PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (78)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  A comparison among the tissue-specific effects of aging and calorie restriction on TFAM amount and TFAM-binding activity to mtDNA in rat 
Biochimica et biophysica acta  2014;1840(7):2184-2191.
Background
Mitochondrial Transcription Factor A (TFAM) is regarded as a histone-like protein of mitochondrial DNA (mtDNA), performing multiple functions for this genome. Aging affects mitochondria in a tissue-specific manner and only calorie restriction (CR) is able to delay or prevent the onset of several age-related changes also in mitochondria.
Methods
Samples of the frontal cortex and soleus skeletal muscle from 6- and 26-month-old ad libitum-fed and 26-month-old calorie-restricted rats and of the livers from 18- and 28-month-old ad libitum-fed and 28-month-old calorie-restricted rats were used to detect TFAM amount, TFAM-binding to mtDNA and mtDNA content.
Results
We found an age-related increase in TFAM amount in the frontal cortex, not affected by CR, versus an age-related decrease in the soleus and liver, fully prevented by CR. The semi-quantitative analysis of in vivo binding of TFAM to specific mtDNA regions, by mtDNA immunoprecipitation assay and following PCR, showed a marked age-dependent decrease in TFAM-binding activity in the frontal cortex, partially prevented by CR. An age-related increase in TFAM-binding to mtDNA, fully prevented by CR, was found in the soleus and liver. MtDNA content presented a common age-related decrease, completely prevented by CR in the soleus and liver, but not in the frontal cortex.
Conclusions
The modulation of TFAM expression, TFAM-binding to mtDNA and mtDNA content with aging and CR showed a trend shared by the skeletal muscle and liver, but not by the frontal cortex counterpart.
General significance: Aging and CR appear to induce similar mitochondrial molecular mechanisms in the skeletal muscle and liver, different from those elicited in the frontal cortex.
doi:10.1016/j.bbagen.2014.03.004
PMCID: PMC4335656  PMID: 24631828
Mitochondrial Transcription Factor A; Mitochondrial Transcription Factor; A–mitochondrial deoxyribonucleic acid binding; Tissue-specificity; Aging rat; Calorie restriction
2.  Multiple pathways to the same end: Mechanisms of myonuclear apoptosis in sarcopenia of aging 
TheScientificWorldJournal  2010;10:340-349.
Sarcopenia, the age-related decline in muscle mass and function, represents a significant health issue due to the high prevalence of frailty and disability associated with this condition. Nevertheless, the cellular mechanisms responsible for the loss of muscle mass in old age are still largely unknown. An altered regulation of myocyte apoptosis has recently emerged as a possible contributor to the pathogenesis of sarcopenia. Studies in animal models have shown that the severity of skeletal muscle apoptosis increases over the course of aging and correlates with the degree of muscle mass and strength decline. Several apoptotic pathways are operative in aged muscles, with the mitochondria- and TNF-α-mediated pathways likely being the most relevant to sarcopenia. However, despite the growing number of studies on the subject, a definite mechanistic link between myocyte apoptosis and age-related muscle atrophy has not yet been established. Furthermore, the evidence on the role played by apoptosis in human sarcopenia is still sparse. Clearly, further research is required to better define the involvement of myocyte apoptosis in the pathogenesis of muscle loss at advanced age. This knowledge will likely help in the design of more effective therapeutic strategies to preserve muscle mass into old age, thus fostering independence of the elderly population and reducing the socioeconomic burden associated with sarcopenia.
doi:10.1100/tsw.2010.27
PMCID: PMC4311890  PMID: 20191247
aging; sarcopenia; myonuclear apoptosis; mitochondria; tumor necrosis factor-alpha (TNF-α); caspases; endonuclease G (EndoG); apoptosis inducing factor (AIF)
3.  EFFECTS OF ACE-INHIBITION ON IGF-1 AND IGFBP-3 CONCENTRATIONS IN OLDER ADULTS WITH HIGH CARDIOVASCULAR RISK PROFILE 
Objectives
The present study evaluates the effects of a 6-month treatment with an ACE-inhibitor (ie, fosinopril) on serum concentrations of total IGF-1 and IGF binding protein (IGFBP)-3 in older adults at high risk for cardiovascular disease.
Design
Data are from the Trial of Angiotensin Converting Enzyme Inhibition and Novel Cardiovascular Risk Factors (TRAIN) study, a double-blind, crossover, randomized, placebo-controlled trial.
Setting
Participants were recruited from the communities of Winston Salem, NC, and Greensboro, NC.
Participants
Subjects ≥55 years old with high cardiovascular disease risk profile.
Intervention
The intervention consisted of 6-month administration of fosinopril vs. placebo.
Measurements
Serum concentrations of total IGF-1 and IGFBP-3 were measured in 100 participants of the TRAIN study at baseline, 6-month and 12-month follow-up visits. Differences in total IGF-1 and IGFBP-3 concentrations were assessed using two-sided paired t-tests.
Results
The mean age of participants (47% women) was 66.5 (standard deviation 7.2) years. Serum concentrations of total IGF-1 were significantly higher after 6-month treatment with fosinopril compared to placebo (203.73 ng/mL vs 194.24 ng/mL; p=0.02): After ACE-inhibitor intervention, significantly higher serum IGFBP-3 concentrations compared to controls (4308.81 ng/mL vs 4086.93 ng/mL; p=0.03) were also reported.
Conclusions
A six-month treatment with fosinopril increases systemic levels of total IGF-1 and IGFBP-3 in older adults with high cardiovascular risk profile. This may represent a potential biological explanation to the beneficial effects of ACE-inhibition on stroke, ischemic heart disease and insulin resistance.
PMCID: PMC4311891  PMID: 20617288
Angiotensin Converting Enzyme inhibitor; Insulin like growth factor 1; Insulin like growth factor binding protein 3; older adults
5.  Aged Mice are Unable to Mount an Effective Myeloid Response to Sepsis 
Journal of immunology (Baltimore, Md. : 1950)  2013;192(2):10.4049/jimmunol.1302109.
The elderly have increased morbidity and mortality following sepsis; however, the cause(s) remain unclear. We hypothesized that these poor outcomes are due in part to defects in innate immunity, rather than to an exaggerated early inflammatory response. Juvenile (6–12 weeks) or aged (20–24 months) mice underwent polymicrobial sepsis and subsequently, the aged mice had increased mortality and defective peritoneal bacterial clearance compared to young mice. No differences were found in the magnitude of the plasma cytokine responses. Although septic aged mice displayed equivalent or increased numbers of circulating, splenic and bone marrow myeloid cells, some of these cells exhibited decreased phagocytosis, reactive oxygen species production and chemotaxis. Blood leukocyte gene expression was less altered in aged versus young mice one day after sepsis. Aged mice had a relative inability to upregulate gene expression of pathways related to ‘PMN-mediated protective immunity’, ‘chemokine/chemokine receptor binding’ and ‘responses to exogenous molecules’. Expression of most MHC genes remained more down-regulated in aged mice at day three. Despite their increased myeloid response to sepsis, the increased susceptibility of aged mice to sepsis appears not to be due to an exaggerated inflammatory response, but rather, a failure to mount an effective innate immune response.
doi:10.4049/jimmunol.1302109
PMCID: PMC3884685  PMID: 24337739
6.  A BETTER UNDERSTANDING OF WHY MURINE MODELS OF TRAUMA DO NOT RECAPITULATE THE HUMAN SYNDROME 
Critical care medicine  2014;42(6):1406-1413.
Objective
Genomic analyses from blood leukocytes have concluded that mouse injury poorly reflects human trauma at the leukocyte transcriptome. Concerns have focused on the modest severity of murine injury models, differences in murine compared to human age, dissimilar circulating leukocyte populations between species, and whether similar signaling pathways are involved. We sought to examine whether the transcriptomic response to severe trauma in mice could be explained by these extrinsic factors, by utilizing an increasing severity of murine trauma and shock in young and aged mice over time, and examining the response in isolated neutrophil populations.
Design
Pre-clinical controlled in vivo laboratory study and retrospective cohort study
Setting
Laboratory of Inflammation Biology and Surgical Science and multi-institution level 1 trauma centers
Subjects
6–10 week old and 20–24 month old C57BL/6 (B6) mice and two cohorts of 167 and 244 severely traumatized (ISS >15) adult (>18 yo) patients.
Interventions
Mice underwent one of two severity polytrauma models of injury. Total blood leukocyte and neutrophil samples were collected.
Measurements and Main Results
Fold expression changes in leukocyte and neutrophil genome-wide expression analyses between healthy and injured mice (p<0.001) were compared to human total and enriched blood leukocyte expression analyses of severe trauma patients at 0.5, 1, 4, 7, 14, and 28 days after injury (Glue Grant TRDB). We found that increasing the severity of the murine trauma model only modestly improved the correlation in the transcriptomic response with humans, whereas the age of the mice did not. In addition, the genome-wide response to blood neutrophils (rather than total WBC) was also not well correlated between humans and mice. However, the expression of many individual gene families was much more strongly correlated after injury in mice and humans.
Conclusions
Although overall transcriptomic association remained weak even after adjusting for the severity of injury, age of the animals, timing, and individual leukocyte populations, there were individual signaling pathways and ontogenies that were strongly correlated between mice and humans. These genes are involved in early inflammation and innate/adaptive immunity.
doi:10.1097/CCM.0000000000000222
PMCID: PMC4283139  PMID: 24413577
microarray; blunt trauma; shock; mouse model
7.  Caloric Restriction to Moderate Senescence: Mechanisms and Clinical Utility 
As life expectancy in the United States continues to increase, the maintenance of physical independence among older Americans has emerged as a major clinical and public health priority. Therefore, there is an urgent need to identify interventions that can maintain or enhance cognitive and physical function with the goal of preventing or delaying the onset of disability. To date, caloric restriction (CR) is the only method that has been consistently found to increase lifespan and delay the onset of age-associated diseases such as cancer and diabetes across multiple species. The promise of calorie restriction as an intervention to improve health and/or maintain function in humans, however, only holds if individuals are able to adhere to this intervention over the long-term. Unfortunately, long-term adherence to CR regimens is notoriously poor likely due to complex interactions between behavioral, physiological, psychological, and environmental variables. Thus, a current challenge for both researchers and clinicians is to identify methods that can assist individuals in maintaining CR over the long-term.
doi:10.1007/s13670-013-0062-5
PMCID: PMC3899841  PMID: 24466503
Caloric restriction; Aging; adherence; lifestyle; health-span; life-span; body weight; appetite
8.  The Effect of Fasting on Indicators of Muscle Damage 
Experimental gerontology  2012;48(10):1101-1106.
Many studies have tested the consumption of foods and supplements to reduce exercise-induced muscle damage, but fasting itself is also worthy of investigation due to reports of beneficial effects of caloric restriction and/or intermittent fasting on inflammation and oxidative stress. This preliminary investigation compared indicators of exercise-induced muscle damage between upper-body untrained participants (N = 29, 22 yrs old (SD = 3.34), 12 women) who completed 8 hour water-only fasts or ate a controlled diet in the eight hours prior to five consecutive laboratory sessions. All sessions were conducted in the afternoon hours (i.e., post meridiem) and the women completed the first session while in the follicular phase of their menstrual cycles. Measures of muscle pain, resting elbow extension, upper arm girth, isometric strength, myoglobin (Mb), total nitric oxide (NO), interleukin 1beta (IL1b), and tumor necrosis factor alpha (TNFa) were collected before and after eccentric contractions of the non-dominant elbow flexors were completed. The fasting group’s loss of elbow extension was less than the post-prandial group (p < .05, eta2 = .10), but the groups did not change differently across time for any other outcome measures. However, significantly higher NO (p < .05, eta2 = .22) and lower TNFa (p < .001, eta2 = .53) were detected in the fasting group than the post-prandial group regardless of time. These results suggest intermittent fasting does not robustly inhibit the signs and symptoms of exercise-induced muscle damage, but such fasting may generally affect common indirect markers of muscle damage.
doi:10.1016/j.exger.2012.12.006
PMCID: PMC3622193  PMID: 23266375
delayed-onset muscle soreness; stretch injury
9.  Autophagy and leucine promote chronological longevity and respiration proficiency during calorie restriction in yeast 
Experimental gerontology  2013;48(10):1107-1119.
We have previously shown that autophagy is required for chronological longevity in the budding yeast Saccharomyces cerevisiae. Here we examine the requirements for autophagy during extension of chronological life span (CLS) by calorie restriction (CR). We find that autophagy is upregulated by two CR interventions that extend CLS: water wash CR and low glucose CR. Autophagy is required for full extension of CLS during water wash CR under all growth conditions tested. In contrast, autophagy was not uniformly required for full extension of CLS during low glucose CR, depending on the atg allele and strain genetic background. Leucine status influenced CLS during CR. Eliminating the leucine requirement in yeast strains or adding supplemental leucine to growth media extended CLS during CR. In addition, we observed that both water wash and low glucose CR promote mitochondrial respiration proficiency during aging of autophagy-deficient yeast. In general, the extension of CLS by water wash or low glucose CR was inversely related to respiration deficiency in autophagy-deficient cells. Also, autophagy is required for full extension of CLS under non-CR conditions in buffered media, suggesting that extension of CLS during CR is not solely due to reduced medium acidity. Thus, our findings show that autophagy is: (1) induced by CR, (2) required for full extension of CLS by CR in most cases (depending on atg allele, strain, and leucine availability) and, (3) promotes mitochondrial respiration proficiency during aging under CR conditions.
doi:10.1016/j.exger.2013.01.006
PMCID: PMC3728276  PMID: 23337777
aging; autophagy; calorie restriction; leucine; respiration; Saccharomyces cerevisiae
10.  Age- and calorie restriction-related changes in rat brain mitochondrial DNA and TFAM binding 
Age  2012;35(5):1607-1620.
Aging markedly affects mitochondrial biogenesis and functions particularly in tissues highly dependent on the organelle’s bioenergetics capability such as the brain’s frontal cortex. Calorie restriction (CR) diet is, so far, the only intervention able to delay or prevent the onset of several age-related alterations in different organisms. We determined the contents of mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), and the 4.8-kb mtDNA deletion in the frontal cortex from young (6-month-old) and aged (26-month-old), ad libitum-fed (AL) and calorie-restricted (CR), rats. We found a 70 % increase in TFAM amount, a 25 % loss in mtDNA content, and a 35 % increase in the 4.8-kb deletion content in the aged AL animals with respect to the young rats. TFAM-specific binding to six mtDNA regions was analyzed by mtDNA immunoprecipitation and semiquantitative polymerase chain reaction (PCR), showing a marked age-related decrease. Quantitative real-time PCR at two subregions involved in mtDNA replication demonstrated, in aged AL rats, a remarkable decrease (60–70 %) of TFAM-bound mtDNA. The decreased TFAM binding is a novel finding that may explain the mtDNA loss in spite of the compensatory TFAM increased amount. In aged CR rats, TFAM amount increased and mtDNA content decreased with respect to young rats’ values, but the extent of the changes was smaller than in aged AL rats. Attenuation of the age-related effects due to the diet in the CR animals was further evidenced by the unchanged content of the 4.8-kb deletion with respect to that of young animals and by the partial prevention of the age-related decrease in TFAM binding to mtDNA.
doi:10.1007/s11357-012-9465-z
PMCID: PMC3776104  PMID: 22945739
Aging rat frontal cortex mitochondria; Calorie restriction diet; TFAM amount; mtDNA content; mtDNA 4.8-kb deletion content; mtDNA–TFAM binding
11.  Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical trials 
Sarcopenia, the age-related loss of muscle mass and function, imposes a dramatic burden on individuals and society. The development of preventive and therapeutic strategies against sarcopenia is therefore perceived as an urgent need by health professionals and has instigated intensive research on the pathophysiology of this syndrome. The pathogenesis of sarcopenia is multifaceted and encompasses lifestyle habits, systemic factors (e.g., chronic inflammation and hormonal alterations), local environment perturbations (e.g., vascular dysfunction), and intramuscular specific processes. In this scenario, derangements in skeletal myocyte mitochondrial function are recognized as major factors contributing to the age-dependent muscle degeneration. In this review, we summarize prominent findings and controversial issues on the contribution of specific mitochondrial processes – including oxidative stress, quality control mechanisms and apoptotic signaling – on the development of sarcopenia. Extramuscular alterations accompanying the aging process with a potential impact on myocyte mitochondrial function are also discussed. We conclude with presenting methodological and safety considerations for the design of clinical trials targeting mitochondrial dysfunction to treat sarcopenia. Special emphasis is placed on the importance of monitoring the effects of an intervention on muscle mitochondrial function and identifying the optimal target population for the trial.
doi:10.1016/j.biocel.2013.06.024
PMCID: PMC3759621  PMID: 23845738
mitophagy; vascular dysfunction; fusion and fission; apoptosis; biomarkers
12.  Oxidative damage increases with reproductive energy expenditure and is reduced by food-supplementation 
A central principle in life-history theory is that reproductive effort negatively affects survival. Costs of reproduction are thought to be physiologically-based, but the underlying mechanisms remain poorly understood. Using female North American red squirrels (Tamiasciurus hudsonicus), we test the hypothesis that energetic investment in reproduction overwhelms investment in antioxidant protection, leading to oxidative damage. In support of this hypothesis we found that the highest levels of plasma protein oxidative damage in squirrels occurred during the energetically-demanding period of lactation. Moreover, plasma protein oxidative damage was also elevated in squirrels that expended the most energy and had the lowest antioxidant protection. Finally, we found that squirrels that were food-supplemented during lactation and winter had increased antioxidant protection and reduced plasma protein oxidative damage providing the first experimental evidence in the wild that access to abundant resources can reduce this physiological cost.
doi:10.1111/evo.12014
PMCID: PMC3795525  PMID: 23617928
antioxidant protection; doubly-labeled water; daily energy expenditure; energetics; food-supplementation; life-history theory
13.  Host Responses to Sepsis Vary in Different Low-Lethality Murine Models 
PLoS ONE  2014;9(5):e94404.
Introduction
Animal models for the study of sepsis are being increasingly scrutinized, despite their essential role for early translational research. In particular, recent studies have suggested that at the level of the leukocyte transcriptome, murine models of burns, trauma and endotoxemia markedly differ from their human equivalents, and are only weakly similar amongst themselves. We compared the plasma cytokine and leukocyte transcriptome responses between two different low-lethality murine models of polymicrobial intra-abdominal sepsis.
Methods
Six to ten week male C57BL/6j mice underwent either the ‘gold standard’ cecal ligation and puncture (CLP) model of intra-abdominal sepsis or administration of a cecal slurry (CS), where cecal contents are injected intraperitoneally. Surviving mice were euthanized at two hours, one or three days after sepsis.
Results
The murine leukocyte transcriptomic response to the CLP and CS models of sepsis was surprisingly dissimilar at two hours, one, and three days after sepsis. The Pearson correlation coefficient for the maximum change in expression for the entire leukocyte transcriptome that changed significantly over time (n = 19,071) was R = 0.54 (R2 = 0.297). The CS model resulted in greater magnitude of early inflammatory gene expression changes in response to sepsis with associated increased production of inflammatory chemokines and cytokines. Two hours after sepsis, CLP had more significant expression of genes associated with IL-10 signaling pathways, whereas CS had greater expression of genes related to CD28, apoptosis, IL-1 and T-cell receptor signaling. By three days, the changes in gene expression in both sepsis models were returning to baseline in surviving animals.
Conclusion
These analyses reveal that the murine blood leukocyte response to sepsis is highly dependent on which model of intra-abdominal sepsis is employed, despite their similar lethality. It may be difficult to extrapolate findings from one murine model to another, let alone to human sepsis.
doi:10.1371/journal.pone.0094404
PMCID: PMC4006924  PMID: 24788351
15.  Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy 
Biological chemistry  2013;394(3):393-414.
Muscle loss during aging and disuse is a highly prevalent and disabling condition, but knowledge about cellular pathways mediating muscle atrophy is still limited. Given the postmitotic nature of skeletal myocytes, the maintenance of cellular homeostasis relies on the efficiency of cellular quality control mechanisms. In this scenario, alterations in mitochondrial function are considered a major factor underlying sarcopenia and muscle atrophy. Damaged mitochondria are not only less bioenergetically efficient, but also generate increased amounts of reactive oxygen species, interfere with cellular quality control mechanisms, and display a greater propensity to trigger apoptosis. Thus, mitochondria stand at the crossroad of signaling pathways that regulate skeletal myocyte function and viability. Studies on these pathways have sometimes provided unexpected and counterintuitive results, which suggests that they are organized into a complex, heterarchical network that is currently insufficiently understood. Untangling the complexity of such a network will likely provide clinicians with novel and highly effective therapeutics to counter the muscle loss associated with aging and disuse. In this review, we summarize the current knowledge on the mechanisms whereby mitochondrial dysfunction intervenes in the pathogenesis of sarcopenia and disuse atrophy, and highlight the prospect of targeting specific processes to treat these conditions.
doi:10.1515/hsz-2012-0247
PMCID: PMC3976204  PMID: 23154422
apoptosis; autophagy; fission; fusion; mitophagy; oxidative stress
16.  Skeletal Muscle Mitochondrial Energetics Are Associated With Maximal Aerobic Capacity and Walking Speed in Older Adults 
Background.
Lower ambulatory performance with aging may be related to a reduced oxidative capacity within skeletal muscle. This study examined the associations between skeletal muscle mitochondrial capacity and efficiency with walking performance in a group of older adults.
Methods.
Thirty-seven older adults (mean age 78 years; 21 men and 16 women) completed an aerobic capacity (VO2 peak) test and measurement of preferred walking speed over 400 m. Maximal coupled (State 3; St3) mitochondrial respiration was determined by high-resolution respirometry in saponin-permeabilized myofibers obtained from percutanous biopsies of vastus lateralis (n = 22). Maximal phosphorylation capacity (ATPmax) of vastus lateralis was determined in vivo by 31P magnetic resonance spectroscopy (n = 30). Quadriceps contractile volume was determined by magnetic resonance imaging. Mitochondrial efficiency (max ATP production/max O2 consumption) was characterized using ATPmax per St3 respiration (ATPmax/St3).
Results.
In vitro St3 respiration was significantly correlated with in vivo ATPmax (r 2 = .47, p = .004). Total oxidative capacity of the quadriceps (St3*quadriceps contractile volume) was a determinant of VO2 peak (r 2 = .33, p = .006). ATPmax (r 2 = .158, p = .03) and VO2 peak (r 2 = .475, p < .0001) were correlated with preferred walking speed. Inclusion of both ATPmax/St3 and VO2 peak in a multiple linear regression model improved the prediction of preferred walking speed (r 2 = .647, p < .0001), suggesting that mitochondrial efficiency is an important determinant for preferred walking speed.
Conclusions.
Lower mitochondrial capacity and efficiency were both associated with slower walking speed within a group of older participants with a wide range of function. In addition to aerobic capacity, lower mitochondrial capacity and efficiency likely play roles in slowing gait speed with age.
doi:10.1093/gerona/gls196
PMCID: PMC3593613  PMID: 23051977
Muscle; Mitochondria; Aging; Walking speed.
17.  Upregulated autophagy protects cardiomyocytes from oxidative stress-induced toxicity 
Autophagy  2013;9(3):328-344.
Autophagy is a cellular self-digestion process that mediates protein quality control and serves to protect against neurodegenerative disorders, infections, inflammatory diseases and cancer. Current evidence suggests that autophagy can selectively remove damaged organelles such as the mitochondria. Mitochondria-induced oxidative stress has been shown to play a major role in a wide range of pathologies in several organs, including the heart. Few studies have investigated whether enhanced autophagy can offer protection against mitochondrially-generated oxidative stress. We induced mitochondrial stress in cardiomyocytes using antimycin A (AMA), which increased mitochondrial superoxide generation, decreased mitochondrial membrane potential and depressed cellular respiration. In addition, AMA augmented nuclear DNA oxidation and cell death in cardiomyocytes. Interestingly, although oxidative stress has been proposed to induce autophagy, treatment with AMA did not result in stimulation of autophagy or mitophagy in cardiomyocytes. Our results showed that the MTOR inhibitor rapamycin induced autophagy, promoted mitochondrial clearance and protected cardiomyocytes from the cytotoxic effects of AMA, as assessed by apoptotic marker activation and viability assays in both mouse atrial HL-1 cardiomyocytes and human ventricular AC16 cells. Importantly, rapamycin improved mitochondrial function, as determined by cellular respiration, mitochondrial membrane potential and morphology analysis. Furthermore, autophagy induction by rapamycin suppressed the accumulation of ubiquitinylated proteins induced by AMA. Inhibition of rapamycin-induced autophagy by pharmacological or genetic interventions attenuated the cytoprotective effects of rapamycin against AMA. We propose that rapamycin offers cytoprotection against oxidative stress by a combined approach of removing dysfunctional mitochondria as well as by degrading damaged, ubiquitinated proteins. We conclude that autophagy induction by rapamycin could be utilized as a potential therapeutic strategy against oxidative stress-mediated damage in cardiomyocytes.
doi:10.4161/auto.22971
PMCID: PMC3590254  PMID: 23298947
oxidative stress; mitochondrial dysfunction; autophagy; cardiomyocytes; rapamycin; MTOR
18.  Fasting or caloric restriction for Healthy Aging 
Experimental gerontology  2013;48(10):1003-1005.
Aging is associated with a host of biological changes that contribute to a progressive decline in cognitive and physical function, ultimately leading to a loss of independence, and increased risk of mortality. To date, prolonged caloric restriction (i.e., a reduction in caloric intake without malnutrition) is the only non-genetic intervention that has consistently been found to extend both mean and maximal life span across a variety of species. Most individuals have difficulty sustaining prolonged caloric restriction, which has led to a search for alternative approaches that can produce similar to benefits as caloric restriction. A growing body of evidence indicates that fasting periods and intermittent fasting regimens in particular can trigger similar biological pathways as caloric restriction. For this reason, there is increasing scientific interest in further exploring the biological and metabolic effects of intermittent fasting periods, as well as whether long-term compliance may be improved by this type of dietary approach. This special will highlight the latest scientific findings related to the effects of both caloric restriction and intermittent fasting across various species including yeast, fruit flies, worms, rodents, primates, and humans. A specific emphasis is placed on translational research with findings from basic bench to bedside reviewed and practical clinical implications discussed.
doi:10.1016/j.exger.2013.04.011
PMCID: PMC3919445  PMID: 23639403
19.  Urinary CTX-II Concentrations are Elevated and Associated with Knee Pain and Function in Subjects with ACL Reconstruction 
Objective
Post-traumatic knee osteoarthritis is prevalent after anterior cruciate ligament reconstruction. Biomarkers that identify individuals likely to develop osteoarthritis, especially symptomatic osteoarthritis, can help target preventative and therapeutic strategies. This study examined the magnitude and change over time in urinary CTX-II (uCTX-II) concentrations shortly after ACL reconstruction, and, secondarily, the associations with knee pain and function.
Design
Subjects were 28 patients with ACL reconstruction (ACLR) and 28 age- and sex-matched controls (CNTRL). Testing was conducted at 4 time points spaced 4 weeks apart (4, 8, 12 and 16 weeks post-operative in ACLR). Measures included demographics, urine samples, Numeric Pain Rating Scale (NPRS) and International Knee Documentation Committee Subjective Knee Form (IKDC-SKF). uCTX-II concentrations were determined with competitive ELISA. uCTX-II concentrations at each time point in ACLR were compared to the mean concentration over time in CNTRL, with and without adjustment for body mass index (BMI). Changes over time in each measure and correlations between the slopes of change were examined.
Results
uCTX-II concentrations were significantly higher in ACLR than CNTRL through 16 weeks post-operative when adjusted for BMI. In ACLR, uCTX-II concentrations significantly decreased over time, and the slope was associated with NPRS (r =.406, p=.039) and IKDC-SKF (r = −.402, p = .034) slopes.
Conclusion
uCTX-II concentrations shortly after ACL reconstruction were elevated compared to controls and declined over time. Decreasing uCTX-II concentrations were associated with decreasing knee pain and improving function. uCTX-II may have a role as a prognostic marker following ACL reconstruction and warrants further investigation.
doi:10.1016/j.joca.2012.07.014
PMCID: PMC3878437  PMID: 22863613
20.  Mitochondrial iron accumulation with age and functional consequences 
Aging cell  2008;7(5):706-716.
Summary
During the aging process, an accumulation of non-heme iron disrupts cellular homeostasis and contributes to the mitochondrial dysfunction typical of various neuromuscular degenerative diseases. Few studies have investigated the effects of iron accumulation on mitochondrial integrity and function in skeletal muscle and liver tissue. Thus, we isolated liver mitochondria (LM), as well as quadriceps-derived subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), from male Fischer 344× Brown Norway rats at 8, 18, 29 and 37 months of age. Non-heme iron content in SSM, IFM and LM was significantly higher with age, reaching a maximum at 37 months of age. The mitochondrial permeability transition pore (mPTP) was more susceptible to the opening in aged mitochondria containing high levels of iron (i.e. SSM and LM) compared to IFM. Furthermore, mitochondrial RNA oxidation increased significantly with age in SSM and LM, but not in IFM. Levels of mitochondrial RNA oxidation in SSM and LM correlated positively with levels of mitochondrial iron, whereas a significant negative correlation was observed between the maximum Ca2+ amounts needed to induce mPTP opening and iron contents in SSM, IFM and LM. Overall, our data suggest that age-dependent accumulation of mitochondrial iron may increase mitochondrial dysfunction and oxidative damage, thereby enhancing the susceptibility to apoptosis.
PMCID: PMC3849824  PMID: 18843794
mitochondrial aging; mitochondrial iron homeostasis; mitochondrial permeability transition pore; mitochondrial RNA; oxidative stress; skeletal muscle subsarcolemmal and interfibrillar mitochondria
21.  Models of Accelerated Sarcopenia: Critical Pieces for Solving the Puzzle of Age-Related Muscle Atrophy 
Ageing research reviews  2010;9(4):369-383.
Sarcopenia, the age-related loss of skeletal muscle mass, is a significant public health concern that continues to grow in relevance as the population ages. Certain conditions have the strong potential to coincide with sarcopenia to accelerate the progression of muscle atrophy in older adults. Among these conditions are co-morbid diseases common to older individuals such as cancer, kidney disease, diabetes, and peripheral artery disease. Furthermore, behaviors such as poor nutrition and physical inactivity are well-known to contribute to sarcopenia development. However, we argue that these behaviors are not inherent to the development of sarcopenia but rather accelerate its progression. In the present review, we discuss how these factors affect systemic and cellular mechanisms that contribute to skeletal muscle atrophy. In addition, we describe gaps in the literature concerning the role of these factors in accelerating sarcopenia progression. Elucidating biochemical pathways related to accelerated muscle atrophy may allow for improved discovery of therapeutic treatments related to sarcopenia.
doi:10.1016/j.arr.2010.04.004
PMCID: PMC3788572  PMID: 20438881
Aging; Proteolysis; Satellite Cells; HIV; COPD; Disability
22.  The Impact of Aging on Mitochondrial Function and Biogenesis Pathways in Skeletal Muscle of Sedentary High- and Low-Functioning Elderly Individuals 
Aging cell  2012;11(5):801-809.
Summary
Age-related loss of muscle mass and strength (sarcopenia) leads to a decline in physical function and frailty in the elderly. Among the many proposed underlying causes of sarcopenia, mitochondrial dysfunction is inherent in a variety of aged tissues. The intent of this study was to examine the effect of aging on key groups of regulatory proteins involved in mitochondrial biogenesis and how this relates to physical performance in two groups of sedentary elderly participants, classified as high- and low-functioning based on the Short Physical Performance Battery test. Muscle mass was decreased by 38% and 30% in low-functioning elderly (LFE) participants when compared to young and high-functioning elderly (HFE) participants, respectively, and positively correlated to physical performance. Mitochondrial respiration in permeabilized muscle fibers was reduced (41%) in the LFE group when compared to the young, and this was associated with a 30% decline in COX activity. Levels of key metabolic regulators, SIRT3 and PGC-1α were significantly reduced (50%) in both groups of elderly participants when compared to young. Similarly, the fusion protein OPA1 was lower in muscle from elderly subjects, however no changes were detected in Mfn2, Drp1 or Fis1 among the groups. In contrast, protein import machinery (PIM) components Tom22 and cHsp70 were increased in the LFE group when compared to the young. This study suggests that aging in skeletal muscle is associated with impaired mitochondrial function and altered biogenesis pathways, and that this may contribute to muscle atrophy and the decline in muscle performance observed in the elderly population.
doi:10.1111/j.1474-9726.2012.00844.x
PMCID: PMC3444680  PMID: 22681576
aging; sarcopenia; mitochondria; skeletal muscle; PGC-1α
23.  Molecular Inflammation: Underpinnings of Aging and Age-related Diseases 
Ageing research reviews  2008;8(1):18-30.
Recent scientific studies have advanced the notion of chronic inflammation as a major risk factor underlying aging and age-related diseases. In this review, low-grade, unresolved, molecular inflammation is described as an underlying mechanism of aging and age-related diseases, which may serve as a bridge between normal aging and age-related pathological processes. Accumulated data strongly suggest that continuous (chronic) up-regulation of pro-inflammatory mediators (e.g., TNF-α, IL-1β, 6, COX-2, iNOS) are induced during the aging process due to an age-related redox imbalance that activates many pro-inflammatory signaling pathways, including the NF-κB signaling pathway. These pro-inflammatory molecular events are discussed in relation to their role as basic mechanisms underlying aging and age-related diseases. Further, the anti-inflammatory actions of aging-retarding caloric restriction and exercise are reviewed. Thus, the purpose of this review is to describe the molecular roles of age-related physiological functional declines and the accompanying chronic diseases associated with aging. This new view on the role of molecular inflammation as a mechanism of aging and age-related pathogenesis can provide insights into potential interventions that may affect the aging process and reduce age-related diseases, thereby promoting healthy longevity.
doi:10.1016/j.arr.2008.07.002
PMCID: PMC3782993  PMID: 18692159
molecular inflammation; aging; calorie restriction; exercise; cytokines; oxidative stress; inflammatory diseases; age-related diseases; obesity; sarcopenia; dementia; atherosclerosis; cancer; osteoporosis
24.  Investigations of botanicals on food intake, satiety, weight loss, and oxidative stress: a study protocol of a double-blind, placebo-controlled, crossover study 
Background
Botanicals represent an important and underexplored source of potential new therapies that may facilitate caloric restriction and thereby produce long-term weight loss. In particular, one promising botanical that may reduce food intake and body weight by affecting neuroendocrine pathways related to satiety is Garcinia cambogia (Garcinia cambogia Desr.)-derived (−)-hydroxycitric acid (HCA).
Methods and Design
The objective of this article is to describe the protocol of a clinical trial designed to directly test the effect that Garcinia cambogia-derived HCA has on food intake, satiety, weight loss, and oxidative stress levels, and to serve as a model for similar trials. A total of 48 healthy, overweight and obese individuals (body mass index; BMI range = 25.0 – 39.9) between the ages of 50 to 70 will participate in this double-blind, placebo-controlled, crossover study designed to examine the effects of two doses of Garcinia cambogia-derived HCA on food intake, satiety, weight loss, and oxidative stress levels. This trial will take place at the University of Florida (UF)’s Aging and Rehabilitation Research Center (ARRC) and UF Clinical Research Center (CRC). Food intake represents the primary outcome measure and is calculated based on the total calories consumed at breakfast, lunch, and dinner meals during each test meal day at the CRC. This study can be completed with far fewer subjects than a parallel design.
Discussion
Of the numerous botanical compounds, the compound Garcinia cambogia-derived HCA was selected for testing in the present study because of its potential to safely reduce food intake, body weight, and oxidative stress levels. We will review potential mechanisms of action and safety parameters throughout this clinical trial, which is registered at ClinicalTrials.gov under NCT01238887.
Trial registration
ClinicalTrials.gov (Identifier: NCT01238887).
PMCID: PMC3772724  PMID: 22088584
Obesity; Botanicals; Weight Loss; Garcinia Cambogia; hydroxycitric acid; dietary supplement
25.  Aging and Calorie Restriction Oppositely Affect Mitochondrial Biogenesis through TFAM Binding at Both Origins of Mitochondrial DNA Replication in Rat Liver 
PLoS ONE  2013;8(9):e74644.
Aging affects mitochondria in a tissue-specific manner. Calorie restriction (CR) is, so far, the only intervention able to delay or prevent the onset of several age-related changes also in mitochondria. Using livers from middle age (18-month-old), 28-month-old and 32-month-old ad libitum-fed and 28-month-old calorie-restricted rats we found an age-related decrease in mitochondrial DNA (mtDNA) content and mitochondrial transcription factor A (TFAM) amount, fully prevented by CR. We revealed also an age-related decrease, completely prevented by CR, for the proteins PGC-1α NRF-1 and cytochrome c oxidase subunit IV, supporting the efficiency of CR to forestall the age-related decrease in mitochondrial biogenesis. Furthermore, CR counteracted the age-related increase in oxidative damage to proteins, represented by the increased amount of oxidized peroxiredoxins (PRX-SO3) in the ad libitum-fed animals. An unexpected age-related decrease in the mitochondrial proteins peroxiredoxin III (Prx III) and superoxide dismutase 2 (SOD2), usually induced by increased ROS and involved in mitochondrial biogenesis, suggested a prevailing relevance of the age-reduced mitochondrial biogenesis above the induction by ROS in the regulation of expression of these genes with aging. The partial prevention of the decrease in Prx III and SOD2 proteins by CR also supported the preservation of mitochondrial biogenesis in the anti-aging action of CR. To investigate further the age- and CR-related effects on mitochondrial biogenesis we analyzed the in vivo binding of TFAM to specific mtDNA regions and demonstrated a marked increase in the TFAM-bound amounts of mtDNA at both origins of replication with aging, fully prevented by CR. A novel, positive correlation between the paired amounts of TFAM-bound mtDNA at these sub-regions was found in the joined middle age ad libitum-fed and 28-month-old calorie-restricted groups, but not in the 28-month-old ad libitum-fed counterpart suggesting a quite different modulation of TFAM binding at both origins of replication in aging and CR.
doi:10.1371/journal.pone.0074644
PMCID: PMC3772924  PMID: 24058615

Results 1-25 (78)