Search tips
Search criteria

Results 1-25 (60)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
author:("payor, Marco")
1.  Interleukin-6, C-Reactive Protein, Tumor Necrosis Factor-alpha as Predictors of Mortality in Frail, Community-Living Elderly Individuals 
Aging is characterized by a chronic low-grade inflammation that has been found to be related to mortality risk in older persons.
The aim of the present study was to investigate whether interleukin-6 (IL-6), C-reactive protein (CRP) and Tumor Necrosis Factor-alpha (TNF-α) protein levels predict all-cause mortality in a sample of older persons living in the community.
Design and Setting
Data are from the Aging and Longevity Study in the Sirente Geographic Area (ilSIRENTE Study), a prospective cohort study that collected information on individuals aged 80 years and older living in an Italian mountain community (n=362). The main outcome was the hazard ratio of death after four years of follow-up.
Participants and measurements
Participants were classified according to the median value of the 3 inflammatory markers (IL-6: 2.08 pg/mL; TNF-α: 1.43 pg/mL and CRP: 3.08 mg/L). In addition, a composite summary score of inflammation was created.
A total of 150 deaths occurred during a 4-year follow-up. In the unadjusted model, high levels of each of the 3 markers were associated with increased mortality. After adjusting for potential confounders, high levels of IL-6 and CRP were associated with a significantly increased risk of death (HR, 2.18; 95% CI 1.29–3.69 and 2.58; 95% CI 1.52–4.40, respectively); whereas the association between TNF-α protein levels and mortality lost significance (1.26; 95% CI: 0.74 to 2.15). The composite summary score of inflammation was strongly associated with mortality, with the highest risk estimated for individuals with all three inflammatory markers above the median.
Low levels of inflammatory markers are associated with better survival in elderly, independently of age and other clinical and functional variables.
PMCID: PMC4321727  PMID: 21883115
Interleukin-6; C-Reactive Protein; TNF-alpha; Mortality; Frail Elderly
2.  Light Intensity Physical Activity and Sedentary Behavior in Relation to Body Mass Index and Grip Strength in Older Adults: Cross-Sectional Findings from the Lifestyle Interventions and Independence for Elders (LIFE) Study 
PLoS ONE  2015;10(2):e0116058.
Identifying modifiable determinants of fat mass and muscle strength in older adults is important given their impact on physical functioning and health. Light intensity physical activity and sedentary behavior are potential determinants, but their relations to these outcomes are poorly understood. We evaluated associations of light intensity physical activity and sedentary time—assessed both objectively and by self-report—with body mass index (BMI) and grip strength in a large sample of older adults.
We used cross-sectional baseline data from 1130 participants of the Lifestyle Interventions and Independence for Elders (LIFE) study, a community-dwelling sample of relatively sedentary older adults (70-89 years) at heightened risk of mobility disability. Time spent sedentary and in light intensity activity were assessed using an accelerometer worn for 3–7 days (Actigraph GT3X) and by self-report. Associations between these exposures and measured BMI and grip strength were evaluated using linear regression.
Greater time spent in light intensity activity and lower sedentary times were both associated with lower BMI. This was evident using objective measures of lower-light intensity, and both objective and self-reported measures of higher-light intensity activity. Time spent watching television was positively associated with BMI, while reading and computer use were not. Greater time spent in higher but not lower intensities of light activity (assessed objectively) was associated with greater grip strength in men but not women, while neither objectively assessed nor self-reported sedentary time was associated with grip strength.
In this cross-sectional study, greater time spent in light intensity activity and lower sedentary times were associated with lower BMI. These results are consistent with the hypothesis that replacing sedentary activities with light intensity activities could lead to lower BMI levels and obesity prevalence among the population of older adults. However, longitudinal and experimental studies are needed to strengthen causal inferences.
PMCID: PMC4315494  PMID: 25647685
3.  Consideration of insurance reimbursement for physical activity and exercise programs for patients with diabetes 
JAMA  2011;305(17):1808-1809.
PMCID: PMC4313545  PMID: 21540427
4.  Multiple pathways to the same end: Mechanisms of myonuclear apoptosis in sarcopenia of aging 
TheScientificWorldJournal  2010;10:340-349.
Sarcopenia, the age-related decline in muscle mass and function, represents a significant health issue due to the high prevalence of frailty and disability associated with this condition. Nevertheless, the cellular mechanisms responsible for the loss of muscle mass in old age are still largely unknown. An altered regulation of myocyte apoptosis has recently emerged as a possible contributor to the pathogenesis of sarcopenia. Studies in animal models have shown that the severity of skeletal muscle apoptosis increases over the course of aging and correlates with the degree of muscle mass and strength decline. Several apoptotic pathways are operative in aged muscles, with the mitochondria- and TNF-α-mediated pathways likely being the most relevant to sarcopenia. However, despite the growing number of studies on the subject, a definite mechanistic link between myocyte apoptosis and age-related muscle atrophy has not yet been established. Furthermore, the evidence on the role played by apoptosis in human sarcopenia is still sparse. Clearly, further research is required to better define the involvement of myocyte apoptosis in the pathogenesis of muscle loss at advanced age. This knowledge will likely help in the design of more effective therapeutic strategies to preserve muscle mass into old age, thus fostering independence of the elderly population and reducing the socioeconomic burden associated with sarcopenia.
PMCID: PMC4311890  PMID: 20191247
aging; sarcopenia; myonuclear apoptosis; mitochondria; tumor necrosis factor-alpha (TNF-α); caspases; endonuclease G (EndoG); apoptosis inducing factor (AIF)
The present study evaluates the effects of a 6-month treatment with an ACE-inhibitor (ie, fosinopril) on serum concentrations of total IGF-1 and IGF binding protein (IGFBP)-3 in older adults at high risk for cardiovascular disease.
Data are from the Trial of Angiotensin Converting Enzyme Inhibition and Novel Cardiovascular Risk Factors (TRAIN) study, a double-blind, crossover, randomized, placebo-controlled trial.
Participants were recruited from the communities of Winston Salem, NC, and Greensboro, NC.
Subjects ≥55 years old with high cardiovascular disease risk profile.
The intervention consisted of 6-month administration of fosinopril vs. placebo.
Serum concentrations of total IGF-1 and IGFBP-3 were measured in 100 participants of the TRAIN study at baseline, 6-month and 12-month follow-up visits. Differences in total IGF-1 and IGFBP-3 concentrations were assessed using two-sided paired t-tests.
The mean age of participants (47% women) was 66.5 (standard deviation 7.2) years. Serum concentrations of total IGF-1 were significantly higher after 6-month treatment with fosinopril compared to placebo (203.73 ng/mL vs 194.24 ng/mL; p=0.02): After ACE-inhibitor intervention, significantly higher serum IGFBP-3 concentrations compared to controls (4308.81 ng/mL vs 4086.93 ng/mL; p=0.03) were also reported.
A six-month treatment with fosinopril increases systemic levels of total IGF-1 and IGFBP-3 in older adults with high cardiovascular risk profile. This may represent a potential biological explanation to the beneficial effects of ACE-inhibition on stroke, ischemic heart disease and insulin resistance.
PMCID: PMC4311891  PMID: 20617288
Angiotensin Converting Enzyme inhibitor; Insulin like growth factor 1; Insulin like growth factor binding protein 3; older adults
6.  Effect of Dietary Restriction and Exercise on Lower Extremity Tissue Compartments in Obese, Older Women: A Pilot Study 
Accumulating evidence suggests that both dietary restriction and exercise (DR + E) should be incorporated in weight loss interventions to treat obese, older adults. However, more information is needed on the effects to lower extremity tissue composition—an important consideration for preserving mobility in older adults.
Twenty-seven sedentary women (body mass index: 36.3±5.4kg/m2; age: 63.6±5.6 yrs) were randomly assigned to 6 months of DR + E or a health education control group. Thigh and calf muscle, subcutaneous adipose tissue (SAT), and intermuscular adipose tissue (IMAT) size were determined using magnetic resonance imaging. Physical function was measured using a long-distance corridor walk and knee extension strength.
Compared with control, DR + E significantly reduced body mass (-6.6±3.7kg vs control: -0.05±3.5kg; p < .01). Thigh and calf muscle volumes responded similarly between groups. Within the DR + E group, adipose tissue was reduced more in the thigh than in the calf (p < .04). Knee extension strength was unaltered by DR + E, but a trend toward increased walking speed was observed in the DR + E group (p = .09). Post hoc analyses showed that reductions in SAT and IMAT within the calf, but not the thigh, were associated with faster walking speed achieved with DR + E (SAT: r = -0.62; p = .01; IMAT: r = -0.62; p = .01).
DR + E preserved lower extremity muscle size and function and reduced regional lower extremity adipose tissue. Although the magnitude of reduction in adipose tissue was greater in the thigh than the calf region, post hoc analyses demonstrated that reductions in calf SAT and IMAT were associated with positive adaptations in physical function.
PMCID: PMC4158399  PMID: 23682155
Body composition; Weight loss; Obesity; Aging; Disability.
7.  Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE Study randomized clinical trial 
JAMA  2014;311(23):2387-2396.
In older adults reduced mobility is common and is an independent risk factor for morbidity, hospitalization, disability, and mortality. Limited evidence suggests that physical activity may help prevent mobility disability; however, there are no definitive clinical trials examining if physical activity prevents or delays mobility disability.
To test the hypothesis that a long-term structured physical activity program is more effective than a health education program (also referred to as a successful aging program) in reducing the risk of major mobility disability.
Design, Setting, and Participants
The Lifestyle Interventions and Independence for Elders (LIFE) study was a multicenter, randomized trial that enrolled participants between February 2010 and December 2011, who participated for an average of 2.6 years. Follow-up ended in December 2013. Outcome assessors were blinded to the intervention assignment. Participants were recruited from urban, suburban and rural communities at 8 field centers throughout the US. We randomized a volunteer sample of 1,635 sedentary men and women aged 70–89 years who had physical limitations, defined as a score on the Short Physical Performance Battery of 9 or below, but were able to walk 400 m.
Participants were randomized to a structured moderate intensity physical activity program (n=818) done in a center and at home that included including aerobic, resistance and flexibility training activities or to a health education program (n=817) consisting of workshops on topics relevant to older adults and upper extremity stretching exercises.
Main Outcomes and Measures
The primary outcome was major mobility disability objectively defined by loss of ability to walk 400 m.
Incident major mobility disability occurred in 30.1% (n=246/818) of physical activity and 35.5% (n=290/817) of health education participants (HR=0.82, 95%CI=0.69–0.98, p=0.03). Persistent mobility disability was experienced by 120/818 (14.7%) physical activity and 162/817 (19.8%) health education participants (HR=0.72; 95%CI=0.57–0.91; p=0.006). Serious adverse events were reported by 404/818 (49.4%) of the physical activity and 373/817 (45.7%) of the health education participants (Risk Ratio=1.08; 95%CI=0.98–1.20).
Conclusions and Relevance
A structured moderate intensity physical activity program, compared with a health education program, reduced major mobility disability over 2.6 years among older adults at risk of disability. These findings suggest mobility benefit from such a program in vulnerable older adults.
Registration identifier NCT01072500.
PMCID: PMC4266388  PMID: 24866862
8.  Lifestyle Interventions and Independence for Elders Study: Recruitment and Baseline Characteristics 
Recruitment of older adults into long-term clinical trials involving behavioral interventions is a significant challenge. The Lifestyle Interventions and Independence for Elders (LIFE) Study is a Phase 3 multicenter randomized controlled multisite trial, designed to compare the effects of a moderate-intensity physical activity program with a successful aging health education program on the incidence of major mobility disability (the inability to walk 400 m) in sedentary adults aged 70–89 years, who were at high risk for mobility disability (scoring ≤9 on the Short Physical Performance Battery) at baseline.
Recruitment methods, yields, efficiency, and costs are described together with a summary of participant baseline characteristics. Yields were examined across levels of sex, race and ethnicity, and Short Physical Performance Battery, as well as by site.
The 21-month recruiting period resulted in 14,812 telephone screens; 1,635 participants were randomized (67.2% women, 21.0% minorities, 44.7% with Short Physical Performance Battery scores ≤7). Of the telephone-screened participants, 37.6% were excluded primarily because of regular participation in physical activity, health exclusions, or self-reported mobility disability. Direct mailing was the most productive recruitment strategy (59.5% of randomized participants). Recruitment costs were $840 per randomized participant. Yields differed by sex and Short Physical Performance Battery. We accrued 11% more participant follow-up time than expected during the recruitment period as a result of the accelerated recruitment rate.
The LIFE Study achieved all recruitment benchmarks. Bulk mailing is an efficient method for recruiting high-risk community-dwelling older persons (including minorities), from diverse geographic areas for this long-term behavioral trial.
PMCID: PMC3814232  PMID: 23716501
Mobile disability; Older adults; Physical activity; Minority recruitment; Randomized controlled trial.
9.  The LIFE Cognition Study: design and baseline characteristics 
Observational studies have shown beneficial relationships between exercise and cognitive function. Some clinical trials have also demonstrated improvements in cognitive function in response to moderate–high intensity aerobic exercise; however, these have been limited by relatively small sample sizes and short durations. The Lifestyle Interventions and Independence for Elders (LIFE) Study is the largest and longest randomized controlled clinical trial of physical activity with cognitive outcomes, in older sedentary adults at increased risk for incident mobility disability. One LIFE Study objective is to evaluate the effects of a structured physical activity program on changes in cognitive function and incident all-cause mild cognitive impairment or dementia. Here, we present the design and baseline cognitive data. At baseline, participants completed the modified Mini Mental Status Examination, Hopkins Verbal Learning Test, Digit Symbol Coding, Modified Rey–Osterrieth Complex Figure, and a computerized battery, selected to be sensitive to changes in speed of processing and executive functioning. During follow up, participants completed the same battery, along with the Category Fluency for Animals, Boston Naming, and Trail Making tests. The description of the mild cognitive impairment/dementia adjudication process is presented here. Participants with worse baseline Short Physical Performance Battery scores (prespecified at ≤7) had significantly lower median cognitive test scores compared with those having scores of 8 or 9 with modified Mini Mental Status Examination score of 91 versus (vs) 93, Hopkins Verbal Learning Test delayed recall score of 7.4 vs 7.9, and Digit Symbol Coding score of 45 vs 48, respectively (all P<0.001). The LIFE Study will contribute important information on the effects of a structured physical activity program on cognitive outcomes in sedentary older adults at particular risk for mobility impairment. In addition to its importance in the area of prevention of cognitive decline, the LIFE Study will also likely serve as a model for exercise and other behavioral intervention trials in older adults.
PMCID: PMC4154884  PMID: 25210447
exercise; physical activity; older adults; dementia
10.  The Effects of a Long-Term Physical Activity Intervention on Serum Uric Acid in Older Adults at Risk for Physical Disability 
Observational studies show a relationship between elevated serum uric acid (UA) and better physical performance and muscle function. The purpose of this paper was to determine whether regular participation in an exercise intervention, known to improve physical functioning, would result in increased serum UA. For this study, 424 older adults at risk for physical disability were randomized to participate in either a 12-mo moderate-intensity physical activity (PA) or a successful aging (SA) health education intervention. UA was measured at baseline, 6, and 12 mo (n = 368, 341, and 332, respectively). Baseline UA levels were 6.03 ± 1.52 mg/dl and 5.94 ± 1.55 mg/dl in the PA and SA groups, respectively. The adjusted mean UA at month 12 was 4.8% (0.24 mg/dl) higher in the PA compared with the SA group (p = .028). Compared with a health education intervention, a 1-yr PA intervention results in a modest increase in systemic concentration of UA in older adults at risk for mobility disability.
PMCID: PMC4120269  PMID: 23295313
exercise; aging; health education
11.  Unhealthy lifestyles do not mediate the relationship between socioeconomic status and incident depressive symptoms; The Health ABC study 
The relationship between low socioeconomic status (SES) and depressive symptoms is well described, also in older persons. Although studies have found associations between low SES and unhealthy lifestyle factors and between unhealthy lifestyle factors and depressive symptoms, not much is known about unhealthy lifestyles as a potential explanation of socioeconomic differences in depressive symptoms in older persons.
To study the independent pathways between SES (education, income, perceived income, and financial assets), lifestyle factors (smoking, alcohol use, body mass index, and physical activity), and incident depressive symptoms (CES-D 10 and reported use of antidepressant medication), we used 9 years of follow-up data (1997–2007) from 2,694 American black and white participants aged 70–79 from the Health, Aging, and Body Composition (Health ABC) study. At baseline, 12.1% of the study population showed prevalent depressive symptoms, use of antidepressant medication, or treatment of depression in the five years prior to baseline. These persons were excluded from the analyses.
Over a period of 9 years time, 860 participants (31.9%) developed depressive symptoms. Adjusted hazard ratios for incident depressive symptoms were higher in participants from lower SES groups compared to the highest SES group. The strongest relationships were found for black men. Although unhealthy lifestyle factors were consistently associated with low SES, they were weakly related to incident depressive symptoms. Lifestyle factors did not significantly reduce hazard ratios for depressive symptoms by SES.
In generally healthy persons aged 70–79 years lifestyle factors do not explain the relationship between SES and depressive symptoms. (250)
PMCID: PMC3402597  PMID: 23567402
Health ABC study; Socioeconomic status; Lifestyle factors; Depressive symptoms; Elderly; United States
12.  Ankle Brachial Index Values, Leg Symptoms, and Functional Performance Among Community‐Dwelling Older Men and Women in the Lifestyle Interventions and Independence for Elders Study 
The prevalence and significance of low normal and abnormal ankle brachial index (ABI) values in a community‐dwelling population of sedentary, older individuals is unknown. We describe the prevalence of categories of definite peripheral artery disease (PAD), borderline ABI, low normal ABI, and no PAD and their association with lower‐extremity functional performance in the LIFE Study population.
Methods and Results
Participants age 70 to 89 in the LIFE Study underwent baseline measurement of the ABI, 400‐m walk, and 4‐m walking velocity. Participants were classified as follows: definite PAD (ABI <0.90), borderline PAD (ABI 0.90 to 0.99), low normal ABI (ABI 1.00 to 1.09), and no PAD (ABI 1.10 to 1.40). Of 1566 participants, 220 (14%) had definite PAD, 250 (16%) had borderline PAD, 509 (33%) had low normal ABI, and 587 (37%) had no PAD. Among those with definite PAD, 65% were asymptomatic. Adjusting for age, sex, race, body mass index, smoking, and comorbidities, lower ABI was associated with longer mean 400‐m walk time: (definite PAD=533 seconds; borderline PAD=514 seconds; low normal ABI=503 seconds; and no PAD=498 seconds [P<0.001]). Among asymptomatic participants with and without PAD, lower ABI values were also associated with longer 400‐m walk time (P<0.001) and slower walking velocity (P=0.042).
Among older community‐dwelling men and women, 14% had PAD and 49% had borderline or low normal ABI values. Lower ABI values were associated with greater functional impairment, suggesting that lower extremity atherosclerosis may be a common preventable cause of functional limitations in older people.
Clinical Trial Registration
URL: Unique identifier: NCT01072500.
PMCID: PMC3886743  PMID: 24222666
aging; exercise; peripheral vascular disease
13.  Models of Accelerated Sarcopenia: Critical Pieces for Solving the Puzzle of Age-Related Muscle Atrophy 
Ageing research reviews  2010;9(4):369-383.
Sarcopenia, the age-related loss of skeletal muscle mass, is a significant public health concern that continues to grow in relevance as the population ages. Certain conditions have the strong potential to coincide with sarcopenia to accelerate the progression of muscle atrophy in older adults. Among these conditions are co-morbid diseases common to older individuals such as cancer, kidney disease, diabetes, and peripheral artery disease. Furthermore, behaviors such as poor nutrition and physical inactivity are well-known to contribute to sarcopenia development. However, we argue that these behaviors are not inherent to the development of sarcopenia but rather accelerate its progression. In the present review, we discuss how these factors affect systemic and cellular mechanisms that contribute to skeletal muscle atrophy. In addition, we describe gaps in the literature concerning the role of these factors in accelerating sarcopenia progression. Elucidating biochemical pathways related to accelerated muscle atrophy may allow for improved discovery of therapeutic treatments related to sarcopenia.
PMCID: PMC3788572  PMID: 20438881
Aging; Proteolysis; Satellite Cells; HIV; COPD; Disability
14.  Total and Abdominal Adiposity Are Associated With Inflammation in Older Adults Using a Factor Analysis Approach 
Obesity-related increases in multiple inflammatory markers may contribute to the persistent subclinical inflammation common with advancing age. However, it is unclear if a specific combination of markers reflects the underlying inflammatory state. We used factor analysis to identify inflammatory factor(s) and examine their associations with adiposity in older adults at risk for disability.
Adiponectin, CRP, IL-1ra, IL-1sRII, IL-2sRα, IL-6, IL-6sR, IL-8, IL-15, sTNFRI, sTNFRII, and TNF-α were measured in 179 participants from the Lifestyle Interventions and Independence for Elders Pilot (Mean ± SD age 77 ± 4 years, 76% white, 70% women). Body mass index, waist circumference, and total fat mass were assessed by anthropometry and dual-energy x-ray absorptiometry.
IL-2sRα, sTNFRI, and sTNFRII loaded highest on the first factor (factor 1). CRP, IL-1ra, and IL-6 loaded highest on the second factor (factor 2). Factor 2, but not factor 1, was positively associated with 1-SD increments in waist circumference (β = 0.160 ± 0.057, p = .005), body mass index (β = 0.132 ± 0.053, p = .01), and total fat mass (β = 0.126 ± 0.053, p = .02) after adjusting for age, gender, race/ethnicity, site, smoking, anti-inflammatory medications, comorbidity index, health-related quality of life, and physical function. These associations remained significant after further adjustment for grip strength, but only waist circumference remained associated with inflammation after adjusting for total lean mass. There were no significant interactions between adiposity and muscle mass or strength for either factor.
Greater total and abdominal adiposity are associated with higher levels of an inflammatory factor related to CRP, IL-1ra, and IL-6 in older adults, which may provide a clinically useful measure of inflammation in this population.
PMCID: PMC3437966  PMID: 22451470
Aging; Adiposity; Inflammation; Muscle impairment; Factor analysis
15.  The Impact of Aging on Mitochondrial Function and Biogenesis Pathways in Skeletal Muscle of Sedentary High- and Low-Functioning Elderly Individuals 
Aging cell  2012;11(5):801-809.
Age-related loss of muscle mass and strength (sarcopenia) leads to a decline in physical function and frailty in the elderly. Among the many proposed underlying causes of sarcopenia, mitochondrial dysfunction is inherent in a variety of aged tissues. The intent of this study was to examine the effect of aging on key groups of regulatory proteins involved in mitochondrial biogenesis and how this relates to physical performance in two groups of sedentary elderly participants, classified as high- and low-functioning based on the Short Physical Performance Battery test. Muscle mass was decreased by 38% and 30% in low-functioning elderly (LFE) participants when compared to young and high-functioning elderly (HFE) participants, respectively, and positively correlated to physical performance. Mitochondrial respiration in permeabilized muscle fibers was reduced (41%) in the LFE group when compared to the young, and this was associated with a 30% decline in COX activity. Levels of key metabolic regulators, SIRT3 and PGC-1α were significantly reduced (50%) in both groups of elderly participants when compared to young. Similarly, the fusion protein OPA1 was lower in muscle from elderly subjects, however no changes were detected in Mfn2, Drp1 or Fis1 among the groups. In contrast, protein import machinery (PIM) components Tom22 and cHsp70 were increased in the LFE group when compared to the young. This study suggests that aging in skeletal muscle is associated with impaired mitochondrial function and altered biogenesis pathways, and that this may contribute to muscle atrophy and the decline in muscle performance observed in the elderly population.
PMCID: PMC3444680  PMID: 22681576
aging; sarcopenia; mitochondria; skeletal muscle; PGC-1α
16.  Promoting physical activity for elders with compromised function: the lifestyle Interventions and Independence for elders (LIFE) study physical activity intervention 
The Lifestyle Interventions and Independence for Elders (LIFE) Study is a Phase III randomized controlled clinical trial ( identifier: NCT01072500) that will provide definitive evidence regarding the effect of physical activity (PA) on major mobility disability in older adults (70–89 years old) who have compromised physical function. This paper describes the methods employed in the delivery of the LIFE Study PA intervention, providing insight into how we promoted adherence and monitored the fidelity of treatment. Data are presented on participants’ motives and self-perceptions at the onset of the trial along with accelerometry data on patterns of PA during exercise training. Prior to the onset of training, 31.4% of participants noted slight conflict with being able to meet the demands of the program and 6.4% indicated that the degree of conflict would be moderate. Accelerometry data collected during PA training revealed that the average intensity – 1,555 counts/minute for men and 1,237 counts/minute for women – was well below the cutoff point used to classify exercise as being of moderate intensity or higher for adults. Also, a sizable subgroup required one or more rest stops. These data illustrate that it is not feasible to have a single exercise prescription for older adults with compromised function. Moreover, the concept of what constitutes “moderate” exercise or an appropriate volume of work is dictated by the physical capacities of each individual and the level of comfort/stability in actually executing a specific prescription.
PMCID: PMC3775623  PMID: 24049442
aging; accelerometry; physical disability; compromised physical function; older adults
17.  Making preventive medicine more personalized: implications for exercise-related research 
Preventive medicine  2012;55(1):34-36.
This commentary offers a discussion of the need to consider behavioral interventions such as physical exercise as integral components of personalized medicine.
We discuss the concept of personalized medicine and review existing evidence of variability in response to exercise training.
We argue that increased understanding is needed regarding sources of variability in exercise responsiveness, and that such understanding should lead to more tailored, often multi-modal interventions.
Studies of personalized medicine to date have primarily investigated heterogeneity in drug responsiveness; we believe it is time to begin considering preventive strategies such as exercise within a broader scope of personalized care.
PMCID: PMC3612277  PMID: 22588227
Personalized Medicine; Physical Activity; Non-responder; Genomics; Phenomics
18.  Lipid Peroxidation and Depressed Mood in Community-Dwelling Older Men and Women 
PLoS ONE  2013;8(6):e65406.
It has been hypothesized that cellular damage caused by oxidative stress is associated with late-life depression but epidemiological evidence is limited. In the present study we evaluated the association between urinary 8-iso-prostaglandin F2α (8-iso-PGF2α), a biomarker of lipid peroxidation, and depressed mood in a large sample of community-dwelling older adults. Participants were selected from the Health, Aging and Body Composition study, a community-based longitudinal study of older persons (aged 70–79 years). The present analyses was based on a subsample of 1027 men and 948 women free of mobility disability. Urinary concentration of 8-iso-PGF2α was measured by radioimmunoassay methods and adjusted for urinary creatinine. Depressed mood was defined as a score greater than 5 on the 15-item Geriatric Depression Scale and/or use of antidepressant medications. Depressed mood was present in 3.0% of men and 5.5% of women. Depressed men presented higher urinary concentrations of 8-iso-PGF2α than non-depressed men even after adjustment for multiple sociodemographic, lifestyle and health factors (p = 0.03, Cohen’s d = 0.30). This association was not present in women (depressed status-by-sex interaction p = 0.04). Our study showed that oxidative damage may be linked to depression in older men from a large sample of the general population. Further studies are needed to explore whether the modulation of oxidative stress may break down the link between late-life depression and its deleterious health consequences.
PMCID: PMC3679197  PMID: 23776478
19.  Oxidative Damage, Platelet Activation, and Inflammation to Predict Mobility Disability and Mortality in Older Persons: Results From the Health Aging and Body Composition Study 
Inflammation, oxidative damage, and platelet activation are hypothesized biological mechanisms driving the disablement process. The aim of the present study is to assess whether biomarkers representing these mechanisms predicted major adverse health-related events in older persons.
Data are from 2,234 community-dwelling nondisabled older persons enrolled in the Health Aging and Body Composition study. Biomarkers of lipid peroxidation (ie, urinary levels of 8-iso-prostaglandin F2α), platelet activation (ie, urinary levels of 11-dehydro-thromboxane B2), and inflammation (serum concentrations of interleukin-6) were considered as independent variables of interest and tested in Cox proportional hazard models as predictors of (severe) mobility disability and overall mortality.
The sample’s (women 48.0%, whites 64.3%) mean age was 74.6 (SD 2.9) years. During the follow-up (median 11.4 years), 792 (35.5%), 269 (12.0%), and 942 (42.2%) events of mobility disability, severe mobility disability, and mortality occurred, respectively. Only interleukin-6 showed significant independent associations with the onset of all the study outcomes. Higher levels of urinary 8-iso-prostaglandin F2α and 11-dehydro-thromboxane B2 independently predicted increased risk of death (hazard ratio 1.10, 95% confidence interval 1.03–1.19 and hazard ratio 1.14, 95% confidence interval 1.06–1.23, respectively). No significant interactions of gender, race, cardiovascular disease, diabetes, and antiplatelet drugs were detected on the studied relationships.
The inflammatory marker interleukin-6 is confirmed to be a robust predictor for the onset of negative health-related events. Participants with higher urinary levels of 8-iso-prostaglandin F2α and 11-dehydro-thromboxane B2 presented a higher mortality risk.
PMCID: PMC3348494  PMID: 22389462
Oxidative damage; Platelet activation; Inflammation; Disability; Mortality
20.  Angiotensin-Converting Enzyme Inhibitor Use by Older Adults Is Associated with Greater Functional Responses to Exercise 
To assess the association between angiotensin converting enzyme inhibitors (ACEis) and improvements in the physical function of older adults in response to chronic exercise training.
Secondary analysis of the Lifestyle Interventions and Independence for Elders Pilot (LIFE-P) study, a multisite randomized clinical trial to evaluate the effects of chronic exercise on the physical function of older adults at risk for mobility disability.
Four academic research centers within the United States.
Four hundred twenty-four individuals aged 70 to 89 with mild to moderate functional impairments categorized for this analysis as ACEi users, users of other antihypertensive drugs, or antihypertensive nonusers.
A 12-month intervention of structured physical activity (PA) or health education promoting successful aging (SA).
Change in walking speed during a 400-m test and performance on a battery of short-duration mobility tasks (Short Physical Performance Battery (SPPB)).
Physical activity significantly improved the adjusted walking speed of ACEi users (P < .001) but did not of nonusers. PA improved the adjusted SPPB score of ACEi users (P < .001) and of persons who used other antihypertensive drugs (P = .005) but not of antihypertensive nonusers (P = .91). The percentage of ACEi users deriving clinically significant benefit from exercise training for walking speed (30%) and SPPB score (48%) was dramatically higher than for nonusers (14% and 12%, respectively).
For older adults at risk for disability, exercise-derived improvements in physical function were greater for ACEi users than users of other antihypertensive drugs and antihypertensive nonusers.
PMCID: PMC3625953  PMID: 22726232
aging; exercise; physical function; LIFE Study; ACE inhibitors
21.  Effects of a 12-Month Physical Activity Intervention on Prevalence of Metabolic Syndrome in Elderly Men and Women 
There is a lack of information on whether exercise training alone can reduce the prevalence of metabolic syndrome (MetS) in elderly men and women.
This study was an ancillary to the Lifestyle Interventions and Independence for Elders Pilot Study, a four-site, single-blind, randomized controlled clinical trial comparing a 12-month physical activity (PA) intervention (N = 180) with a successful aging intervention (N = 181) in elderly (70–89 years) community-dwelling men and women at risk for physical disability. The PA intervention included aerobic, strength, and flexibility exercises, with walking as the primary mode. MetS was defined using the National Cholesterol Education Program criteria.
There was no significant change in body weight or fat mass after either intervention. The trend of MetS prevalence over the intervention period was similar between PA and successful aging groups (p = .77). Overall, the prevalence of MetS decreased significantly from baseline to 6 months (p = .003) but did not change further from 6- to 12-month visits (p = .11). There were no group differences in any individual MetS components (p > .05 for all group by visit interactions). However, in individuals not using medications at any visit to treat MetS components, those in the PA intervention had lower odds of having MetS than those in the successful aging group during follow-up (odds ratio = 0.28, 95% confidence interval = 0.08–0.96).
In this sample, a 12-month PA intervention did not reduce the prevalence of MetS more than a successful aging intervention, perhaps due to the large proportion of individuals taking medications for treating MetS components.
PMCID: PMC3309873  PMID: 22024949
Metabolic syndrome; Elderly; Physical activity
22.  Age-related Differences in Lower Extremity Tissue Compartments and Associations with Physical Function in Older Adults 
Experimental gerontology  2011;47(1):38-44.
The lower extremities are important to performing physical activities of daily life. This study investigated lower extremity tissue composition, i.e. muscle and fat volumes, in young and older adults and the relative importance of individual tissue compartments to the physical function of older adults. A total of 43 older (age 78.3 ± 5.6 yr) and 20 younger (age 23.8 ± 3.9 yr) healthy men and women participated in the study. Older participants were further classified as either high- (HF) or low-functioning (LF) according to the Short Physical Performance Battery (SPPB). Magnetic resonance images were used to determine the volumes of skeletal muscle, subcutaneous fat (SAT), and intermuscular fat (IMAT) in the thigh (femoral) and calf (tibiofibular) regions. After adjusting for the sex of participants, younger participants had more femoral muscle mass than older adults (p < 0.001 for between group differences) as well as less femoral IMAT (p = 0.008) and tibiofibular IMAT (p < 0.001). Femoral muscle was the only tissue compartment demonstrating a significant difference between the two older groups, with HF participants having 31% more femoral muscle mass than LF participants (mean difference = 103.0 ± 34.0 cm3; p = 0.011). In subsequent multiple regression models including tissue compartments and demographic confounders, femoral muscle was the primary compartment associated with both SPPB score (r2 = 0.264, p= 0.001) and 4-meter gait speed (r2 = 0.187, p= 0.007). These data suggest that aging affects all lower extremity compartments, but femoral muscle mass is the major compartment associated with physical function in older adults.
PMCID: PMC3245356  PMID: 22015325
Aging; Sarcopenia; Older Adults; Disability; SPPB; IMAT
23.  Muscle Strength and BMI as Predictors of Major Mobility Disability in the Lifestyle Interventions and Independence for Elders Pilot (LIFE-P) 
Muscle weakness and obesity are two significant threats to mobility facing the increasing number of older adults. To date, there are no studies that have examined the association of strength and body mass index (BMI) on event rates on a widely used performance measure of major mobility disability.
This study was a secondary analysis of a randomized controlled trial in which sedentary functionally limited participants (70–89 years, Short Physical Performance Battery ≤ 9) who were able to complete a 400-m walk test at baseline were randomized to a physical activity or health education intervention and reassessed for major mobility disability every 6 months for up to 18 months. We evaluated whether baseline grip strength and BMI predicted failure to complete the 400-m walk test in 15 minutes or less (major mobility disability).
Among N = 406 participants with baseline measures, lower grip strength was associated with an increased risk for developing major mobility disability, with and without covariate adjustment (p < .01): The hazard ratio (95% confidence interval) for the lowest versus high sex-specific quartile of grip strength was 6.11 (2.24–16.66). We observed a U-shaped relationship between baseline BMI and the risk of developing major mobility disability, such that the risk for participants with a BMI of 25–29 kg/m2 was approximately half that of participants with BMI less than 25 or 30 kg/m2 or more (p = .04 in fully adjusted analyses).
Our data highlight the importance of muscle weakness, low BMI, and obesity as risk factors for major mobility disability in older adults. Being overweight may be protective for major mobility disability.
PMCID: PMC3210962  PMID: 21975090
Physical disability; Physical activity; Older adults
24.  Biomarkers of sarcopenia in clinical trials—recommendations from the International Working Group on Sarcopenia 
Sarcopenia, the age-related skeletal muscle decline, is associated with relevant clinical and socioeconomic negative outcomes in older persons. The study of this phenomenon and the development of preventive/therapeutic strategies represent public health priorities. The present document reports the results of a recent meeting of the International Working Group on Sarcopenia (a task force consisting of geriatricians and scientists from academia and industry) held on June 7–8, 2011 in Toulouse (France). The meeting was specifically focused at gaining knowledge on the currently available biomarkers (functional, biological, or imaging-related) that could be utilized in clinical trials of sarcopenia and considered the most reliable and promising to evaluate age-related modifications of skeletal muscle. Specific recommendations about the assessment of aging skeletal muscle in older people and the optimal methodological design of studies on sarcopenia were also discussed and finalized. Although the study of skeletal muscle decline is still in a very preliminary phase, the potential great benefits derived from a better understanding and treatment of this condition should encourage research on sarcopenia. However, the reasonable uncertainties (derived from exploring a novel field and the exponential acceleration of scientific progress) require the adoption of a cautious and comprehensive approach to the subject.
PMCID: PMC3424187  PMID: 22865205
25.  An Exploratory Analysis of the Effects of a Weight Loss Plus Exercise Program on Cellular Quality Control Mechanisms in Older Overweight Women 
Rejuvenation Research  2011;14(3):315-324.
Obese older adults are particularly susceptible to sarcopenia and have a higher prevalence of disability than their peers of normal weight. Interventions to improve body composition in late life are crucial to maintaining independence. The main mechanisms underlying sarcopenia have not been determined conclusively, but chronic inflammation, apoptosis, and impaired mitochondrial function are believed to play important roles. It has yet to be determined whether impaired cellular quality control mechanisms contribute to this process. The objective of this study was to assess the effects of a 6-month weight loss program combined with moderate-intensity exercise on the cellular quality control mechanisms autophagy and ubiquitin-proteasome, as well as on inflammation, apoptosis, and mitochondrial function, in the skeletal muscle of older obese women. The intervention resulted in significant weight loss (8.0 ± 3.9 % vs. 0.4 ± 3.1% of baseline weight, p = 0.002) and improvements in walking speed (reduced time to walk 400 meters, − 20.4 ± 16% vs. − 2.5 ± 12%, p = 0.03). In the intervention group, we observed a three-fold increase in messenger RNA (mRNA) levels of the autophagy regulators LC3B, Atg7, and lysosome-associated membrane protein-2 (LAMP-2) compared to controls. Changes in mRNA levels of FoxO3A and its targets MuRF1, MAFBx, and BNIP3 were on average seven-fold higher in the intervention group compared to controls, but these differences were not statistically significant. Tumor necrosis factor-α (TNF-α) mRNA levels were elevated after the intervention, but we did not detect significant changes in the downstream apoptosis markers caspase 8 and 3. Mitochondrial biogenesis markers (PGC1α and TFAm) were increased by the intervention, but this was not accompanied by significant changes in mitochondrial complex content and activity. In conclusion, although exploratory in nature, this study is among the first to report the stimulation of cellular quality control mechanisms elicited by a weight loss and exercise program in older obese women.
PMCID: PMC3136739  PMID: 21631380

Results 1-25 (60)