PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-15 (15)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  OSBPL2 encodes a protein of inner and outer hair cell stereocilia and is mutated in autosomal dominant hearing loss (DFNA67) 
Background
Early-onset hearing loss is mostly of genetic origin. The complexity of the hearing process is reflected by its extensive genetic heterogeneity, with probably many causative genes remaining to be identified. Here, we aimed at identifying the genetic basis for autosomal dominant non-syndromic hearing loss (ADNSHL) in a large German family.
Methods
A panel of 66 known deafness genes was analyzed for mutations by next-generation sequencing (NGS) in the index patient. We then conducted genome-wide linkage analysis, and whole-exome sequencing was carried out with samples of two patients. Expression of Osbpl2 in the mouse cochlea was determined by immunohistochemistry. Because Osbpl2 has been proposed as a target of miR-96, we investigated homozygous Mir96 mutant mice for its upregulation.
Results
Onset of hearing loss in the investigated ADNSHL family is in childhood, initially affecting the high frequencies and progressing to profound deafness in adulthood. However, there is considerable intrafamilial variability. We mapped a novel ADNSHL locus, DFNA67, to chromosome 20q13.2-q13.33, and subsequently identified a co-segregating heterozygous frameshift mutation, c.141_142delTG (p.Arg50Alafs*103), in OSBPL2, encoding a protein known to interact with the DFNA1 protein, DIAPH1. In mice, Osbpl2 was prominently expressed in stereocilia of cochlear outer and inner hair cells. We found no significant Osbpl2 upregulation at the mRNA level in homozygous Mir96 mutant mice.
Conclusion
The function of OSBPL2 in the hearing process remains to be determined. Our study and the recent description of another frameshift mutation in a Chinese ADNSHL family identify OSBPL2 as a novel gene for progressive deafness.
Electronic supplementary material
The online version of this article (doi:10.1186/s13023-015-0238-5) contains supplementary material, which is available to authorized users.
doi:10.1186/s13023-015-0238-5
PMCID: PMC4334766
OSBPL2; DFNA67; Autosomal dominant hearing loss
2.  An Efficient and Comprehensive Strategy for Genetic Diagnostics of Polycystic Kidney Disease 
PLoS ONE  2015;10(2):e0116680.
Renal cysts are clinically and genetically heterogeneous conditions. Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent life-threatening genetic disease and mainly caused by mutations in PKD1. The presence of six PKD1 pseudogenes and tremendous allelic heterogeneity make molecular genetic testing challenging requiring laborious locus-specific amplification. Increasing evidence suggests a major role for PKD1 in early and severe cases of ADPKD and some patients with a recessive form. Furthermore it is becoming obvious that clinical manifestations can be mimicked by mutations in a number of other genes with the necessity for broader genetic testing. We established and validated a sequence capture based NGS testing approach for all genes known for cystic and polycystic kidney disease including PKD1. Thereby, we demonstrate that the applied standard mapping algorithm specifically aligns reads to the PKD1 locus and overcomes the complication of unspecific capture of pseudogenes. Employing careful and experienced assessment of NGS data, the method is shown to be very specific and equally sensitive as established methods. An additional advantage over conventional Sanger sequencing is the detection of copy number variations (CNVs). Sophisticated bioinformatic read simulation increased the high analytical depth of the validation study and further demonstrated the strength of the approach. We further raise some awareness of limitations and pitfalls of common NGS workflows when applied in complex regions like PKD1 demonstrating that quality of NGS needs more than high coverage of the target region. By this, we propose a time- and cost-efficient diagnostic strategy for comprehensive molecular genetic testing of polycystic kidney disease which is highly automatable and will be of particular value when therapeutic options for PKD emerge and genetic testing is needed for larger numbers of patients.
doi:10.1371/journal.pone.0116680
PMCID: PMC4315576  PMID: 25646624
3.  Combined NGS Approaches Identify Mutations in the Intraflagellar Transport Gene IFT140 in Skeletal Ciliopathies with Early Progressive Kidney Disease 
Human mutation  2013;34(5):714-724.
Ciliopathies are genetically heterogeneous disorders characterized by variable expressivity and overlaps between different disease entities. This is exemplified by the short rib-polydactyly syndromes, Jeune, Sensenbrenner, and Mainzer-Saldino chondrodysplasia syndromes. These three syndromes are frequently caused by mutations in intraflagellar transport (IFT) genes affecting the primary cilia, which play a crucial role in skeletal and chondral development. Here, we identified mutations in IFT140, an IFT complex A gene, in five Jeune asphyxiating thoracic dystrophy (JATD) and two Mainzer-Saldino syndrome (MSS) families, by screening a cohort of 66 JATD/MSS patients using whole exome sequencing and targeted resequencing of a customized ciliopathy gene panel. We also found an enrichment of rare IFT140 alleles in JATD compared with nonciliopathy diseases, implying putative modifier effects for certain alleles. IFT140 patients presented with mild chest narrowing, but all had end-stage renal failure under 13 years of age and retinal dystrophy when examined for ocular dysfunction. This is consistent with the severe cystic phenotype of Ift140 conditional knockout mice, and the higher level of Ift140 expression in kidney and retina compared with the skeleton at E15.5 in the mouse. IFT140 is therefore a major cause of cono-renal syndromes (JATD and MSS). The present study strengthens the rationale for IFT140 screening in skeletal ciliopathy spectrum patients that have kidney disease and/or retinal dystrophy.
doi:10.1002/humu.22294
PMCID: PMC4226634  PMID: 23418020
cilia; Jeune asphyxiating thoracic dystrophy; Mainzer-Saldino syndrome; IFT140; NGS
4.  Genotype-phenotype correlation in 440 patients with NPHP-related ciliopathies 
Kidney international  2011;80(11):1239-1245.
Nephronophthisis (NPHP), an autosomal recessive cystic kidney disease, is the most frequent genetic cause for end-stage renal failure in the first 3 decades of life. Mutations in 13 genes (NPHP1-NPHP11, AHI1, and CC2D2A) cause NPHP with ubiquitous expression of the corresponding proteins consistent with the multiorgan involvement of NPHP-related diseases. The genotype-phenotype correlation in these ciliopathies can be explained by gene locus heterogeneity, allelism, and the impact of modifier genes. In some NPHP-related ciliopathies, the nature of the recessive mutations determines disease severity. In order to define the genotypephenotype correlation more clearly, we evaluated a worldwide cohort of 440 patients from 365 families with NPHP-related ciliopathies, in whom both disease-causing alleles were identified. The phenotypes were ranked in the order of severity from degenerative to degenerative/ dysplastic to dysplastic. A genotype of 2 null alleles caused a range of phenotypes with an increasing order of severity of NPHP1, NPHP3, NPHP4, NPHP5, NPHP2, NPHP10, NPHP6 to AHI1. Only NPHP6 showed allelic influences on the phenotypes; the presence of 2 null mutations caused dysplastic phenotypes, whereas at least one missense allele rescued it to a milder degenerative phenotype. We also found 9 novel mutations in the NPHP genes. Thus, our studies have important implications for genetic counseling and planning of renal replacement therapy.
doi:10.1038/ki.2011.284
PMCID: PMC4037742  PMID: 21866095
cystic kidney; end-stage renal disease; genetic renal disease; human genetics; pediatric nephrology
5.  ARPKD and early manifestations of ADPKD: the original polycystic kidney disease and phenocopies 
Renal cysts are clinically and genetically heterogeneous conditions. Polycystic kidney disease (PKD) is common and its characterization has paved the way for the identification of a growing number of cilia-related disorders (ciliopathies) of which most show cystic kidneys. While the recessive form of PKD (ARPKD) virtually always presents in childhood, early onset can, in some instances, also occur in the dominant form (ADPKD). Both ADPKD genes (PKD1 and PKD2) can also be inherited in a recessive way, making the story more complex with evidence for a dosage-sensitive network. Several phenocopies are known, and mutations in HNF1ß or genes that typically cause other ciliopathies, such as nephronophthisis, Bardet–Biedl, Joubert syndrome and related disorders, can mimic PKD. An accurate genetic diagnosis is crucial for genetic counseling, prenatal diagnostics, and the clinical management of patients and their families. The increasing number of genes that have to be considered in patients with cystic kidney disease is challenging to address by conventional techniques and largely benefits from next-generation sequencing-based approaches. The parallel analysis of targeted genes considerably increases the detection rate, allows for better interpretation of identified variants, and avoids genetic misdiagnoses.
doi:10.1007/s00467-013-2706-2
PMCID: PMC4240914  PMID: 24584572
Polycystic kidney disease (ADPKD/ARPKD); Ciliopathies; HNF1ß; Nephronophthisis; Bardet–Biedl syndrome; Joubert syndrome and related disorders; Next-generation sequencing
6.  ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3 
Nature genetics  2013;45(8):951-956.
Nephronophthisis (NPH) is an autosomal recessive cystic kidney disease that leads to renal failure in childhood or adolescence. Most NPHP gene products form molecular networks. We have identified ANKS6 as a new NPHP family member that connects NEK8 (NPHP9) to INVERSIN (INVS, NPHP2) and NPHP3 to form a distinct NPHP module. ANKS6 localizes to the proximal cilium and knockdown experiments in zebrafish and Xenopus confirmed a role in renal development. Genetic screening identified six families with ANKS6 mutations and NPH, including severe cardiovascular abnormalities, liver fibrosis and situs inversus. The oxygen sensor HIF1AN (FIH) hydroxylates ANKS6 and INVS, while knockdown of Hif1an in Xenopus resembled the loss of other NPHP proteins. HIF1AN altered the composition of the ANKS6/INVS/NPHP3 module. Network analyses, uncovering additional putative NPHP-associated genes, placed ANKS6 at the center of the NPHP module, explaining the overlapping disease manifestation caused by mutations of either ANKS6, NEK8, INVS or NPHP3.
doi:10.1038/ng.2681
PMCID: PMC3786259  PMID: 23793029
7.  Double homozygous missense mutations in DACH1 and BMP4 in a patient with bilateral cystic renal dysplasia 
Renal hypodysplasia (RHD) is characterized by small and/or disorganized kidneys following abnormal organogenesis. Mutations in several genes have been identified recently to be associated with RHD in humans, including BMP4, a member of the transforming growth factor (TGF)-β family of growth factors. DACH1 has been proposed as a candidate gene for RHD because of its involvement in the EYA-SIX-DACH network of renal developmental genes. Here, we present a patient with renal dysplasia carrying homozygous missense mutations in both BMP4 (p.N150K) and DACH1 (p.R684C). The genotype–phenotype correlation in the family hints at an oligogenic mode of inheritance of the disease in this kindred. Functional analyses of the identified DACH1 mutation in HEK293T cells demonstrated enhanced suppression of the TGF-β pathway suggesting that both mutations could act synergistically in the development of the phenotype in this patient. This finding provides a model for RHD as an oligo-/polygenic disorder and supports a role for DACH1 in the development of RHD in humans.
doi:10.1093/ndt/gfs539
PMCID: PMC3616761  PMID: 23262432
kidney dysplasia; molecular genetics; oligogenic inheritance
8.  Increasing the Yield in Targeted Next-Generation Sequencing by Implicating CNV Analysis, Non-Coding Exons and the Overall Variant Load: The Example of Retinal Dystrophies 
PLoS ONE  2013;8(11):e78496.
Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are major causes of blindness. They result from mutations in many genes which has long hampered comprehensive genetic analysis. Recently, targeted next-generation sequencing (NGS) has proven useful to overcome this limitation. To uncover “hidden mutations” such as copy number variations (CNVs) and mutations in non-coding regions, we extended the use of NGS data by quantitative readout for the exons of 55 RP and LCA genes in 126 patients, and by including non-coding 5′ exons. We detected several causative CNVs which were key to the diagnosis in hitherto unsolved constellations, e.g. hemizygous point mutations in consanguineous families, and CNVs complemented apparently monoallelic recessive alleles. Mutations of non-coding exon 1 of EYS revealed its contribution to disease. In view of the high carrier frequency for retinal disease gene mutations in the general population, we considered the overall variant load in each patient to assess if a mutation was causative or reflected accidental carriership in patients with mutations in several genes or with single recessive alleles. For example, truncating mutations in RP1, a gene implicated in both recessive and dominant RP, were causative in biallelic constellations, unrelated to disease when heterozygous on a biallelic mutation background of another gene, or even non-pathogenic if close to the C-terminus. Patients with mutations in several loci were common, but without evidence for di- or oligogenic inheritance. Although the number of targeted genes was low compared to previous studies, the mutation detection rate was highest (70%) which likely results from completeness and depth of coverage, and quantitative data analysis. CNV analysis should routinely be applied in targeted NGS, and mutations in non-coding exons give reason to systematically include 5′-UTRs in disease gene or exome panels. Consideration of all variants is indispensable because even truncating mutations may be misleading.
doi:10.1371/journal.pone.0078496
PMCID: PMC3827063  PMID: 24265693
9.  Genetic Characteristics of the Human Hepatic Stellate Cell Line LX-2 
PLoS ONE  2013;8(10):e75692.
The human hepatic cell line LX-2 has been described as tool to study mechanisms of hepatic fibrogenesis and the testing of antifibrotic compounds. It was originally generated by immortalisation with the Simian Vacuolating Virus 40 (SV40) transforming (T) antigen and subsequent propagation in low serum conditions. Although this immortalized line is used in an increasing number of studies, detailed genetic characterisation has been lacking. We here have performed genetic characterisation of the LX-2 cell line and established a single-locus short tandem repeat (STR) profile for the cell line and characterized the LX-2 karyotype by several cytogenetic and molecular cytogenetic techniques. Spectral karyotyping (SKY) revealed a complex karyotype with a set of aberrations consistently present in the metaphases analyses which might serve as cytogenetic markers. In addition, various subclonal and single cell aberrations were detected. Our study provides criteria for genetic authentication of LX-2 and offers insights into the genotype changes which might underlie part of its phenotypic features.
doi:10.1371/journal.pone.0075692
PMCID: PMC3792989  PMID: 24116068
10.  Targeted next-generation sequencing identifies a homozygous nonsense mutation in ABHD12, the gene underlying PHARC, in a family clinically diagnosed with Usher syndrome type 3 
Background
Usher syndrome (USH) is an autosomal recessive genetically heterogeneous disorder with congenital sensorineural hearing impairment and retinitis pigmentosa (RP). We have identified a consanguineous Lebanese family with two affected members displaying progressive hearing loss, RP and cataracts, therefore clinically diagnosed as USH type 3 (USH3). Our study was aimed at the identification of the causative mutation in this USH3-like family.
Methods
Candidate loci were identified using genomewide SNP-array-based homozygosity mapping followed by targeted enrichment and next-generation sequencing.
Results
Using a capture array targeting the three identified homozygosity-by-descent regions on chromosomes 1q43-q44, 20p13-p12.2 and 20p11.23-q12, we identified a homozygous nonsense mutation, p.Arg65X, in ABHD12 segregating with the phenotype.
Conclusion
Mutations of ABHD12, an enzyme hydrolyzing an endocannabinoid lipid transmitter, cause PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and early-onset cataract). After the identification of the ABHD12 mutation in this family, one patient underwent neurological examination which revealed ataxia, but no polyneuropathy. ABHD12 is not known to be related to the USH protein interactome. The phenotype of our patient represents a variant of PHARC, an entity that should be taken into account as differential diagnosis for USH3. Our study demonstrates the potential of comprehensive genetic analysis for improving the clinical diagnosis.
doi:10.1186/1750-1172-7-59
PMCID: PMC3518140  PMID: 22938382
Usher syndrome; Deafness; Retinitis pigmentosa; ABHD12; PHARC
11.  A complex microdeletion 17q12 phenotype in a patient with recurrent de novo membranous nephropathy 
BMC Nephrology  2012;13:27.
Background
Microdeletions on chromosome 17q12 cause of diverse spectrum of disorders and have only recently been identified as a rare cause of Mayer-Rokitansky-Kuester-Hauser-Syndrome (MRKH), which is characterized by uterus aplasia ± partial/complete vaginal aplasia in females with a regular karyotype. For the first time we report about a patient with a 17q12 microdeletion who is affected by MRKH in combination with a vascular and soft tissue disorder. Repeatedly she suffered from kidney transplant failure caused by consuming membranous nephropathy.
Case presentation
A 38-year-old female patient had been diagnosed with right kidney aplasia, left kidney dysplasia and significantly impaired renal function during infancy. Aged 16 she had to start hemodialysis. Three years later she received her first kidney transplant. Only then she was diagnosed with MRKH. The kidney transplant was lost due to consuming nephrotic syndrome caused by de novo membranous nephropathy, as was a second kidney transplant years later. In addition, a hyperelasticity syndrome affects the patient with congenital joint laxity, kyphoscoliosis, bilateral hip dysplasia, persistent hypermobility of both elbows, knees and hips. Her clinical picture resembles a combination of traits of a hypermobile and a vascular form of Ehlers-Danlos-Syndrome, but no mutations in the COL3A1 gene was underlying. Instead, array-based comparative genomic hybridisation (CGH) detected a heterozygous 1.43 Mb deletion on chromosome 17q12 encompassing the two renal developmental genes HNF1β and LHX1.
Conclusions
Deletions of HNF1β have recently drawn significant attention in pediatric nephrology as an important cause of prenatally hyperechogenic kidneys, renal aplasia and renal hypodysplasia. In contrast, membranous nephropathy represents an often-unaccounted cause of nephrotic syndrome in the adult population. A causative connection between theses two conditions has never been postulated, but is suggestive enough in this case to hypothesize it.
doi:10.1186/1471-2369-13-27
PMCID: PMC3412739  PMID: 22583611
Microdeletion 17q12 syndrome; Mayer-Rokitansky-Kuester-Hauser-Syndrome membranous nephropathy; Nephrotic syndrome; HNF1β; LHX1
12.  Educational paper 
European Journal of Pediatrics  2011;171(9):1285-1300.
Cilia are antenna-like organelles found on the surface of most cells. They transduce molecular signals and facilitate interactions between cells and their environment. Ciliary dysfunction has been shown to underlie a broad range of overlapping, clinically and genetically heterogeneous phenotypes, collectively termed ciliopathies. Literally, all organs can be affected. Frequent cilia-related manifestations are (poly)cystic kidney disease, retinal degeneration, situs inversus, cardiac defects, polydactyly, other skeletal abnormalities, and defects of the central and peripheral nervous system, occurring either isolated or as part of syndromes. Characterization of ciliopathies and the decisive role of primary cilia in signal transduction and cell division provides novel insights into tumorigenesis, mental retardation, and other common causes of morbidity and mortality, including diabetes mellitus and obesity. New technologies (“Next generation sequencing/NGS”) have considerably improved genetic research and diagnostics by allowing simultaneous investigation of all disease genes at reduced costs and lower turn-around times. This is undoubtedly a result of the dynamic development in the field of human genetics and deserves increased attention in genetic counselling and the management of affected families.
doi:10.1007/s00431-011-1553-z
PMCID: PMC3419833  PMID: 21898032
Cilia/ciliopathies; Cystic kidneys; Polycystic kidney disease; ADPKD; ARPKD; Congenital hepatic fibrosis/ductal plate malformation; Nephronophthisis (NPHP); Ivemark syndrome; Meckel syndrome (MKS); Joubert syndrome (JBTS); Bardet–Biedl syndrome (BBS); Alstrom syndrome; Short-rib polydactyly syndromes; Jeune syndrome (ATD); Ellis-van Crefeld syndrome (EVC); Sensenbrenner syndrome; Primary ciliary dyskinesia (Kartagener syndrome); von Hippel-Lindau (VHL); Tuberous sclerosis (TSC); Oligogenic inheritance; Modifier; Mutational load
13.  TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum 
Nature genetics  2011;43(3):189-196.
Ciliary dysfunction leads to a broad range of overlapping phenotypes, termed collectively as ciliopathies. This grouping is underscored by genetic overlap, where causal genes can also contribute modifying alleles to clinically distinct disorders. Here we show that mutations in TTC21B/IFT139, encoding a retrograde intraflagellar transport (IFT) protein, cause both isolated nephronophthisis (NPHP) and syndromic Jeune Asphyxiating Thoracic Dystrophy (JATD). Moreover, although systematic medical resequencing of a large, clinically diverse ciliopathy cohort and matched controls showed a similar frequency of rare changes, in vivo and in vitro evaluations unmasked a significant enrichment of pathogenic alleles in cases, suggesting that TTC21B contributes pathogenic alleles to ∼5% of ciliopathy patients. Our data illustrate how genetic lesions can be both causally associated with diverse ciliopathies, as well as interact in trans with other disease-causing genes, and highlight how saturated resequencing followed by functional analysis of all variants informs the genetic architecture of disorders.
doi:10.1038/ng.756
PMCID: PMC3071301  PMID: 21258341
14.  Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy 
Nature genetics  2010;42(10):840-850.
Nephronophthisis-related ciliopathies (NPHP-RC) are recessive disorders featuring dysplasia or degeneration preferentially in kidney, retina, and cerebellum. Here we combine homozygosity mapping with candidate gene analysis by performing “ciliopathy candidate exome capture” followed by massively-parallel sequencing. We detect 12 different truncating mutations of SDCCAG8 in 10 NPHP-RC families. We demonstrate that SDCCAG8 is localized at both centrioles and directly interacts with NPHP-RC-associated OFD1. Depletion of sdccag8 causes kidney cysts and a body axis defect in zebrafish and induces cell polarity defects in 3D renal cell cultures. This work identifies SDCCAG8 loss of function as a novel cause of a retinal-renal ciliopathy and validates exome capture analysis for broadly heterogeneous single-gene disorders.
doi:10.1038/ng.662
PMCID: PMC2947620  PMID: 20835237
15.  A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies 
Nature genetics  2009;41(6):739-745.
Despite rapid advances in disease gene identification, the predictive power of the genotype remains limited, in part due to poorly understood effects of second-site modifiers. Here we demonstrate that a polymorphic coding variant of RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein-1 like), a ciliary gene mutated in Meckel-Gruber (MKS) and Joubert (JBTS) syndromes, is associated with the development of retinal degeneration in patients with ciliopathies caused by mutations in other genes. As part of our resequencing efforts of the ciliary proteome, we identified several putative loss of function RPGRIP1L mutations, including one common variant, A229T. Multiple genetic lines of evidence showed this allele to be associated with photoreceptor loss in ciliopathies. Moreover, we show that RPGRIP1L interacts biochemically with RPGR, loss of which causes retinal degeneration, and that the 229T-encoded protein significantly compromises this interaction. Our data represent an example of modification of a discrete phenotype of syndromic disease and highlight the importance of a multifaceted approach for the discovery of modifier alleles of intermediate frequency and effect.
doi:10.1038/ng.366
PMCID: PMC2783476  PMID: 19430481

Results 1-15 (15)