PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  A homozygous PDE6D mutation in Joubert syndrome impairs targeting of farnesylated INPP5E protein to the primary cilium 
Human mutation  2014;35(1):137-146.
Joubert syndrome (JS) is characterized by a distinctive cerebellar structural defect, namely the « molar tooth sign ». JS is genetically heterogeneous, involving 18 genes identified to date, which are all required for cilia biogenesis and/or function. In a consanguineous family with JS associated with optic nerve coloboma, kidney hypoplasia and polydactyly, combined exome sequencing and mapping identified a homozygous splice site mutation in PDE6D, encoding a prenyl-binding protein. We found that pde6d depletion in zebrafish leads to renal and retinal developmental anomalies and wild-type but not mutant PDE6D is able to rescue this phenotype. Proteomic analysis identified INPP5E, whose mutations also lead to JS or MORM syndromes, as novel prenyl-dependent cargo of PDE6D. Mutant PDE6D shows reduced binding to INPP5E, which fails to localize to primary cilia in patient fibroblasts and tissues. Furthermore, mutant PDE6D is unable to bind to GTP-bound ARL3, which acts as a cargo-release factor for PDE6D-bound INPP5E. Altogether, these results indicate that PDE6D is required for INPP5E ciliary targeting and suggest a broader role for PDE6D in targeting other prenylated proteins to the cilia. This study identifies PDE6D as a novel JS disease gene and provides the first evidence of prenyl-binding dependent trafficking in ciliopathies.
doi:10.1002/humu.22470
PMCID: PMC3946372  PMID: 24166846
Joubert syndrome; primary cilia; PDE6D; INPP5E; prenylation
2.  Phenotypic spectrum and prevalence of INPP5E mutations in Joubert Syndrome and related disorders 
European Journal of Human Genetics  2013;21(10):1074-1078.
Joubert syndrome and related disorders (JSRD) are clinically and genetically heterogeneous ciliopathies sharing a peculiar midbrain–hindbrain malformation known as the ‘molar tooth sign'. To date, 19 causative genes have been identified, all coding for proteins of the primary cilium. There is clinical and genetic overlap with other ciliopathies, in particular with Meckel syndrome (MKS), that is allelic to JSRD at nine distinct loci. We previously identified the INPP5E gene as causative of JSRD in seven families linked to the JBTS1 locus, yet the phenotypic spectrum and prevalence of INPP5E mutations in JSRD and MKS remain largely unknown. To address this issue, we performed INPP5E mutation analysis in 483 probands, including 408 JSRD patients representative of all clinical subgroups and 75 MKS fetuses. We identified 12 different mutations in 17 probands from 11 JSRD families, with an overall 2.7% mutation frequency among JSRD. The most common clinical presentation among mutated families (7/11, 64%) was Joubert syndrome with ocular involvement (either progressive retinopathy and/or colobomas), while the remaining cases had pure JS. Kidney, liver and skeletal involvement were not observed. None of the MKS fetuses carried INPP5E mutations, indicating that the two ciliopathies are not allelic at this locus.
doi:10.1038/ejhg.2012.305
PMCID: PMC3778343  PMID: 23386033
INPP5E; Joubert syndrome and related disorders; Meckel syndrome; ciliopathies
3.  KIF7 mutations cause fetal hydrolethalus and acrocallosal syndromes 
Nature genetics  2011;43(6):601-606.
KIF7, the human ortholog of Drosophila Costal2, is a key component of the Hedgehog signaling pathway. Here we report mutations in KIF7 in individuals with hydrolethalus and acrocallosal syndromes, two multiple malformation disorders with overlapping features that include polydactyly, brain abnormalities and cleft palate. Consistent with a role of KIF7 in Hedgehog signaling, we show deregulation of most GLI transcription factor targets and impaired GLI3 processing in tissues from individuals with KIF7 mutations. KIF7 is also a likely contributor of alleles across the ciliopathy spectrum, as sequencing of a diverse cohort identified several missense mutations detrimental to protein function. In addition, in vivo genetic interaction studies indicated that knockdown of KIF7 could exacerbate the phenotype induced by knockdown of other ciliopathy transcripts. Our data show the role of KIF7 in human primary cilia, especially in the Hedgehog pathway through the regulation of GLI targets, and expand the clinical spectrum of ciliopathies.
doi:10.1038/ng.826
PMCID: PMC3674836  PMID: 21552264
4.  Novel TMEM67 Mutations and Genotype-phenotype Correlates in Meckelin-related Ciliopathies 
Human mutation  2010;31(5):E1319-E1331.
Human ciliopathies are hereditary conditions caused by defects of proteins expressed at the primary cilium. Among ciliopathies, Joubert syndrome and related disorders (JSRD), Meckel syndrome (MKS) and nephronophthisis (NPH) present clinical and genetic overlap, being allelic at several loci. One of the most interesting gene is TMEM67, encoding the transmembrane protein meckelin. We performed mutation analysis of TMEM67 in 341 probands, including 265 JSRD representative of all clinical subgroups and 76 MKS fetuses. We identified 33 distinct mutations, of which 20 were novel, in 8/10 (80%) JS with liver involvement (COACH phenotype) and 12/76 (16%) MKS fetuses. No mutations were found in other JSRD subtypes, confirming the strong association between TMEM67 mutations and liver involvement. Literature review of all published TMEM67 mutated cases was performed to delineate genotype-phenotype correlates. In particular, comparison of the types of mutations and their distribution along the gene in lethal versus non lethal phenotypes showed in MKS patients a significant enrichment of missense mutations falling in TMEM67 exons 8 to 15, especially when in combination with a truncating mutation. These exons encode for a region of unknown function in the extracellular domain of meckelin.
doi:10.1002/humu.21239
PMCID: PMC2918781  PMID: 20232449
TMEM67; MKS3; Joubert syndrome; Meckel syndrome; congenital hepatic fibrosis; COACH syndrome
5.  Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes 
Nature genetics  2010;42(7):619-625.
Joubert syndrome (JBTS), related disorders (JSRD) and Meckel syndrome (MKS) are ciliopathies. We now report that MKS2 and JBTS2 loci are allelic and due to mutations in TMEM216, encoding an uncharacterized tetraspan transmembrane protein. JBTS2 patients displayed frequent nephronophthisis and polydactytly, and two cases conformed to the Oro-Facio-Digital type VI phenotype, whereas skeletal dysplasia was common in MKS fetuses. A single p.R73L mutation was identified in all patients of Ashkenazi Jewish descent (n=10). TMEM216 localized to the base of primary cilia, and loss of TMEM216 in patient fibroblasts or following siRNA knockdown caused defective ciliogenesis and centrosomal docking, with concomitant hyperactivation of RhoA and Dishevelled. TMEM216 complexed with Meckelin, encoded by a gene also mutated in JSRD and MKS. Abrogation of tmem216 expression in zebrafish led to gastrulation defects that overlap with other ciliary morphants. The data implicate a new family of proteins in the ciliopathies, and further support allelism between ciliopathy disorders.
doi:10.1038/ng.594
PMCID: PMC2894012  PMID: 20512146
6.  CC2D2A mutations in Meckel and Joubert syndromes indicate a genotype-phenotype correlation 
Human mutation  2009;30(11):1574-1582.
The Meckel syndrome (MKS) is a lethal fetal disorder characterized by diffuse renal cystic dysplasia, polydactyly, a brain malformation that is usually occipital encephalocele and/or vermian agenesis, with intrahepatic biliary duct proliferation. Joubert syndrome (JBS) is a viable neurological disorder with a characteristic “molar tooth sign” (MTS) on axial images reflecting cerebellar vermian hypoplasia/dysplasia. Both conditions are classified as ciliopathies with an autosomal recessive mode of inheritance. Allelism of MS and JBS has been reported for TMEM67/MKS3, CEP290/MKS4, and RPGRIP1L/MKS5. Recently, one homozygous splice mutation with a founder effect was reported in the CC2D2A gene in Finnish fetuses with MKS, defining the 6th locus for MKS. Shortly thereafter, CC2D2A mutations were reported in JBS also. The analysis of the CC2D2A gene in our series of MKS fetuses, identified 14 novel truncating mutations in 11 cases. These results confirm the involvement of CC2D2A in MKS and reveal a major contribution of CC2D2A to the disease. We also identified three missense CC2D2A mutations in two JBS cases. Therefore and in accordance with the data reported regarding RPGRIP1L, our results indicate phenotype-genotype correlations, as missense and presumably hypomorphic mutations lead to JBS while all null alleles lead to MKS.
doi:10.1002/humu.21116
PMCID: PMC2783384  PMID: 19777577
Meckel-Gruber syndrome; MKS; Joubert syndrome; JBS; CC2D2A; ciliopathy

Results 1-6 (6)