 kinase activity plays a critical role in this process.
PMCID: PMC3315202  PMID: 22228096
8.  Hydroxynonenal-Generated Crosslinking Fluorophore Accumulation in Alzheimer Disease Reveals a Dichotomy of Protein Turnover 
Free radical biology & medicine  2011;52(3):699-704.
Lipid peroxidation generates reactive aldehydes, most notably hydroxynonenal (HNE), which covalently bind amino acid residue side chains leading to protein inactivation and insolubility. Specific adducts of lipid peroxidation have been demonstrated in intimate association with the pathological lesions of Alzheimer disease (AD), suggesting that oxidative stress is a major component of AD pathogenesis. Some HNE-protein products result in protein crosslinking through a fluorescent compound similar to lipofuscin, linking lipid peroxidation and the lipofuscin accumulation that commonly occurs in post-mitotic cells such as neurons. In this study, brain tissue from AD and control patients was examined by immunocytochemistry and immunoelectron microscopy for evidence of HNE-crosslinking modifications of the type that should accumulate in the lipofuscin pathway. Strong labeling of granulovacuolar degeneration (GVD) and Hirano bodies was noted but lipofuscin did not contain this specific HNE-fluorophore. These findings directly implicate lipid crosslinking peroxidation products as accumulating not in the lesions or the lipofuscin pathways, but instead in a distinct pathway, GVD, that accumulates cytosolic proteins.
PMCID: PMC3268699  PMID: 22137893
fluorophore; granulovacuolar degeneration; Hirano body; hydroxynonenal; lipid peroxidation; lipofuscin; oxidative stress; protein cross-linking
9.  Dynamic organization of mitochondria in human heart and in myocardial disease 
Heart mitochondria, which, depending on their location within cardiomyofibers, are classified as either subsarcolemmal or interfibrillar, are the major sources of the high-energy compound, adenosine triphosphate. Physiological differences between these two populations are reflected by differences in the morphology of their cristae, with those of subsarcolemmal mitochondria being mostly lamelliform, and those of interfibrillar mitochondria being mostly tubular. What determines the configuration of cristae, not only in cardiac mitochondria but in mitochondria in general, is unclear. The morphology of cardiac mitochondria, as well as their physiology, is responsive to the exigencies posed by a large variety of pathological situations. Giant cardiac mitochondria make an appearance in certain types of cardiomyopathy and as a result of dietary, pharmacological, and toxicological manipulation; such megamitochondria probably arise by a combination of fusion and true growth. Some of these enlarged organelles occasionally contain a membrane-bound deposit of β-glycogen. Those giant mitochondria induced by experimental treatment usually can be restored to normal dimensions simply by supplying the missing nutrient or by deleting the noxious substance. In some conditions, such as endurance training and ischemia, the mitochondrial matrices become pale. Dense rods or plates are present in the outer compartment of mitochondria under certain conditions. Biochemical alterations in cardiac mitochondria appear to be important in heart failure. In aging, only interfibrillar mitochondria exhibit such changes, with the subsarcolemmal mitochondria unaffected. In certain heart afflictions, biochemical defects are not accompanied by obvious morphological transformations. Mitochondria clearly play a cardinal role in homeostasis of the heart.
PMCID: PMC3221317  PMID: 19446651
10.  Decrease in Mitochondrial Function in Rat Cardiac Permeabilized Fibers Correlates With the Aging Phenotype 
We measured the loss of cardiac mitochondrial function related to aging in males of three rat strains presenting with different longevity and aging phenotypes: the Fischer 344 (F344), the Brown Norway (BN), and the hybrid F344×BN. The F344 rat has a short life span and a ∼45% decrease in coupled mitochondrial oxidation in the cardiac permeabilized fibers from the old rats compared with the young rats. Citrate synthase activity in the permeabilized fibers (mitochondrial content) did not change significantly with aging. The BN live longer compared with the F344 and have a 15%–18% loss of mitochondrial respiration in the aged rats compared with the young rats. The differences are not significant. In hybrids, more resistant to aging than are the BN and the F344, mitochondrial function is preserved during aging. The difference in longevity of the different strains is correlated with mitochondrial dysfunction in the heart, suggesting the importance of mitochondria in cardiac aging.
PMCID: PMC2981518  PMID: 20801909
Aging; Mitochondrial; Oxidative phosphorylation; Rat; Strains
11.  Characterization of spontaneously generated prion-like conformers in cultured cells 
Aging (Albany NY)  2011;3(10):968-984.
A distinct conformational transition from the α-helix-rich cellular prion protein (PrPC) into its β-sheet-rich pathological isoform (PrPSc) is the hallmark of prion diseases, a group of fatal transmissible encephalopathies that includes spontaneous and acquired forms. Recently, a PrPSc-like intermediate form characterized by the formation of insoluble aggregates and protease-resistant PrP species termed insoluble PrPC (iPrPC) has been identified in uninfected mammalian brains and cultured neuronal cells, providing new insights into the molecular mechanism(s) of these diseases. Here, we explore the molecular characteristics of the spontaneously formed iPrPC in cultured neuroblastoma cells expressing wild-type or mutant human PrP linked to two familial prion diseases. We observed that although PrP mutation at either residue 183 from Thr to Ala (PrPT183A) or at residue 198 from Phe to Ser (PrPF198S) affects glycosylation at both N-linked glycosylation sites, the T183A mutation that results in intracellular retention significantly increased the formation of iPrPC. Moreover, while autophagy is increased in F198S cells, it was significantly decreased in T183A cells. Our results indicate that iPrPC may be formed more readily in an intracellular compartment and that a significant increase in PrPT183A aggregation may be attributable to the inhibition of autophagy.
PMCID: PMC3229973  PMID: 21990137
Prion protein; prion disease; insoluble prion protein; neuroblastoma cells; mutation; autophagy
12.  Photosensitization of Intact Heart Mitochondria by the Phthalocyanine Pc 4: Correlation of Structural and Functional Deficits with Cytochrome c Release 
Free radical biology & medicine  2010;49(5):726-732.
Singlet oxygen is produced by absorption of red light by the phthalocyanine dye, Pc 4, followed by energy transfer to dissolved triplet oxygen. Mitochondria pre-incubated with Pc 4 were illuminated by red light and the damage to mitochondrial structure and function by the generated singlet oxygen was studied. At early illumination times (3–5 min. of red light exposure), state 3 respiration was inhibited (50%) while state 4 activity increased, resulting in effectively complete uncoupling. Individual complex activities were measured and only complex IV activity was significantly reduced and exhibited a dose response while the activities of electron transport complexes I, II and III were not significantly affected. Cyt c release was an increasing function of irradiation time with 30% being released following 5 min. of illumination. Mitochondrial expansion along with changes in the structure of the cristae were observed by transmission electron microscopy following 5 min. of irradiation with an increase of large vacuoles and membrane rupture occurring following more extensive exposures.
PMCID: PMC2921926  PMID: 20510354
Singlet oxygen; Mitochondria; Cytochrome c oxidase; Electron transport complexes; Cytochrome c release; Photodynamic therapy
13.  A Role for Fetal Hemoglobin and Maternal Immune IgG in Infant Resistance to Plasmodium falciparum Malaria 
PLoS ONE  2011;6(4):e14798.
In Africa, infant susceptibility to Plasmodium falciparum malaria increases substantially as fetal hemoglobin (HbF) and maternal immune IgG disappear from circulation. During the first few months of life, however, resistance to malaria is evidenced by extremely low parasitemias, the absence of fever, and the almost complete lack of severe disease. This resistance has previously been attributed in part to poor parasite growth in HbF-containing red blood cells (RBCs). A specific role for maternal immune IgG in infant resistance to malaria has been hypothesized but not yet identified.
Methods and Findings
We found that P. falciparum parasites invade and develop normally in fetal (cord blood, CB) RBCs, which contain up to 95% HbF. However, these parasitized CB RBCs are impaired in their binding to human microvascular endothelial cells (MVECs), monocytes, and nonparasitized RBCs – cytoadherence interactions that have been implicated in the development of high parasite densities and the symptoms of malaria. Abnormal display of the parasite's cytoadherence antigen P. falciparum erythrocyte membrane protein-1 (PfEMP-1) on CB RBCs accounts for these findings and is reminiscent of that on HbC and HbS RBCs. IgG purified from the plasma of immune Malian adults almost completely abolishes the adherence of parasitized CB RBCs to MVECs.
Our data suggest a model of malaria protection in which HbF and maternal IgG act cooperatively to impair the cytoadherence of parasitized RBCs in the first few months of life. In highly malarious areas of Africa, an infant's contemporaneous expression of HbC or HbS and development of an immune IgG repertoire may effectively reconstitute the waning protective effects of HbF and maternal immune IgG, thereby extending the malaria resistance of infancy into early childhood.
PMCID: PMC3075246  PMID: 21532754
15.  Individuals with mutations in XPNPEP3, which encodes a mitochondrial protein, develop a nephronophthisis-like nephropathy  
The autosomal recessive kidney disease nephronophthisis (NPHP) constitutes the most frequent genetic cause of terminal renal failure in the first 3 decades of life. Ten causative genes (NPHP1–NPHP9 and NPHP11), whose products localize to the primary cilia-centrosome complex, support the unifying concept that cystic kidney diseases are “ciliopathies”. Using genome-wide homozygosity mapping, we report here what we believe to be a new locus (NPHP-like 1 [NPHPL1]) for an NPHP-like nephropathy. In 2 families with an NPHP-like phenotype, we detected homozygous frameshift and splice-site mutations, respectively, in the X-prolyl aminopeptidase 3 (XPNPEP3) gene. In contrast to all known NPHP proteins, XPNPEP3 localizes to mitochondria of renal cells. However, in vivo analyses also revealed a likely cilia-related function; suppression of zebrafish xpnpep3 phenocopied the developmental phenotypes of ciliopathy morphants, and this effect was rescued by human XPNPEP3 that was devoid of a mitochondrial localization signal. Consistent with a role for XPNPEP3 in ciliary function, several ciliary cystogenic proteins were found to be XPNPEP3 substrates, for which resistance to N-terminal proline cleavage resulted in attenuated protein function in vivo in zebrafish. Our data highlight an emerging link between mitochondria and ciliary dysfunction, and suggest that further understanding the enzymatic activity and substrates of XPNPEP3 will illuminate novel cystogenic pathways.
PMCID: PMC2827951  PMID: 20179356
16.  Induction of actin gene expression in the mosquito midgut by blood ingestion correlates with striking changes of cell shape 
Journal of insect physiology  2007;53(8):833-839.
Ingestion of a blood meal by the female mosquito Anopheles gambiae (L., Diptera: Culicidae), results in a dramatic distention of the midgut epithelium. Here we report that these events correlate with a transient increase of actin mRNA and protein abundance. The newly synthesized actin may provide a pool of actin protein needed to remodel epithelial cell cytoarchitecture. We also document changes in midgut epithelial cell morphology. Upon blood ingestion, the columnar cells flatten accompanied by the loss of microvilli on the lumenal side and the unfolding of the labyrinth on the basal side. These changes correlate with the large increase of epithelial surface area needed to accommodate the blood meal. Actin gene expression, actin synthesis and cell morphology all return to the pre-feeding state by 24 h after blood intake.
PMCID: PMC2756156  PMID: 17537455
actin; Anopheles gambiae; midgut; microvilli; blood feeding
17.  Cell Cycle Re-Entry and Mitochondrial Defects in Myc-Mediated Hypertrophic Cardiomyopathy and Heart Failure 
PLoS ONE  2009;4(9):e7172.
While considerable evidence supports the causal relationship between increases in c-Myc (Myc) and cardiomyopathy as a part of a “fetal re-expression” pattern, the functional role of Myc in mechanisms of cardiomyopathy remains unclear. To address this, we developed a bitransgenic mouse that inducibly expresses Myc under the control of the cardiomyocyte-specific MHC promoter. In adult mice the induction of Myc expression in cardiomyocytes in the heart led to the development of severe hypertrophic cardiomyopathy followed by ventricular dysfunction and ultimately death from congestive heart failure. Mechanistically, following Myc activation, cell cycle markers and other indices of DNA replication were significantly increased suggesting that cell cycle-related events might be a primary mechanism of cardiac dysfunction. Furthermore, pathological alterations at the cellular level included alterations in mitochondrial function with dysregulation of mitochondrial biogenesis and defects in electron transport chain complexes I and III. These data are consistent with the known role of Myc in several different pathways including cell cycle activation, mitochondrial proliferation, and apoptosis, and indicate that Myc activation in cardiomyocytes is an important regulator of downstream pathological sequelae. Moreover, our findings indicate that the induction of Myc in cardiomyocytes is sufficient to cause cardiomyopathy and heart failure, and that sustained induction of Myc, leading to cell cycle re-entry in adult cardiomyocytes, represents a maladaptive response for the mature heart.
PMCID: PMC2747003  PMID: 19779629
18.  Cell-Specific Metabolism and Pathogenesis of Transmembrane Prion Protein 
Molecular and Cellular Biology  2006;26(7):2697-2715.
The C-transmembrane form of prion protein (CtmPrP) has been implicated in prion disease pathogenesis, but the factors underlying its biogenesis and cyotoxic potential remain unclear. Here we show that CtmPrP interferes with cytokinesis in cell lines where it is transported to the plasma membrane. These cells fail to separate following cell division, assume a variety of shapes and sizes, and contain multiple nuclei, some of which are pyknotic. Furthermore, the synthesis and transport of CtmPrP to the plasma membrane are modulated through a complex interaction between cis- and trans-acting factors and the endoplasmic reticulum translocation machinery. Thus, insertion of eight amino acids before or within the N region of the N signal peptide (N-SP) of PrP results in the exclusive synthesis of CtmPrP regardless of the charge conferred to the N region. Subsequent processing and transport of CtmPrP are modulated by specific amino acids in the N region of the N-SP and by the cell line of expression. Although the trigger for CtmPrP upregulation in naturally occurring prion disorders remains elusive, these data highlight the underlying mechanisms of CtmPrP biogenesis and neurotoxicity and reinforce the idea that CtmPrP may serve as the proximate cause of neuronal death in certain prion disorders.
PMCID: PMC1430324  PMID: 16537913
19.  Exit of Plasmodium Sporozoites from Oocysts Is an Active Process That Involves the Circumsporozoite Protein 
PLoS Pathogens  2005;1(1):e9.
Plasmodium sporozoites develop within oocysts residing in the mosquito midgut. Mature sporozoites exit the oocysts, enter the hemolymph, and invade the salivary glands. The circumsporozoite (CS) protein is the major surface protein of salivary gland and oocyst sporozoites. It is also found on the oocyst plasma membrane and on the inner surface of the oocyst capsule. CS protein contains a conserved motif of positively charged amino acids: region II-plus, which has been implicated in the initial stages of sporozoite invasion of hepatocytes. We investigated the function of region II-plus by generating mutant parasites in which the region had been substituted with alanines. Mutant parasites produced normal numbers of sporozoites in the oocysts, but the sporozoites were unable to exit the oocysts. In in vitro as well, there was a profound delay, upon trypsin treatment, in the release of mutant sporozoites from oocysts. We conclude that the exit of sporozoites from oocysts is an active process that involves the region II-plus of CS protein. In addition, the mutant sporozoites were not infective to young rats. These findings provide a new target for developing reagents that interfere with the transmission of malaria.
Malaria affects hundreds of millions of people, and kills at least 1 million children per year. The infective stages of the malaria parasites, named “sporozoites,” are found in the salivary gland of Anopheles mosquitoes, and are injected along with the saliva during blood feeding. From the skin, sporozoites enter the blood circulation and invade liver cells where the parasites multiply. When they exit the liver, these parasites infect blood cells and can cause severe symptoms. If ingested by mosquitoes, the blood-stage parasites continue their lifecycle in the insect stomach. Thousands of sporozoites are formed within a cyst-like structure (oocyst). The sporozoites come out of the oocyst and infect the salivary gland, where they remain until injected back into humans. Malaria parasites are increasingly resistant to drugs, mosquitoes are difficult to eliminate, and effective vaccines are not yet available. New tools to combat malaria are urgently needed. One exciting approach, although the application is in the distant future, is to release in endemic areas genetically modified mosquitoes that are resistant to parasite growth. This paper provides a new target for generating these “transmission-block” mosquitoes and shows that the exit of sporozoites from the oocysts is an active process that requires the enzymatic digestion of components of the oocyst wall. If these enzymes are inhibited in transgenic mosquitoes, sporozoites will never reach the salivary gland.
PMCID: PMC1238744  PMID: 16201021
20.  Conservation of a Gliding Motility and Cell Invasion Machinery in Apicomplexan Parasites 
The Journal of Cell Biology  1999;147(5):937-944.
Most Apicomplexan parasites, including the human pathogens Plasmodium, Toxoplasma, and Cryptosporidium, actively invade host cells and display gliding motility, both actions powered by parasite microfilaments. In Plasmodium sporozoites, thrombospondin-related anonymous protein (TRAP), a member of a group of Apicomplexan transmembrane proteins that have common adhesion domains, is necessary for gliding motility and infection of the vertebrate host. Here, we provide genetic evidence that TRAP is directly involved in a capping process that drives both sporozoite gliding and cell invasion. We also demonstrate that TRAP-related proteins in other Apicomplexa fulfill the same function and that their cytoplasmic tails interact with homologous partners in the respective parasite. Therefore, a mechanism of surface redistribution of TRAP-related proteins driving gliding locomotion and cell invasion is conserved among Apicomplexan parasites.
PMCID: PMC2169348  PMID: 10579715
gliding motility; cell invasion; Apicomplexan parasites; thrombospondin-related anonymous protein; micronemal protein 2
21.  Immunocytochemical Colocalization of Specific Immunoglobulin A with Sendai Virus Protein in Infected Polarized Epithelium  
The Journal of Experimental Medicine  1998;188(7):1223-1229.
Immunoglobulin (Ig)A provides the initial immune barrier to viruses at mucosal surfaces. Specific IgA interrupts viral replication in polarized epithelium during receptor-mediated transport, probably by binding to newly synthesized viral proteins. Here, we demonstrate by immunoelectron microscopy that specific IgA monoclonal antibodies (mAbs) accumulate within Sendai virus–infected polarized cell monolayers and colocalize with the hemagglutinin– neuraminidase (HN) viral protein in a novel intracellular structure. Neither IgG specific for HN nor irrelevant IgA mAbs colocalize with viral protein. Treatment of cultures with viral-specific IgA but not with viral-specific IgG or irrelevant IgA decreases viral titers. These observations provide definitive ultrastructural evidence of a subcellular compartment in which specific IgA and viral envelope proteins interact, further strengthening our hypothesis of intracellular neutralization of virus by specific IgA antibodies. Our results have important implications for intracellular protein trafficking, viral replication, and viral vaccine development.
PMCID: PMC2212485  PMID: 9763601
immunoglobulin A; Sendai virus; mucosal immunity; colocalization; hemagglutinin–neuraminidase protein
22.  Efficacy of MK-991 (L-743,872), a Semisynthetic Pneumocandin, in Murine Models of Pneumocystis carinii 
In addition to its potent efficacy in animal models against Candida sp., Aspergillus fumigatus, and Histoplasma capsulatum, the clinical candidate pneumocandin MK-991 (formerly L-743,872) was also extremely potent against Pneumocystis carinii in models of immune-compromised animals. MK-991 was approximately 14 times more potent than the original natural product lead, pneumocandin B0. The 90% effective dose (ED90) of MK-991 for cyst clearance in the rat model for pneumocystis was 0.011 mg/kg of body weight when delivered parenterally for 4 days twice a day (b.i.d.). In a mouse model, under the same experimental parameters, the ED90 was 0.02 mg/kg. MK-991 was also effective orally, with an ED90 for cyst clearance of 2.2 mg/kg against acute infection in rats (b.i.d. for 4 days). Complete prevention of P. carinii development was achieved in immunocompromised mice at a daily oral dose of 2.25 mg/kg. As reported previously for other pneumocandins and echinocandins, MK-991 selectively prevented the development of P. carinii cysts. When used as a prophylactic agent, neither stage of the organism appeared in the lungs of animals. In response to an acute infection, cysts were eliminated rapidly, while trophozoite forms persisted. Despite good efficacy as an oral agent in murine models, the low oral absorption of this class may limit the use of MK-991 to parenteral therapy.
PMCID: PMC105720  PMID: 9687394

Results 1-22 (22)