PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (58)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: comparing meta and mega analytical approaches for data pooling 
NeuroImage  2014;95:136-150.
Combining datasets across independent studies can boost statistical power by increasing the numbers of observations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies where a large number of observations are required to obtain sufficient power to detect and replicate genetic effects. There is a need to develop and evaluate methods for joint-analytical analyses of rich datasets collected in imaging genetics studies. The ENIGMA-DTI consortium is developing and evaluating approaches for obtaining pooled estimates of heritability through meta-and mega-genetic analytical approaches, to estimate the general additive genetic contributions to the intersubject variance in fractional anisotropy (FA) measured from diffusion tensor imaging (DTI). We used the ENIGMA-DTI data harmonization protocol for uniform processing of DTI data from multiple sites. We evaluated this protocol in five family-based cohorts providing data from a total of 2248 children and adults (ages: 9–85) collected with various imaging protocols. We used the imaging genetics analysis tool, SOLAR-Eclipse, to combine twin and family data from Dutch, Australian and Mexican-American cohorts into one large “mega-family”. We showed that heritability estimates may vary from one cohort to another. We used two meta-analytical (the sample-size and standard-error weighted) approaches and a mega-genetic analysis to calculate heritability estimates across-population. We performed leave-one-out analysis of the joint estimates of heritability, removing a different cohort each time to understand the estimate variability. Overall, meta- and mega-genetic analyses of heritability produced robust estimates of heritability.
doi:10.1016/j.neuroimage.2014.03.033
PMCID: PMC4043878  PMID: 24657781
Diffusion Tensor Imaging (DTI); Imaging Genetics; Heritability; Meta-analysis; Multi-site; Reliability
2.  Neuroimaging and Genetic Risk for Alzheimer’s Disease and Addiction-Related Degenerative Brain Disorders 
Brain imaging and behavior  2014;8(2):217-233.
Neuroimaging offers a powerful means to assess the trajectory of brain degeneration in a variety of disorders, including Alzheimer’s disease (AD). Here we describe how multimodal imaging can be used to study the changing brain during the different stages of AD. We integrate findings from a range of studies using magnetic resonance imaging (MRI), positron emission tomography (PET), functional MRI (fMRI) and diffusion weighted imaging (DWI). Neuroimaging reveals how risk genes for degenerative disorders affect the brain, including several recently discovered genetic variants that may disrupt brain connectivity. We review some recent neuroimaging studies of genetic polymorphisms associated with increased risk for late-onset Alzheimer’s disease (LOAD). Some genetic variants that increase risk for drug addiction may overlap with those associated with degenerative brain disorders. These common associations offer new insight into mechanisms underlying neurodegeneration and addictive behaviors, and may offer new leads for treating them before severe and irreversible neurological symptoms appear.
doi:10.1007/s11682-013-9263-y
PMCID: PMC3992278  PMID: 24142306
Alzheimer’s disease; imaging genetics; multi-modal imaging; neurodegeneration; addiction
3.  Whole-genome analyses of whole-brain data: working within an expanded search space 
Nature neuroscience  2014;17(6):791-800.
Large-scale comparisons of patients and healthy controls have unearthed genetic risk factors associated with a range of neurological and psychiatric illnesses. Meanwhile, brain imaging studies are increasing in size and scope, revealing disease and genetic effects on brain structure and function, and implicating neural pathways and causal mechanisms. With the advent of global neuroimaging consortia, imaging studies are now well powered to discover genetic variants that reliably affect the brain. Genetic analyses of brain measures from tens of thousands of people are being extended to test genetic associations with signals at millions of locations in the brain. Connectome-wide, genome-wide scans can jointly screen brain circuits and genomes, presenting new statistical challenges. There is a growing need for the community to establish and enforce standards in this developing field to ensure robust findings. Here we discuss how neuroimagers and geneticists have formed alliances to discover how genetic factors affect the brain. The field is rapidly advancing with ultra-high-resolution imaging and whole-genome sequencing. We recommend a rigorous approach to neuroimaging genomics that capitalizes on its recent successes and ensures the reliability of future discoveries.
doi:10.1038/nn.3718
PMCID: PMC4300949  PMID: 24866045
4.  Common genetic variants influence human subcortical brain structures 
Hibar, Derrek P. | Stein, Jason L. | Renteria, Miguel E. | Arias-Vasquez, Alejandro | Desrivières, Sylvane | Jahanshad, Neda | Toro, Roberto | Wittfeld, Katharina | Abramovic, Lucija | Andersson, Micael | Aribisala, Benjamin S. | Armstrong, Nicola J. | Bernard, Manon | Bohlken, Marc M. | Boks, Marco P. | Bralten, Janita | Brown, Andrew A. | Chakravarty, M. Mallar | Chen, Qiang | Ching, Christopher R. K. | Cuellar-Partida, Gabriel | den Braber, Anouk | Giddaluru, Sudheer | Goldman, Aaron L. | Grimm, Oliver | Guadalupe, Tulio | Hass, Johanna | Woldehawariat, Girma | Holmes, Avram J. | Hoogman, Martine | Janowitz, Deborah | Jia, Tianye | Kim, Sungeun | Klein, Marieke | Kraemer, Bernd | Lee, Phil H. | Olde Loohuis, Loes M. | Luciano, Michelle | Macare, Christine | Mather, Karen A. | Mattheisen, Manuel | Milaneschi, Yuri | Nho, Kwangsik | Papmeyer, Martina | Ramasamy, Adaikalavan | Risacher, Shannon L. | Roiz-Santiañez, Roberto | Rose, Emma J. | Salami, Alireza | Sämann, Philipp G. | Schmaal, Lianne | Schork, Andrew J. | Shin, Jean | Strike, Lachlan T. | Teumer, Alexander | van Donkelaar, Marjolein M. J. | van Eijk, Kristel R. | Walters, Raymond K. | Westlye, Lars T. | Whelan, Christopher D. | Winkler, Anderson M. | Zwiers, Marcel P. | Alhusaini, Saud | Athanasiu, Lavinia | Ehrlich, Stefan | Hakobjan, Marina M. H. | Hartberg, Cecilie B. | Haukvik, Unn K. | Heister, Angelien J. G. A. M. | Hoehn, David | Kasperaviciute, Dalia | Liewald, David C. M. | Lopez, Lorna M. | Makkinje, Remco R. R. | Matarin, Mar | Naber, Marlies A. M. | McKay, D. Reese | Needham, Margaret | Nugent, Allison C. | Pütz, Benno | Royle, Natalie A. | Shen, Li | Sprooten, Emma | Trabzuni, Daniah | van der Marel, Saskia S. L. | van Hulzen, Kimm J. E. | Walton, Esther | Wolf, Christiane | Almasy, Laura | Ames, David | Arepalli, Sampath | Assareh, Amelia A. | Bastin, Mark E. | Brodaty, Henry | Bulayeva, Kazima B. | Carless, Melanie A. | Cichon, Sven | Corvin, Aiden | Curran, Joanne E. | Czisch, Michael | de Zubicaray, Greig I. | Dillman, Allissa | Duggirala, Ravi | Dyer, Thomas D. | Erk, Susanne | Fedko, Iryna O. | Ferrucci, Luigi | Foroud, Tatiana M. | Fox, Peter T. | Fukunaga, Masaki | Gibbs, J. Raphael | Göring, Harald H. H. | Green, Robert C. | Guelfi, Sebastian | Hansell, Narelle K. | Hartman, Catharina A. | Hegenscheid, Katrin | Heinz, Andreas | Hernandez, Dena G. | Heslenfeld, Dirk J. | Hoekstra, Pieter J. | Holsboer, Florian | Homuth, Georg | Hottenga, Jouke-Jan | Ikeda, Masashi | Jack, Clifford R. | Jenkinson, Mark | Johnson, Robert | Kanai, Ryota | Keil, Maria | Kent, Jack W. | Kochunov, Peter | Kwok, John B. | Lawrie, Stephen M. | Liu, Xinmin | Longo, Dan L. | McMahon, Katie L. | Meisenzahl, Eva | Melle, Ingrid | Mohnke, Sebastian | Montgomery, Grant W. | Mostert, Jeanette C. | Mühleisen, Thomas W. | Nalls, Michael A. | Nichols, Thomas E. | Nilsson, Lars G. | Nöthen, Markus M. | Ohi, Kazutaka | Olvera, Rene L. | Perez-Iglesias, Rocio | Pike, G. Bruce | Potkin, Steven G. | Reinvang, Ivar | Reppermund, Simone | Rietschel, Marcella | Romanczuk-Seiferth, Nina | Rosen, Glenn D. | Rujescu, Dan | Schnell, Knut | Schofield, Peter R. | Smith, Colin | Steen, Vidar M. | Sussmann, Jessika E. | Thalamuthu, Anbupalam | Toga, Arthur W. | Traynor, Bryan J. | Troncoso, Juan | Turner, Jessica A. | Valdés Hernández, Maria C. | van ’t Ent, Dennis | van der Brug, Marcel | van der Wee, Nic J. A. | van Tol, Marie-Jose | Veltman, Dick J. | Wassink, Thomas H. | Westman, Eric | Zielke, Ronald H. | Zonderman, Alan B. | Ashbrook, David G. | Hager, Reinmar | Lu, Lu | McMahon, Francis J. | Morris, Derek W. | Williams, Robert W. | Brunner, Han G. | Buckner, Randy L. | Buitelaar, Jan K. | Cahn, Wiepke | Calhoun, Vince D. | Cavalleri, Gianpiero L. | Crespo-Facorro, Benedicto | Dale, Anders M. | Davies, Gareth E. | Delanty, Norman | Depondt, Chantal | Djurovic, Srdjan | Drevets, Wayne C. | Espeseth, Thomas | Gollub, Randy L. | Ho, Beng-Choon | Hoffmann, Wolfgang | Hosten, Norbert | Kahn, René S. | Le Hellard, Stephanie | Meyer-Lindenberg, Andreas | Müller-Myhsok, Bertram | Nauck, Matthias | Nyberg, Lars | Pandolfo, Massimo | Penninx, Brenda W. J. H. | Roffman, Joshua L. | Sisodiya, Sanjay M. | Smoller, Jordan W. | van Bokhoven, Hans | van Haren, Neeltje E. M. | Völzke, Henry | Walter, Henrik | Weiner, Michael W. | Wen, Wei | White, Tonya | Agartz, Ingrid | Andreassen, Ole A. | Blangero, John | Boomsma, Dorret I. | Brouwer, Rachel M. | Cannon, Dara M. | Cookson, Mark R. | de Geus, Eco J. C. | Deary, Ian J. | Donohoe, Gary | Fernández, Guillén | Fisher, Simon E. | Francks, Clyde | Glahn, David C. | Grabe, Hans J. | Gruber, Oliver | Hardy, John | Hashimoto, Ryota | Hulshoff Pol, Hilleke E. | Jönsson, Erik G. | Kloszewska, Iwona | Lovestone, Simon | Mattay, Venkata S. | Mecocci, Patrizia | McDonald, Colm | McIntosh, Andrew M. | Ophoff, Roel A. | Paus, Tomas | Pausova, Zdenka | Ryten, Mina | Sachdev, Perminder S. | Saykin, Andrew J. | Simmons, Andy | Singleton, Andrew | Soininen, Hilkka | Wardlaw, Joanna M. | Weale, Michael E. | Weinberger, Daniel R. | Adams, Hieab H. H. | Launer, Lenore J. | Seiler, Stephan | Schmidt, Reinhold | Chauhan, Ganesh | Satizabal, Claudia L. | Becker, James T. | Yanek, Lisa | van der Lee, Sven J. | Ebling, Maritza | Fischl, Bruce | Longstreth, W. T. | Greve, Douglas | Schmidt, Helena | Nyquist, Paul | Vinke, Louis N. | van Duijn, Cornelia M. | Xue, Luting | Mazoyer, Bernard | Bis, Joshua C. | Gudnason, Vilmundur | Seshadri, Sudha | Ikram, M. Arfan | Martin, Nicholas G. | Wright, Margaret J. | Schumann, Gunter | Franke, Barbara | Thompson, Paul M. | Medland, Sarah E.
Nature  2015;520(7546):224-229.
The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.
doi:10.1038/nature14101
PMCID: PMC4393366  PMID: 25607358
5.  Mapping White Matter Integrity in Elderly People with HIV 
Human brain mapping  2013;35(3):975-992.
People with HIV are living longer as combination antiretroviral therapy (cART) becomes more widely available. However, even when plasma viral load is reduced to untraceable levels, chronic HIV infection is associated with neurological deficits and brain atrophy beyond that of normal aging. HIV is often marked by cortical and subcortical atrophy, but the integrity of the brain’s white matter (WM) pathways also progressively declines. Few studies focus on older cohorts where normal aging may be compounded with HIV infection to influence deficit patterns. In this relatively large diffusion tensor imaging (DTI) study, we investigated abnormalities in WM fiber integrity in 56 HIV+ adults with access to cART (mean age: 63.9 ± 3.7 years), compared to 31 matched healthy controls (65.4 ± 2.2 years). Statistical 3D maps revealed the independent effects of HIV diagnosis and age on fractional anisotropy (FA) and diffusivity, but we did not find any evidence for an age by diagnosis interaction in our current sample. Compared to healthy controls, HIV patients showed pervasive FA decreases and diffusivity increases throughout WM. We also assessed neuropsychological (NP) summary z-score associations. In both patients and controls, fiber integrity measures were associated with NP summary scores. The greatest differences were detected in the corpus callosum and in the projection fibers of the corona radiata. These deficits are consistent with published NP deficits and cortical atrophy patterns in elderly people with HIV.
doi:10.1002/hbm.22228
PMCID: PMC3775847  PMID: 23362139
brain integrity; white matter; diffusion tensor imaging; cognition; HIV; cART
6.  Genetics of Path Lengths in Brain Connectivity Networks: HARDI-Based Maps in 457 Adults 
Brain connectivity analyses are increasingly popular for investigating organization. Many connectivity measures including path lengths are generally defined as the number of nodes traversed to connect a node in a graph to the others. Despite its name, path length is purely topological, and does not take into account the physical length of the connections. The distance of the trajectory may also be highly relevant, but is typically overlooked in connectivity analyses. Here we combined genotyping, anatomical MRI and HARDI to understand how our genes influence the cortical connections, using whole-brain tractography. We defined a new measure, based on Dijkstra’s algorithm, to compute path lengths for tracts connecting pairs of cortical regions. We compiled these measures into matrices where elements represent the physical distance traveled along tracts. We then analyzed a large cohort of healthy twins and show that our path length measure is reliable, heritable, and influenced even in young adults by the Alzheimer’s risk gene, CLU.
doi:10.1007/978-3-642-33530-3_3
PMCID: PMC4288784  PMID: 25584366
Structural connectivity; neuroimaging genetics; Dijkstra’s algorithm; HARDI tractography; path length
7.  Registering Cortical Surfaces Based on Whole-Brain Structural Connectivity and Continuous Connectivity Analysis 
We present a framework for registering cortical surfaces based on tractography-informed structural connectivity. We define connectivity as a continuous kernel on the product space of the cortex, and develop a method for estimating this kernel from tractography fiber models. Next, we formulate the kernel registration problem, and present a means to non-linearly register two brains’ continuous connectivity profiles. We apply theoretical results from operator theory to develop an algorithm for decomposing the connectome into its shared and individual components. Lastly, we extend two discrete connectivity measures to the continuous case, and apply our framework to 98 Alzheimer’s patients and controls. Our measures show significant differences between the two groups.
PMCID: PMC4283762  PMID: 25320795
Diffusion MRI; Cortical Surface Registration; Connectivity Analysis; Data Fusion
8.  Impact of family structure and common environment on heritability estimation for neuroimaging genetics studies using Sequential Oligogenic Linkage Analysis Routines 
Imaging genetics is an emerging methodological field that combines genetic information with medical imaging-derived metrics to understand how genetic factors impact observable phenotypes. In order for a trait to be a reasonable phenotype in an imaging genetics study, it must be heritable: at least some proportion of its variance must be due to genetic influences. The Sequential Oligogenic Linkage Analysis Routines (SOLAR) imaging genetics software can estimate the heritability of a trait in complex pedigrees. We investigate the ability of SOLAR to accurately estimate heritability and common environmental effects on simulated imaging phenotypes in various family structures. We found that heritability is reliably estimated with small family-based studies of 40 to 80 individuals, though subtle differences remain between the family structures. In an imaging application analysis, we found that with 80 subjects in any of the family structures, estimated heritability of white matter fractional anisotropy was biased by <10% for every region of interest. Results from these studies can be used when investigators are evaluating power in planning genetic analyzes.
doi:10.1117/1.JMI.1.1.014005
PMCID: PMC4281883  PMID: 25558465
heritability; imaging genetics; power calculation; statistical analysis
9.  Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease 
Alzheimer’s disease (AD) involves a gradual breakdown of brain connectivity, and network analyses offer a promising new approach to track and understand disease progression. Even so, our ability to detect degenerative changes in brain networks depends on the methods used. Here we compared several tractography and feature extraction methods to see which ones gave best diagnostic classification for 202 people with AD, mild cognitive impairment or normal cognition, scanned with 41-gradient diffusion-weighted magnetic resonance imaging as part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) project. We computed brain networks based on whole brain tractography with nine different methods – four of them tensor-based deterministic (FACT, RK2, SL, and TL), two orientation distribution function (ODF)-based deterministic (FACT, RK2), two ODF-based probabilistic approaches (Hough and PICo), and one “ball-and-stick” approach (Probtrackx). Brain networks derived from different tractography algorithms did not differ in terms of classification performance on ADNI, but performing principal components analysis on networks helped classification in some cases. Small differences may still be detectable in a truly vast cohort, but these experiments help assess the relative advantages of different tractography algorithms, and different post-processing choices, when used for classification.
doi:10.3389/fnagi.2015.00048
PMCID: PMC4396191  PMID: 25926791
Alzheimer’s disease; brain network; tractography; classification; PCA; GLRAM; diffusion MRI
10.  Relation between variants in the neurotrophin receptor gene, NTRK3, and white matter integrity in healthy young adults 
NeuroImage  2013;82:146-153.
The NTRK3 gene (also known as TRKC) encodes a high affinity receptor for the neurotrophin 3′-nucleotidase (NT3), which is implicated in oligodendrocyte and myelin development. We previously found that white matter integrity in young adults related to genetic variants in genes encoding neurotrophins and their receptors. This underscores the importance of neurotrophins for white matter development. NTRK3 variants are putative risk factors for schizophrenia, bipolar disorder, and obsessive-compulsive disorder hoarding, suggesting that some NTRK3 variants may affect the brain.
To test this, we scanned 392 healthy adult twins and their siblings (mean age, 23.6 ± 2.2 years; range: 20-29 years) with 105-gradient 4-Tesla diffusion tensor imaging (DTI). We identified 18 single nucleotide polymorphisms (SNPs) in the NTRK3 gene that have been associated with neuropsychiatric disorders. We used a multi-SNP model, adjusting for family relatedness, age, and sex, to relate these variants to voxelwise fractional anisotropy (FA) – a DTI measure of white matter integrity.
FA was optimally predicted (based on the highest false discovery rate critical p), by five SNPs (rs1017412, rs2114252, rs16941261, rs3784406, and rs7176429; overall FDR critical p = 0.028). Gene effects were widespread and included the corpus callosum genu and inferior longitudinal fasciculus - regions implicated in several neuropsychiatric disorders and previously associated with other neurotrophin-related genetic variants in an overlapping sample of subjects. NTRK3 genetic variants, and neurotrophins more generally, may influence white matter integrity in brain regions implicated in neuropsychiatric disorders.
doi:10.1016/j.neuroimage.2013.05.095
PMCID: PMC3948328  PMID: 23727532
Fractional anisotropy; diffusion tensor imaging; single nucleotide polymorphism; schizophrenia; obsessive compulsive disorder; bipolar disorder
11.  LEFT VERSUS RIGHT HEMISPHERE DIFFERENCES IN BRAIN CONNECTIVITY: 4-TESLA HARDI TRACTOGRAPHY IN 569 TWINS 
Diffusion imaging can map anatomical connectivity in the living brain, offering new insights into fundamental questions such as how the left and right brain hemispheres differ. Anatomical brain asymmetries are related to speech and language abilities, but less is known about left/right hemisphere differences in brain wiring. To assess this, we scanned 457 young adults (age 23.4±2.0 SD years) and 112 adolescents (age 12-16) with 4-Tesla 105-gradient high-angular resolution diffusion imaging. We extracted fiber tracts throughout the brain with a Hough transform method. A 70×70 connectivity matrix was created, for each subject, based on the proportion of fibers intersecting 70 cortical regions. We identified significant differences in the proportions of fibers intersecting left and right hemisphere cortical regions. The degree of asymmetry in the connectivity matrices varied with age, as did the asymmetry in network topology measures such as the small-world effect.
doi:10.1109/ISBI.2012.6235601
PMCID: PMC4232939  PMID: 25404993
tractography; high angular resolution diffusion imaging (HARDI); small-world effect; connectome; laterality
12.  ATLAS-BASED FIBER CLUSTERING FOR MULTI-SUBJECT ANALYSIS OF HIGH ANGULAR RESOLUTION DIFFUSION IMAGING TRACTOGRAPHY 
High angular resolution diffusion imaging (HARDI) allows in vivo analysis of the white matter structure and connectivity. Based on orientation distribution functions (ODFs) that represent the directionality of water diffusion at each point in the brain, tractography methods can recover major axonal pathways. This enables tract-based analysis of fiber integrity and connectivity. For multi-subject comparisons, fibers may be clustered into bundles that are consistently found across subjects. To do this, we scanned 20 young adults with HARDI at 4 T. From the reconstructed ODFs, we performed whole-brain tractography with a novel Hough transform method. We then used measures of agreement between the extracted 3D curves and a co-registered probabilistic DTI atlas to select key pathways. Using median filtering and a shortest path graph search, we derived the maximum density path to compactly represent each tract in the population. With this tract-based method, we performed tract-based analysis of fractional anisotropy, and assessed how the chosen tractography algorithm influenced the results. The resulting method may expedite population-based statistical analysis of HARDI and DTI.
doi:10.1109/ISBI.2011.5872405
PMCID: PMC4232949  PMID: 25404992
tractography; clustering; Dijkstra’s shortest path; multi-subject analysis; fiber bundles
13.  Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: A pilot project of the ENIGMA–DTI working group 
NeuroImage  2013;81:455-469.
The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium was set up to analyze brain measures and genotypes from multiple sites across the world to improve the power to detect genetic variants that influence the brain. Diffusion tensor imaging (DTI) yields quantitative measures sensitive to brain development and degeneration, and some common genetic variants may be associated with white matter integrity or connectivity. DTI measures, such as the fractional anisotropy (FA) of water diffusion, may be useful for identifying genetic variants that influence brain microstructure. However, genome-wide association studies (GWAS) require large populations to obtain sufficient power to detect and replicate significant effects, motivating a multi-site consortium effort. As part of an ENIGMA–DTI working group, we analyzed high-resolution FA images from multiple imaging sites across North America, Australia, and Europe, to address the challenge of harmonizing imaging data collected at multiple sites. Four hundred images of healthy adults aged 18–85 from four sites were used to create a template and corresponding skeletonized FA image as a common reference space. Using twin and pedigree samples of different ethnicities, we used our common template to evaluate the heritability of tract-derived FA measures. We show that our template is reliable for integrating multiple datasets by combining results through meta-analysis and unifying the data through exploratory mega-analyses. Our results may help prioritize regions of the FA map that are consistently influenced by additive genetic factors for future genetic discovery studies. Protocols and templates are publicly available at (http://enigma.loni.ucla.edu/ongoing/dti-working-group/).
doi:10.1016/j.neuroimage.2013.04.061
PMCID: PMC3729717  PMID: 23629049
Diffusion Tensor Imaging (DTI); Imaging genetics; Heritability; Meta-analysis; Multi-site; Reliability
14.  White matter microstructural abnormalities in girls with chromosome 22q11.2 deletion syndrome, Fragile X or Turner syndrome as evidenced by diffusion tensor imaging 
NeuroImage  2013;81:441-454.
Children with chromosome 22q11.2 Deletion Syndrome (22q11.2DS), Fragile X Syndrome (FXS), or Turner Syndrome (TS) are considered to belong to distinct genetic groups, as each disorder is caused by separate genetic alterations. Even so, they have similar cognitive and behavioral dysfunctions, particularly in visuospatial and numerical abilities. To assess evidence for common underlying neural microstructural alterations, we set out to determine whether these groups have partially overlapping white matter abnormalities, relative to typically developing controls. We scanned 101 female children between 7 and 14 years old: 25 with 22q11.2DS, 18 with FXS, 17 with TS, and 41 aged-matched controls using diffusion tensor imaging (DTI). Anisotropy and diffusivity measures were calculated and all brain scans were nonlinearly aligned to population and site-specific templates. We performed voxel-based statistical comparisons of the DTI-derived metrics between each disease group and the controls, while adjusting for age. Girls with 22q11.2DS showed lower fractional anisotropy (FA) than controls in the association fibers of the superior and inferior longitudinal fasciculi, the splenium of the corpus callosum, and the corticospinal tract. FA was abnormally lower in girls with FXS in the posterior limbs of the internal capsule, posterior thalami, and precentral gyrus. Girls with TS had lower FA in the inferior longitudinal fasciculus, right internal capsule and left cerebellar peduncle. Partially overlapping neurodevelopmental anomalies were detected in all three neurogenetic disorders. Altered white matter integrity in the superior and inferior longitudinal fasciculi and thalamic to frontal tracts may contribute to the behavioral characteristics of all of these disorders.
doi:10.1016/j.neuroimage.2013.04.028
PMCID: PMC3947617  PMID: 23602925
Diffussion Tensor Imaging; Genetic diseases; Neurodevelopmental diseases; Connectivity
15.  Heritability of White Matter Fiber Tract Shapes: A HARDI Study of 198 Twins* 
Genetic analysis of diffusion tensor images (DTI) shows great promise in revealing specific genetic variants that affect brain integrity and connectivity. Most genetic studies of DTI analyze voxel-based diffusivity indices in the image space (such as 3D maps of fractional anisotropy) and overlook tract geometry. Here we propose an automated workflow to cluster fibers using a white matter probabilistic atlas and perform genetic analysis on the shape characteristics of fiber tracts. We apply our approach to large study of 4-Tesla high angular resolution diffusion imaging (HARDI) data from 198 healthy, young adult twins (age: 20–30). Illustrative results show heritability for the shapes of several major tracts, as color-coded maps.
PMCID: PMC4205954  PMID: 25346947
HARDI; Tractography; Image Registration; White Matter Probabilistic Atlas; Fiber Alignment; Clustering; Curve Matching; Heritability
16.  Genetics of the Connectome 
NeuroImage  2013;80:475-488.
Connectome genetics attempts to discover how genetic factors affect brain connectivity. Here we review a variety of genetic analysis methods – such as genome-wide association studies (GWAS), linkage and candidate gene studies – that have been fruitfully adapted to imaging data to implicate specific variants in the genome for brain-related traits. We then review studies of that emphasized the genetic influences on brain connectivity. Some of these perform genetic analysis of brain integrity and connectivity using diffusion MRI, and others have mapped genetic effects on functional networks using resting state functional MRI. Connectome-wide genome-wide scans have also been conducted, and we review the multivariate methods required to handle the extremely high dimension of genomic and the network data. We also review some consortium efforts, such as ENIGMA, that offer the power to detect robust common genetic associations using phenotypic harmonization procedures and meta-analysis. Current work on connectome genetics is advancing on many fronts and promises to shed light on how disease risk genes affect the brain. It is already discovering new genetic loci and even entire genetic networks that affect brain organization and connectivity.
doi:10.1016/j.neuroimage.2013.05.013
PMCID: PMC3905600  PMID: 23707675
17.  Angular versus spatial resolution trade-offs for diffusion imaging under time constraints 
Human brain mapping  2012;34(10):2688-2706.
Diffusion weighted magnetic resonance imaging (DW-MRI) are now widely used to assess brain integrity in clinical populations. The growing interest in mapping brain connectivity has made it vital to consider what scanning parameters affect the accuracy, stability, and signal-to-noise of Diffusion measures. Trade-offs between scan parameters can only be optimized if their effects on various commonly derived measures are better understood. To explore angular versus spatial resolution trade-offs in standard tensor-derived measures, and in measures that use the full angular information in diffusion signal, we scanned eight subjects twice, two weeks apart, using three protocols that took the same amount of time (7 minutes). Scans with 3, 2.7, 2.5 mm isotropic voxels were collected using 48, 41, and 37 diffusion-sensitized gradients to equalize scan times. A specially designed DTI phantom was also scanned with the same protocols, and different b-values. We assessed how several diffusion measures including fractional anisotropy (FA), mean diffusivity (MD), and the full 3D orientation distribution function (ODF) depended on the spatial/angular resolution and the SNR. We also created maps of stability over time in the FA, MD, ODF, skeleton FA of 14 TBSS-derived ROIs, and an information uncertainty index derived from the tensor distribution function, which models the signal using a continuous mixture of tensors. In scans of the same duration, higher angular resolution and larger voxels boosted SNR and improved stability over time. The increased partial voluming in large voxels also led to bias in estimating FA, but this was partially addressed by using “beyond-tensor” models of diffusion.
doi:10.1002/hbm.22094
PMCID: PMC3468661  PMID: 22522814
High Angular Resolution Diffusion Imaging; Diffusion Tensor Imaging; Spatial Resolution; Angular Resolution; Orientation Distribution Function; Tensor Distribution Function; reproducibility
18.  Breakdown of Brain Connectivity Between Normal Aging and Alzheimer's Disease: A Structural k-Core Network Analysis 
Brain Connectivity  2013;3(4):407-422.
Abstract
Brain connectivity analyses show considerable promise for understanding how our neural pathways gradually break down in aging and Alzheimer's disease (AD). Even so, we know very little about how the brain's networks change in AD, and which metrics are best to evaluate these changes. To better understand how AD affects brain connectivity, we analyzed anatomical connectivity based on 3-T diffusion-weighted images from 111 subjects (15 with AD, 68 with mild cognitive impairment, and 28 healthy elderly; mean age, 73.7±7.6 SD years). We performed whole brain tractography based on the orientation distribution functions, and compiled connectivity matrices showing the proportions of detected fibers interconnecting 68 cortical regions. We computed a variety of measures sensitive to anatomical network topology, including the structural backbone—the so-called “k-core”—of the anatomical network, and the nodal degree. We found widespread network disruptions, as connections were lost in AD. Among other connectivity measures showing disease effects, network nodal degree, normalized characteristic path length, and efficiency decreased with disease, while normalized small-worldness increased, in the whole brain and left and right hemispheres individually. The normalized clustering coefficient also increased in the whole brain; we discuss factors that may cause this effect. The proportions of fibers intersecting left and right cortical regions were asymmetrical in all diagnostic groups. This asymmetry may intensify as disease progressed. Connectivity metrics based on the k-core may help understand brain network breakdown as cognitive impairment increases, revealing how degenerative diseases affect the human connectome.
doi:10.1089/brain.2012.0137
PMCID: PMC3749712  PMID: 23701292
Alzheimer's disease; asymmetry; brain connectivity; diffusion tensor imaging; efficiency; k-core; mild cognitive impairment; nodal degree; small-world; tractography
19.  Exhaustive search of the SNP-SNP interactome identifies epistatic effects on brain volume in two cohorts 
The SNP-SNP interactome has rarely been explored in the context of neuroimaging genetics mainly due to the complexity of conducting ∼1011 pairwise statistical tests. However, recent advances in machine learning, specifically the iterative sure independence screening (SIS) method, have enabled the analysis of datasets where the number of predictors is much larger than the number of observations. Using an implementation of the SIS algorithm (called EPISIS), we used exhaustive search of the genome-wide, SNP-SNP interactome to identify and prioritize SNPs for interaction analysis. We identified a significant SNP pair, rs1345203 and rs1213205, associated with temporal lobe volume. We further examined the full-brain, voxelwise effects of the interaction in the ADNI dataset and separately in an independent dataset of healthy twins (QTIM). We found that each additional loading in the epistatic effect was associated with ∼5% greater brain regional brain volume (a protective effect) in both the ADNI and QTIM samples.
PMCID: PMC4109883  PMID: 24505811
epistasis; interaction; genome; sure independence; tensor-based morphometry
20.  Alzheimer's Disease Disrupts Rich Club Organization in Brain Connectivity Networks 
Diffusion imaging and brain connectivity analyses can monitor white matter deterioration, revealing how neural pathways break down in aging and Alzheimer's disease (AD). Here we tested how AD disrupts the ‘rich club’ effect – a network property found in the normal brain – where high-degree nodes in the connectivity network are more heavily interconnected with each other than expected by chance. We analyzed 3-Tesla whole-brain diffusionweighted images (DWI) from 66 subjects (22 AD/44 normal elderly). We performed whole-brain tractography based on the orientation distribution functions. Connectivity matrices were compiled, representing the proportion of detected fibers interconnecting 68 cortical regions. As expected, AD patients had a lower nodal degree (average number of connections) in cortical regions implicated in the disease. Unexpectedly, the normalized rich club coefficient was higher in AD. AD disrupts cortical networks by removing connections; when these networks are thresholded, organizational properties are disrupted leading to additional new biomarkers of AD.
doi:10.1109/ISBI.2013.6556463
PMCID: PMC4063983  PMID: 24953139
21.  A Commonly Carried Genetic Variant in the Delta Opioid Receptor Gene, OPRD1, is Associated with Smaller Regional Brain Volumes: Replication in Elderly and Young Populations 
Human brain mapping  2013;35(4):1226-1236.
Delta opioid receptors are implicated in a variety of psychiatric and neurological disorders. These receptors play a key role in the reinforcing properties of drugs of abuse, and polymorphisms in OPRD1 (the gene encoding delta opioid receptors) are associated with drug addiction. Delta opioid receptors are also involved in protecting neurons against hypoxic and ischemic stress. Here, we first examined a large sample of 738 elderly participants with neuroimaging and genetic data from the Alzheimer’s Disease Neuroimaging Initiative. We hypothesized that common variants in OPRD1 would be associated with differences in brain structure, particularly in regions relevant to addictive and neurodegenerative disorders. One very common variant (rs678849) predicted differences in regional brain volumes. We replicated the association of this single-nucleotide polymorphism with regional tissue volumes in a large sample of young participants in the Queensland Twin Imaging study. Although the same allele was associated with reduced volumes in both cohorts, the brain regions affected differed between the two samples. In healthy elderly, exploratory analyses suggested that the genotype associated with reduced brain volumes in both cohorts may also predict cerebrospinal fluid levels of neurodegenerative biomarkers, but this requires confirmation. If opiate receptor genetic variants are related to individual differences in brain structure, genotyping of these variants may be helpful when designing clinical trials targeting delta opioid receptors to treat neurological disorders.
doi:10.1002/hbm.22247
PMCID: PMC4046708  PMID: 23427138
neuroimaging; genetics; neurodegeneration; drug addiction; opiates
22.  Genome-wide association identifies genetic variants associated with lentiform nucleus volume in N=1345 young and elderly subjects 
Brain imaging and behavior  2013;7(2):102-115.
Deficits in lentiform nucleus volume and morphometry are implicated in a number of genetically influenced disorders, including Parkinson’s disease, schizophrenia, and ADHD. Here we performed genome-wide searches to discover common genetic variants associated with differences in lentiform nucleus volume in human populations. We assessed structural MRI scans of the brain in two large genotyped samples: the Alzheimer’s Disease Neuroimaging Initiative (ADNI; N=706) and the Queensland Twin Imaging Study (QTIM; N=639). Statistics of association from each cohort were combined meta-analytically using a fixed-effects model to boost power and to reduce the prevalence of false positive findings. We identified a number of associations in and around the flavin-containing monooxygenase (FMO) gene cluster. The most highly associated SNP, rs1795240, was located in the FMO3 gene; after meta-analysis, it showed genome-wide significant evidence of association with lentiform nucleus volume (PMA=4.79×10−8). This commonly-carried genetic variant accounted for 2.68 % and 0.84 % of the trait variability in the ADNI and QTIM samples, respectively, even though the QTIM sample was on average 50 years younger. Pathway enrichment analysis revealed significant contributions of this gene to the cytochrome P450 pathway, which is involved in metabolizing numerous therapeutic drugs for pain, seizures, mania, depression, anxiety, and psychosis. The genetic variants we identified provide replicated, genome-wide significant evidence for the FMO gene cluster’s involvement in lentiform nucleus volume differences in human populations.
doi:10.1007/s11682-012-9199-7
PMCID: PMC3779070  PMID: 22903471
Basal ganglia; Genome-wide association study (GWAS); MRI; Replication; Morphometry; Drug metabolism
23.  Test-Retest Reliability of Graph Theory Measures of Structural Brain Connectivity 
The human connectome has recently become a popular research topic in neuroscience, and many new algorithms have been applied to analyze brain networks. In particular, network topology measures from graph theory have been adapted to analyze network efficiency and ‘small-world’ properties. While there has been a surge in the number of papers examining connectivity through graph theory, questions remain about its test-retest reliability (TRT). In particular, the reproducibility of structural connectivity measures has not been assessed. We examined the TRT of global connectivity measures generated from graph theory analyses of 17 young adults who underwent two high-angular resolution diffusion (HARDI) scans approximately 3 months apart. Of the measures assessed, modularity had the highest TRT, and it was stable across a range of sparsities (a thresholding parameter used to define which network edges are retained). These reliability measures underline the need to develop network descriptors that are robust to acquisition parameters.
PMCID: PMC4039303  PMID: 23286144
24.  Development of Insula Connectivity Between Ages 12 and 30 Revealed by High Angular Resolution Diffusion Imaging 
Human brain mapping  2013;35(4):1790-1800.
The insula, hidden deep within the Sylvian fissures, has proven difficult to study from a connectivity perspective. Most of our current information on the anatomical connectivity of the insula comes from studies of nonhuman primates and post mortem human dissections. To date, only two neuroimaging studies have successfully examined the connectivity of the insula. Here we examine how the connectivity of the insula develops between ages 12 and 30, in 307 young adolescent and adult subjects scanned with 4-Tesla high angular resolution diffusion imaging (HARDI). The density of fiber connections between the insula and the frontal and parietal cortex decreased with age, but the connection density between the insula and the temporal cortex generally increased with age. This trajectory is in line with well-known patterns of cortical development in these regions. In addition, males and females showed different developmental trajectories for the connection between the left insula and the left precentral gyrus. The insula plays many different roles, some of them affected in neuropsychiatric disorders; this information on the insula's connectivity may help efforts to elucidate mechanisms of brain disorders in which it is implicated.
doi:10.1002/hbm.22292
PMCID: PMC4017914  PMID: 23836455
insula; development; tractography; HARDI; structural connectivity
25.  DEVELOPMENT OF THE “RICH CLUB” IN BRAIN CONNECTIVITY NETWORKS FROM 438 ADOLESCENTS & ADULTS AGED 12 TO 30 
The ‘rich club’ coefficient describes a phenomenon where a network's hubs (high-degree nodes) are on average more intensely interconnected than lower-degree nodes. Networks with rich clubs often have an efficient, higher-order organization, but we do not yet know how the rich club emerges in the living brain, or how it changes as our brain networks develop. Here we chart the developmental trajectory of the rich club in anatomical brain networks from 438 subjects aged 12-30. Cortical networks were constructed from 68×68 connectivity matrices of fiber density, using whole-brain tractography in 4-Tesla 105-gradient high angular resolution diffusion images (HARDI). The adult and younger cohorts had rich clubs that included different nodes; the rich club effect intensified with age. Rich-club organization is a sign of a network's efficiency and robustness. These concepts and findings may be advantageous for studying brain maturation and abnormal brain development.
doi:10.1109/ISBI.2013.6556552
PMCID: PMC4017916  PMID: 24827471
rich club coefficient; high angular resolution diffusion imaging (HARDI); tractography; network analyses; development; structural connectivity

Results 1-25 (58)