Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Diagnostic accuracy of early urinary index changes in differentiating transient from persistent acute kidney injury in critically ill patients: multicenter cohort study 
Critical Care  2013;17(2):R56.
Urinary indices have limited effectiveness in separating transient acute kidney injury (AKI) from persistent AKI in ICU patients. Their time-course may vary with the mechanism of AKI. The primary objective of this study was to evaluate the diagnostic value of changes over time of the usual urinary indices in separating transient AKI from persistent AKI.
An observational prospective multicenter study was performed in six ICUs involving 244 consecutive patients, including 97 without AKI, 54 with transient AKI, and 93 with persistent AKI. Urinary sodium, urea and creatinine were measured at ICU admission (H0) and on 6-hour urine samples during the first 24 ICU hours (H6, H12, H18, and H24). Transient AKI was defined as AKI with a cause for renal hypoperfusion and reversal within 3 days.
Significant increases from H0 to H24 were noted in fractional excretion of urea (median, 31% (22 to 41%) and 39% (29 to 48%) at H24, P < 0.0001), urinary urea/plasma urea ratio (15 (7 to 28) and 20 (9 to 40), P < 0.0001), and urinary creatinine/plasma creatinine ratio (50 (24 to 101) and 57 (29 to 104), P = 0.01). Fractional excretion of sodium did not change significantly during the first 24 hours in the ICU (P = 0.13). Neither urinary index values at ICU admission nor changes in urinary indices between H0 and H24 performed sufficiently well to recommend their use in clinical setting (area under the receiver-operating characteristic curve ≤0.65).
Although urinary indices at H24 performed slightly better than those at H0 in differentiating transient AKI from persistent AKI, they remain insufficiently reliable to be clinically relevant.
PMCID: PMC3733426  PMID: 23531299
2.  Transthoracic Echocardiography with Doppler Tissue Imaging predicts weaning failure from mechanical ventilation: evolution of the left ventricle relaxation rate during a spontaneous breathing trial is the key factor in weaning outcome 
Critical Care  2012;16(3):R81.
There is growing evidence to suggest that transthoracic echocardiography (TTE) should be used to identify the cardiac origin of respiratory weaning failure. The aims of our study were: first, to evaluate the ability of transthoracic echocardiography, with mitral Doppler inflow E velocity to annular tissue Doppler Ea wave velocity (E/Ea) ratio measurement, to predict weaning failure from mechanical ventilation in patients, including those with atrial fibrillation; and second, to determine whether the depressed left ejection fraction and/or diastolic dysfunction participate in weaning outcome.
The sample included patients on mechanical ventilation for over 48 hours. A complete echocardiography was performed just before the spontaneous breathing trial (SBT) and 10 minutes after starting the SBT. Systolic dysfunction was defined by a left ventricle ejection fraction under 50% and relaxation impairment by a protodiastolic annulus mitral velocity Ea under or equal to 8 cm/second.
A total of 68 patients were included. Twenty failed the weaning process and the other 48 patients succeeded. Before the SBT, the E/Ea ratio was higher in the failed group than in the successful group. The E/Ea measured during the SBT was also higher in the failed group. The cut-off value, obtained from receiver operating characteristics (ROC) curve analysis, to predict weaning failure gave an E/Ea ratio during the SBT of 14.5 with a sensitivity of 75% and a specificity of 95.8%. The left ventricular ejection fraction did not differ between the two groups whereas Ea was lower in the failed group. Ea increased during SBT in the successful group while no change occurred in the failed group.
Measurement of the E/Ea ratio with TTE could predict weaning failure. Diastolic dysfunction with relaxation impairment is strongly associated with weaning failure. Moreover, the impossibility of enhancing the left ventricle relaxation rate during the SBT seems to be the key factor of weaning failure. In contrast, the systolic dysfunction was not associated with weaning outcome.
PMCID: PMC3580624  PMID: 22583512
3.  Accuracy and precision of end-expiratory lung-volume measurements by automated nitrogen washout/washin technique in patients with acute respiratory distress syndrome 
Critical Care  2011;15(6):R294.
End-expiratory lung volume (EELV) is decreased in acute respiratory distress syndrome (ARDS), and bedside EELV measurement may help to set positive end-expiratory pressure (PEEP). Nitrogen washout/washin for EELV measurement is available at the bedside, but assessments of accuracy and precision in real-life conditions are scant. Our purpose was to (a) assess EELV measurement precision in ARDS patients at two PEEP levels (three pairs of measurements), and (b) compare the changes (Δ) induced by PEEP for total EELV with the PEEP-induced changes in lung volume above functional residual capacity measured with passive spirometry (ΔPEEP-volume). The minimal predicted increase in lung volume was calculated from compliance at low PEEP and ΔPEEP to ensure the validity of lung-volume changes.
Thirty-four patients with ARDS were prospectively included in five university-hospital intensive care units. ΔEELV and ΔPEEP volumes were compared between 6 and 15 cm H2O of PEEP.
After exclusion of three patients, variability of the nitrogen technique was less than 4%, and the largest difference between measurements was 81 ± 64 ml. ΔEELV and ΔPEEP-volume were only weakly correlated (r2 = 0.47); 95% confidence interval limits, -414 to 608 ml). In four patients with the highest PEEP (≥ 16 cm H2O), ΔEELV was lower than the minimal predicted increase in lung volume, suggesting flawed measurements, possibly due to leaks. Excluding those from the analysis markedly strengthened the correlation between ΔEELV and ΔPEEP volume (r2 = 0.80).
In most patients, the EELV technique has good reproducibility and accuracy, even at high PEEP. At high pressures, its accuracy may be limited in case of leaks. The minimal predicted increase in lung volume may help to check for accuracy.
PMCID: PMC3388680  PMID: 22166727
4.  Diagnostic performance of fractional excretion of urea in the evaluation of critically ill patients with acute kidney injury: a multicenter cohort study 
Critical Care  2011;15(4):R178.
Several factors, including diuretic use and sepsis, interfere with the fractional excretion of sodium, which is used to distinguish transient from persistent acute kidney injury (AKI). These factors do not affect the fractional excretion of urea (FeUrea). However, there are conflicting data on the diagnostic accuracy of FeUrea.
We conducted an observational, prospective, multicenter study at three ICUs in university hospitals. Unselected patients, except those with obstructive AKI, were admitted to the participating ICUs during a six-month period. Transient AKI was defined as AKI caused by renal hypoperfusion and reversal within three days. The results are reported as medians (interquartile ranges).
A total of 203 patients were included. According to our definitions, 67 had no AKI, 54 had transient AKI and 82 had persistent AKI. FeUrea was 39% (28 to 40) in the no-AKI group, 41% (29 to 54) in the transient AKI group and 32% (22 to 51) in the persistent AKI group (P = 0.12). FeUrea was of little help in distinguishing transient AKI from persistent AKI, with the area under the receiver operating characteristic curve being 0.59 (95% confidence interval, 0.49 to 0.70; P = 0.06). Sensitivity was 63% and specificity was 54% with a cutoff of 35%. In the subgroup of patients receiving diuretics, the results were similar.
FeUrea may be of little help in distinguishing transient AKI from persistent AKI in critically ill patients, including those receiving diuretic therapy. Additional studies are needed to evaluate alternative markers or strategies to differentiate transient from persistent AKI.
PMCID: PMC3387621  PMID: 21794161
acute kidney failure; ICU; fractional excretion of sodium; acute tubular necrosis; diuretics; sensitivity and specificity
5.  Toxoplasmosis and Horse Meat, France 
Emerging Infectious Diseases  2011;17(7):1327-1328.
PMCID: PMC3381409  PMID: 21762609
parasites; toxoplasmosis; Toxoplasma gondii; horse meat; atypical strain; foodborne infections; France; letter

Results 1-5 (5)