PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (117)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  Differential effects of angiopoietin-like 4 in brain and muscle on regulation of lipoprotein lipase activity 
Molecular Metabolism  2014;4(2):144-150.
Objective
Lipoprotein lipase (LPL) is a key regulator of circulating triglyceride rich lipoprotein hydrolysis. In brain LPL regulates appetite and energy expenditure. Angiopoietin-like 4 (Angptl4) is a secreted protein that inhibits LPL activity and, thereby, triglyceride metabolism, but the impact of Angptl4 on central lipid metabolism is unknown.
Methods
We induced type 1 diabetes by streptozotocin (STZ) in whole-body Angptl4 knockout mice (Angptl4-/-) and their wildtype littermates to study the role of Angptl4 in central lipid metabolism.
Results
In type 1 (streptozotocin, STZ) and type 2 (ob/ob) diabetic mice, there is a ~2-fold increase of Angptl4 in the hypothalamus and skeletal muscle. Intracerebroventricular insulin injection into STZ mice at levels which have no effect on plasma glucose restores Angptl4 expression in hypothalamus. Isolation of cells from the brain reveals that Angptl4 is produced in glia, whereas LPL is present in both glia and neurons. Consistent with the in vivo experiment, in vitro insulin treatment of glial cells causes a 50% reduction of Angptl4 and significantly increases LPL activity with no change in LPL expression. In Angptl4-/- mice, LPL activity in skeletal muscle is increased 3-fold, and this is further increased by STZ-induced diabetes. By contrast, Angptl4-/- mice show no significant difference in LPL activity in hypothalamus or brain independent of diabetic and nutritional status.
Conclusion
Thus, Angptl4 in brain is produced in glia and regulated by insulin. However, in contrast to the periphery, central Angptl4 does not regulate LPL activity, but appears to participate in the metabolic crosstalk between glia and neurons.
doi:10.1016/j.molmet.2014.11.003
PMCID: PMC4314546
Angptl4; Lipid metabolism; Lipoprotein lipase; AgRP, agouti-related protein; Angptl4, angiopoietin-like 4; ARC, arcuate nucleus; CART, cocaine-and-amphetamine-regulated transcript; CNS, central nervous system; FFA, free fatty acid; LPL, lipoprotein lipase; NPY, neuropeptide-Y; POMC, pro-opiomelanocortin; STZ, streptozotocin; TG, triglyceride
2.  Sirt3 Regulates Metabolic Flexibility of Skeletal Muscle Through Reversible Enzymatic Deacetylation 
Diabetes  2013;62(10):3404-3417.
Sirt3 is an NAD+-dependent deacetylase that regulates mitochondrial function by targeting metabolic enzymes and proteins. In fasting mice, Sirt3 expression is decreased in skeletal muscle resulting in increased mitochondrial protein acetylation. Deletion of Sirt3 led to impaired glucose oxidation in muscle, which was associated with decreased pyruvate dehydrogenase (PDH) activity, accumulation of pyruvate and lactate metabolites, and an inability of insulin to suppress fatty acid oxidation. Antibody-based acetyl-peptide enrichment and mass spectrometry of mitochondrial lysates from WT and Sirt3 KO skeletal muscle revealed that a major target of Sirt3 deacetylation is the E1α subunit of PDH (PDH E1α). Sirt3 knockout in vivo and Sirt3 knockdown in myoblasts in vitro induced hyperacetylation of the PDH E1α subunit, altering its phosphorylation leading to suppressed PDH enzymatic activity. The inhibition of PDH activity resulting from reduced levels of Sirt3 induces a switch of skeletal muscle substrate utilization from carbohydrate oxidation toward lactate production and fatty acid utilization even in the fed state, contributing to a loss of metabolic flexibility. Thus, Sirt3 plays an important role in skeletal muscle mitochondrial substrate choice and metabolic flexibility in part by regulating PDH function through deacetylation.
doi:10.2337/db12-1650
PMCID: PMC3781465  PMID: 23835326
3.  The Emerging Genetic Architecture of Type 2 Diabetes 
Cell metabolism  2008;8(3):186-200.
Type 2 diabetes is a genetically heterogeneous disease, with several relatively rare monogenic forms and a number of more common forms resulting from a complex interaction of genetic and environmental factors. Previous studies using a candidate gene approach, family linkage studies, and gene expression profiling uncovered a number of type 2 genes, but the genetic basis of common type 2 diabetes remained unknown. Recently, a new window has opened on defining potential type 2 diabetes genes through genome-wide SNP association studies of very large populations of individuals with diabetes. This review explores the pathway leading to discovery of these genetic effects, the impact of these genetic loci on diabetes risk, the potential mechanisms of action of the genes to alter glucose homeostasis, and the limitations of these studies in defining the role of genetics in this important disease.
doi:10.1016/j.cmet.2008.08.006
PMCID: PMC4267677  PMID: 18762020
4.  Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy 
The Journal of Clinical Investigation  2014;124(8):3339-3351.
miRNAs are important regulators of biological processes in many tissues, including the differentiation and function of brown and white adipocytes. The endoribonuclease dicer is a major component of the miRNA-processing pathway, and in adipose tissue, levels of dicer have been shown to decrease with age, increase with caloric restriction, and influence stress resistance. Here, we demonstrated that mice with a fat-specific KO of dicer develop a form of lipodystrophy that is characterized by loss of intra-abdominal and subcutaneous white fat, severe insulin resistance, and enlargement and “whitening” of interscapular brown fat. Additionally, KO of dicer in cultured brown preadipocytes promoted a white adipocyte–like phenotype and reduced expression of several miRNAs. Brown preadipocyte whitening was partially reversed by expression of miR-365, a miRNA known to promote brown fat differentiation; however, introduction of other miRNAs, including miR-346 and miR-362, also contributed to reversal of the loss of the dicer phenotype. Interestingly, fat samples from patients with HIV-related lipodystrophy exhibited a substantial downregulation of dicer mRNA expression. Together, these findings indicate the importance of miRNA processing in white and brown adipose tissue determination and provide a potential link between this process and HIV-related lipodystrophy.
doi:10.1172/JCI73468
PMCID: PMC4109560  PMID: 24983316
5.  Hepatic Insulin Resistance is Sufficient to Produce Dyslipidemia and Susceptibility to Atherosclerosis 
Cell metabolism  2008;7(2):125-134.
Insulin resistance plays a central role in the development of the metabolic syndrome, but how it relates to cardiovascular disease remains controversial. Liver insulin receptor knockout (LIRKO) mice have pure hepatic insulin resistance. On a chow diet, LIRKO mice have a proatherogenic lipoprotein profile with reduced HDL cholesterol and VLDL particles that are markedly enriched in cholesterol. This is due to increased secretion and decreased clearance of apoB-containing lipoproteins, coupled with decreased triglyceride secretion secondary to increased expression of PGC-1β, which promotes VLDL secretion, but decreased expression of SREBP-1c, SREBP-2 and their targets, the lipogenic enzymes and the LDL receptor. Within twelve weeks on an atherogenic diet, LIRKO mice show marked hypercholesterolemia, and 100% of LIRKO mice, but 0% of controls, develop severe atherosclerosis. Thus, insulin resistance at the level of the liver is sufficient to produce the dyslipidemia and increased risk of atherosclerosis associated with the metabolic syndrome.
doi:10.1016/j.cmet.2007.11.013
PMCID: PMC4251554  PMID: 18249172
6.  Lessons on Conditional Gene Targeting in Mouse Adipose Tissue 
Diabetes  2013;62(3):864-874.
Conditional gene targeting has been extensively used for in vivo analysis of gene function in adipocyte cell biology but often with debate over the tissue specificity and the efficacy of inactivation. To directly compare the specificity and efficacy of different Cre lines in mediating adipocyte specific recombination, transgenic Cre lines driven by the adipocyte protein 2 (aP2) and adiponectin (Adipoq) gene promoters, as well as a tamoxifen-inducible Cre driven by the aP2 gene promoter (iaP2), were bred to the Rosa26R (R26R) reporter. All three Cre lines demonstrated recombination in the brown and white fat pads. Using different floxed loci, the individual Cre lines displayed a range of efficacy to Cre-mediated recombination that ranged from no observable recombination to complete recombination within the fat. The Adipoq-Cre exhibited no observable recombination in any other tissues examined, whereas both aP2-Cre lines resulted in recombination in endothelial cells of the heart and nonendothelial, nonmyocyte cells in the skeletal muscle. In addition, the aP2-Cre line can lead to germline recombination of floxed alleles in ∼2% of spermatozoa. Thus, different “adipocyte-specific” Cre lines display different degrees of efficiency and specificity, illustrating important differences that must be taken into account in their use for studying adipose biology.
doi:10.2337/db12-1089
PMCID: PMC3581196  PMID: 23321074
7.  Interplay between FGF21 and insulin action in the liver regulates metabolism 
The hormone FGF21 regulates carbohydrate and lipid homeostasis as well as body weight, and increasing FGF21 improves metabolic abnormalities associated with obesity and diabetes. FGF21 is thought to act on its target tissues, including liver and adipose tissue, to improve insulin sensitivity and reduce adiposity. Here, we used mice with selective hepatic inactivation of the IR (LIRKO) to determine whether insulin sensitization in liver mediates FGF21 metabolic actions. Remarkably, hyperglycemia was completely normalized following FGF21 treatment in LIRKO mice, even though FGF21 did not reduce gluconeogenesis in these animals. Improvements in blood sugar were due in part to increased glucose uptake in brown fat, browning of white fat, and overall increased energy expenditure. These effects were preserved even after removal of the main interscapular brown fat pad. In contrast to its retained effects on reducing glucose levels, the effects of FGF21 on reducing circulating cholesterol and hepatic triglycerides and regulating the expression of key genes involved in cholesterol and lipid metabolism in liver were disrupted in LIRKO mice. Thus, FGF21 corrects hyperglycemia in diabetic mice independently of insulin action in the liver by increasing energy metabolism via activation of brown fat and browning of white fat, but intact liver insulin action is required for FGF21 to control hepatic lipid metabolism.
doi:10.1172/JCI67353
PMCID: PMC3904602  PMID: 24401271
8.  Adipose-Specific Deletion of TFAM Increases Mitochondrial Oxidation and Protects Mice against Obesity and Insulin Resistance 
Cell metabolism  2012;16(6):765-776.
Obesity and type 2 diabetes are associated with mitochondrial dysfunction in adipose tissue, but the role for adipose tissues mitochondria in the development of these disorders is currently unknown. To understand the impact of adipose tissue mitochondria on whole body metabolism, we have generated a mouse model with disruption of the mitochondrial transcription factor A (TFAM) specifically in fat. F-TFKO adipose tissue exhibit decreased mtDNA copy number, altered levels of proteins of the electron transport chain, and perturbed mitochondrial function with decreased Complex I activity and greater oxygen consumption and uncoupling. As a result, F-TFKO mice exhibit higher energy expenditure and are protected from age- and diet-induced obesity, insulin resistance and hepatosteatosis, despite a greater food intake. Thus, TFAM deletion in the adipose tissue increases mitochondrial oxidation that has positive metabolic effects suggesting that regulation of adipose tissue mitochondria may be a potential therapeutic target for the treatment of obesity.
doi:10.1016/j.cmet.2012.10.016
PMCID: PMC3529641  PMID: 23168219
Obesity; Brown adipose tissue; Mitochondrial function; mitochondrial bioenergetics; White adipose tissue; Insulin resistance; Diabetes
9.  Leptin regulation of Hsp60 impacts hypothalamic insulin signaling  
The Journal of Clinical Investigation  2013;123(11):4667-4680.
Type 2 diabetes is characterized by insulin resistance and mitochondrial dysfunction in classical target tissues such as muscle, fat, and liver. Using a murine model of type 2 diabetes, we show that there is hypothalamic insulin resistance and mitochondrial dysfunction due to downregulation of the mitochondrial chaperone HSP60. HSP60 reduction in obese, diabetic mice was due to a lack of proper leptin signaling and was restored by leptin treatment. Knockdown of Hsp60 in a mouse hypothalamic cell line mimicked the mitochondrial dysfunction observed in diabetic mice and resulted in increased ROS production and insulin resistance, a phenotype that was reversed with antioxidant treatment. Mice with a heterozygous deletion of Hsp60 exhibited mitochondrial dysfunction and hypothalamic insulin resistance. Targeted acute downregulation of Hsp60 in the hypothalamus also induced insulin resistance, indicating that mitochondrial dysfunction can cause insulin resistance in the hypothalamus. Importantly, type 2 diabetic patients exhibited decreased expression of HSP60 in the brain, indicating that this mechanism is relevant to human disease. These data indicate that leptin plays an important role in mitochondrial function and insulin sensitivity in the hypothalamus by regulating HSP60. Moreover, leptin/insulin crosstalk in the hypothalamus impacts energy homeostasis in obesity and insulin-resistant states.
doi:10.1172/JCI67615
PMCID: PMC3809782  PMID: 24084737
10.  Role of microRNA Processing in Adipose Tissue in Stress Defense and Longevity 
Cell metabolism  2012;16(3):336-347.
SUMMARY
Excess adipose tissue is associated with metabolic disease and reduced lifespan, whereas caloric restriction decreases these risks. Here we show that as mice age, there is down-regulation of Dicer and miRNA processing in adipose tissue resulting in decreases of multiple miRNAs. A similar decline of Dicer with age is observed in C. elegans. This is prevented in both species by caloric restriction. Decreased Dicer expression also occurs in preadipocytes from elderly humans and can be produced in cells by exposure to oxidative stress and UV radiation. Knockdown of Dicer in cells results in premature senescence, and fat-specific Dicer knockout renders mice hypersensitive to oxidative stress. Finally, Dicer loss-of-function mutations in worms reduce lifespan and stress tolerance, while overexpression of Dicer confers stress resistance. Thus, regulation of miRNA processing in adipose-related tissues plays an important role in longevity and the ability of an organism to respond to environmental stress and age-related disease.
doi:10.1016/j.cmet.2012.07.017
PMCID: PMC3461823  PMID: 22958919
11.  Glypican-4 Enhances Insulin Signaling via Interaction With the Insulin Receptor and Serves as a Novel Adipokine 
Diabetes  2012;61(9):2289-2298.
Obesity, especially visceral obesity, is associated with insulin resistance and metabolic syndrome. We previously identified the cell surface proteoglycan glypican-4 as differentially expressed in subcutaneous versus visceral white fat depots. Here we show that glypican-4 is released from cells and adipose tissue explants of mice, and that circulating glypican-4 levels correlate with BMI and insulin sensitivity in humans. Furthermore, glypican-4 interacts with the insulin receptor, enhances insulin receptor signaling, and enhances adipocyte differentiation. Conversely, depletion of glypican-4 results in reduced activation of the insulin receptor and prevents adipocyte differentiation in vitro by inhibiting insulin-mediated C/EBPβ phosphorylation. These functions of glypican-4 are independent of its glycosylphosphatidylinositol membrane anchorage, as a nonmembrane–bound mutant of glypican-4 phenocopies the effects of native glypican-4 overexpression. In summary, glypican-4 is a novel circulating insulin sensitizing adipose-derived factor that, unlike other insulin sensitizers, acts directly on the insulin receptor to enhance signaling.
doi:10.2337/db11-1395
PMCID: PMC3425403  PMID: 22751693
12.  Tissue-specific insulin signaling, metabolic syndrome and cardiovascular disease 
Summary
Impaired insulin signaling is central to the development of the metabolic syndrome and can promote cardiovascular disease indirectly through development of abnormal glucose and lipid metabolism, hypertension and a proinflammatory state. However, insulin action directly on vascular endothelium, atherosclerotic plaque macrophages, and in the heart, kidney, and retina has now been described, and impaired insulin signaling in these locations can alter progression of cardiovascular disease in the metabolic syndrome and affect development of microvascular complications of diabetes. Recent advances in our understanding of the complex pathophysiology of insulin’s effects on vascular tissues offer new opportunities for preventing these cardiovascular disorders.
doi:10.1161/ATVBAHA.111.241919
PMCID: PMC3511859  PMID: 22895666
13.  Intrinsic Differences in Adipocyte Precursor Cells From Different White Fat Depots 
Diabetes  2012;61(7):1691-1699.
Obesity and body fat distribution are important risk factors for the development of type 2 diabetes and metabolic syndrome. Evidence has accumulated that this risk is related to intrinsic differences in behavior of adipocytes in different fat depots. In the current study, we demonstrate that adipocyte precursor cells (APCs) isolated from visceral and subcutaneous white adipose depots of mice have distinct patterns of gene expression, differentiation potential, and response to environmental and genetic influences. APCs derived from subcutaneous fat differentiate well in the presence of classical induction cocktail, whereas those from visceral fat differentiate poorly but can be induced to differentiate by addition of bone morphogenetic protein (BMP)-2 or BMP-4. This difference correlates with major differences in gene expression signature between subcutaneous and visceral APCs. The number of APCs is higher in obesity-prone C57BL/6 mice than obesity-resistant 129 mice, and the number in both depots is increased by up to 270% by exposure of mice to high-fat diet. Thus, APCs from visceral and subcutaneous depots are dynamic populations, which have intrinsic differences in gene expression, differentiation properties, and responses to environmental/genetic factors. Regulation of these populations may provide a new target for the treatment and prevention of obesity and its metabolic complications.
doi:10.2337/db11-1753
PMCID: PMC3379665  PMID: 22596050
14.  Brown fat as a therapy for obesity and diabetes 
Purpose of review
Human fat consists of white and brown adipose tissue (WAT and BAT). Though most fat is energy-storing WAT, the thermogenic capacity of even small amounts of BAT makes it an attractive therapeutic target for inducing weight loss through energy expenditure. This review evaluates the recent discoveries regarding the identification of functional BAT in adult humans and its potential as a therapy for obesity and diabetes.
Recent findings
Over the past year, several independent research teams used a combination of positron-emission tomography and computed tomography (PET/CT) imaging, immunohistochemistry, and gene and protein expression assays to prove conclusively that adult humans have functional BAT. This has occurred against a backdrop of basic studies defining the origins of BAT, new components of its transcriptional regulation, and the role of hormones in stimulation of BAT growth and differentiation.
Summary
Adult humans have functional BAT, a new target for antiobesity and antidiabetes therapies focusing on increasing energy expenditure. Future studies will refine the methodologies used to measure BAT mass and activity, expand our knowledge of critical-control points in BAT regulation, and focus on testing pharmacological agents that increase BAT thermogenesis and help achieve long-lasting weight loss and an improved metabolic profile.
doi:10.1097/MED.0b013e328337a81f
PMCID: PMC3593105  PMID: 20160646
adult humans; antiobesity therapy; brown adipose tissue; clinical and basic science research; PET/CT
15.  New mechanisms of glucocorticoid-induced insulin resistance: make no bones about it 
The Journal of Clinical Investigation  2012;122(11):3854-3857.
Glucocorticoids are a powerful tool used to treat a range of human illnesses, including autoimmune diseases and cancer, and to prevent rejection following organ transplantation. While lifesaving for many, they come with a steep price, often leading to obesity, insulin resistance, diabetes, and osteoporosis. In this issue of the JCI, Brennan-Speranza and colleagues provide evidence that the osteoblast-derived peptide osteocalcin is one of the drivers of the metabolic derangements associated with glucocorticoid therapy. This novel mechanism could open up new avenues for the treatment of these disorders.
doi:10.1172/JCI66180
PMCID: PMC3484465  PMID: 23093783
16.  Impaired Thermogenesis and Adipose Tissue Development in Mice with Fat-Specific Disruption of Insulin and IGF-1 Signalling 
Nature communications  2012;3:902.
Insulin and insulin-like growth factor 1 (IGF-1) play important roles in adipocyte differentiation, glucose tolerance and insulin sensitivity. Here, to assess how these pathways can compensate for each other, we created mice with a double tissue-specific knockout of insulin and IGF-1 receptors to eliminate all insulin/IGF-1 signaling in fat. These FIGIRKO mice had markedly decreased white and brown fat mass and were completely resistant to high fat diet (HFD) induced obesity and age- and HFD-induced glucose intolerance. Energy expenditure was increased in FIGIRKO mice despite a >85% reduction in brown fat mass. However, FIGIRKO mice were unable to maintain body temperature when placed at 4°C. Brown fat activity was markedly decreased in FIGIRKO mice but was responsive to β3-receptor stimulation. Thus, insulin/IGF-1 signaling has a crucial role in the control of brown and white fat development, and, when disrupted, leads to defective thermogenesis and a paradoxical increase in basal metabolic rate.
doi:10.1038/ncomms1905
PMCID: PMC3529640  PMID: 22692545
Insulin and IGF-1 receptors; Obesity; Brown and White adipose tissue; Adipocyte differentiation; Thermogenesis; Glucose tolerance
17.  The Differential Role of Hif1β/Arnt and the Hypoxic Response in Adipose Function, Fibrosis, and Inflammation 
Cell metabolism  2011;14(4):491-503.
In obesity, adipocytes distant from vasculature become hypoxic and dysfunctional. This hypoxic response is mediated by hypoxia inducible factors (Hif1α, Hif2α, and Hif3α), and their obligate partner Hif1β (Arnt). We show that mice lacking Hif1β in fat (FH1βKO) are lean, exhibit reduced adipocyte size, and are protected from age and diet-induced glucose intolerance. There is also reduced Vegf and vascular permeability in FH1βKO fat, but diet-induced inflammation and fibrosis is unchanged. Adipocytes from FH1βKO mice have reduced glucose uptake due to decreased Glut1 and Glut4, which is mirrored in 3T3-L1 adipocytes with Hif1β knockdown. Hif1β knockdown cells also fail to respond appropriately to hypoxia with reduced cellular respiration and reduced mitochondrial gene expression. Some, but not all, of these effects are reproduced by Hif1α knockdown. Thus, Hif1β/Arnt regulates glucose uptake, mitochondrial gene expression, and vascular permeability to control adipose mass and function, providing a novel target for obesity therapy.
doi:10.1016/j.cmet.2011.08.006
PMCID: PMC3206000  PMID: 21982709
Obesity; Adipocyte; Vegf; Oxidative Phosphorylation; Glucose Uptake
18.  Rad GTPase Deficiency Leads to Cardiac Hypertrophy 
Circulation  2007;116(25):2976-2983.
Background
Rad (Ras associated with diabetes) GTPase is the prototypic member of a subfamily of Ras-related small G proteins. The aim of the present study was to define whether Rad plays an important role in mediating cardiac hypertrophy.
Methods and Results
We document for the first time that levels of Rad mRNA and protein were decreased significantly in human failing hearts (n=10) compared with normal hearts (n=3; P<0.01). Similarly, Rad expression was decreased significantly in cardiac hypertrophy induced by pressure overload and in cultured cardiomyocytes with hypertrophy induced by 10 μmol/L phenylephrine. Gain and loss of Rad function in cardiomyocytes significantly inhibited and increased phenylephrine-induced hypertrophy, respectively. In addition, activation of calcium-calmodulin–dependent kinase II (CaMKII), a strong inducer of cardiac hypertrophy, was significantly inhibited by Rad overexpression. Conversely, downregulation of CaMKIIδ by RNA interference technology attenuated the phenylephrine-induced hypertrophic response in cardiomyocytes in which Rad was also knocked down. To further elucidate the potential role of Rad in vivo, we generated Rad-deficient mice and demonstrated that they were more susceptible to cardiac hypertrophy associated with increased CaMKII phosphorylation than wild-type littermate controls.
Conclusions
The present data document for the first time that Rad is a novel mediator that inhibits cardiac hypertrophy through the CaMKII pathway. The present study will have significant implications for understanding the mechanisms of cardiac hypertrophy and setting the basis for the development of new strategies for treatment of cardiac hypertrophy.
doi:10.1161/CIRCULATIONAHA.107.707257
PMCID: PMC4207362  PMID: 18056528
cardiomyopathy; genes; heart diseases; hypertrophy; natriuretic peptides
19.  Diabetes and Insulin in Regulation of Brain Cholesterol Metabolism 
Cell metabolism  2010;12(6):567-579.
Summary
The brain is the most cholesterol-rich organ in the body, most of which comes from in situ synthesis. Here we demonstrate that in insulin-deficient diabetic mice, there is a reduction in expression of the major transcriptional regulator of cholesterol metabolism, SREBP-2, and its downstream genes in the hypothalamus and other areas of the brain, leading to a reduction in brain cholesterol synthesis, and synaptosomal cholesterol content. These changes are due, at least in part, to direct effects of insulin to regulate these genes in neurons and glial cells, and can be corrected by intracerebroventricular injections of insulin. Knockdown of SREBP-2 in cultured neurons causes a decrease in markers of synapse formation, and reduction of SREBP-2 in the hypothalamus of mice using shRNA results in increased feeding and weight gain. Thus, insulin and diabetes can alter brain cholesterol metabolism, and this may play an important role in the neurologic and metabolic dysfunction observed in diabetes and other disease states.
doi:10.1016/j.cmet.2010.11.006
PMCID: PMC3205997  PMID: 21109190
20.  A Systems Biology Approach Identifies Inflammatory Abnormalities Between Mouse Strains Prior to Development of Metabolic Disease 
Diabetes  2010;59(11):2960-2971.
OBJECTIVE
Type 2 diabetes and obesity are increasingly affecting human populations around the world. Our goal was to identify early molecular signatures predicting genetic risk to these metabolic diseases using two strains of mice that differ greatly in disease susceptibility.
RESEARCH DESIGN AND METHODS
We integrated metabolic characterization, gene expression, protein-protein interaction networks, RT-PCR, and flow cytometry analyses of adipose, skeletal muscle, and liver tissue of diabetes-prone C57BL/6NTac (B6) mice and diabetes-resistant 129S6/SvEvTac (129) mice at 6 weeks and 6 months of age.
RESULTS
At 6 weeks of age, B6 mice were metabolically indistinguishable from 129 mice, however, adipose tissue showed a consistent gene expression signature that differentiated between the strains. In particular, immune system gene networks and inflammatory biomarkers were upregulated in adipose tissue of B6 mice, despite a low normal fat mass. This was accompanied by increased T-cell and macrophage infiltration. The expression of the same networks and biomarkers, particularly those related to T-cells, further increased in adipose tissue of B6 mice, but only minimally in 129 mice, in response to weight gain promoted by age or high-fat diet, further exacerbating the differences between strains.
CONCLUSIONS
Insulin resistance in mice with differential susceptibility to diabetes and metabolic syndrome is preceded by differences in the inflammatory response of adipose tissue. This phenomenon may serve as an early indicator of disease and contribute to disease susceptibility and progression.
doi:10.2337/db10-0367
PMCID: PMC2963557  PMID: 20713682
21.  Beneficial Effects of Subcutaneous Fat Transplantation on Metabolism 
Cell metabolism  2008;7(5):410-420.
SUMMARY
Subcutaneous (SQ) and visceral (VIS) obesity are associated with different risks of diabetes and the metabolic syndrome. To elucidate if these differences are due to anatomic location or intrinsic differences in adipose depots, we characterized mice after transplantation of SQ or VIS fat from donor mice into either SQ or VIS regions of recipient mice. In the group with SQ fat transplanted into the VIS cavity, there was decreased body weight, total fat mass, glucose and insulin levels. There was improved insulin sensitivity during hyperinsulinemic-euglycemic clamps with increased whole-body glucose uptake, glucose uptake into endogenous fat, and insulin suppression of hepatic glucose production. These effects were observed to a lesser extent with SQ transplanted to SQ areas, whereas VIS fat transplanted to VIS area was without effect. These data suggest that SQ fat is intrinsically different from VIS fat and produces substances that can act systemically to improve glucose metabolism.
doi:10.1016/j.cmet.2008.04.004
PMCID: PMC3204870  PMID: 18460332
22.  The PI3K regulatory subunit p85α can exert tumor suppressor properties through negative regulation of growth factor signalling 
Cancer research  2010;70(13):5305-5315.
PI3K plays a critical role in tumorigenesis and the PI3K p85 regulatory subunit exerts both positive and negative effects on signaling. Expression of Pik3r1, the gene encoding p85, is decreased in human prostate, lung, ovarian, bladder and liver cancers consistent with the possibility that p85 has tumor suppressor properties. We tested this hypothesis by studying mice with a liver-specific deletion of the Pik3r1 gene. These mice exhibited enhanced insulin and growth factor signaling and progressive changes in hepatic pathology, leading to the development of aggressive hepatocellular carcinomas with pulmonary metastases. Liver tumors that arose exhibited a markedly elevated level of phosphatidylinositol-3,4,5-trisphosphate (PIP3), along with Akt activation and and decreased PTEN expression, at both the mRNA and protein levels. Together, these results substantiate the concept that the p85 subunit of PI3K has a tumor suppressive role in the liver and possibly other tissues.
doi:10.1158/0008-5472.CAN-09-3399
PMCID: PMC3204358  PMID: 20530665
liver; hepatocellular carcinoma; phosphoinositide 3-kinase; p85 subunit; tumor suppressor; PTEN; conditional gene inactivation
23.  SOCS-1 Deficiency Does Not Prevent Diet-Induced Insulin Resistance 
Obesity is associated with inflammation and increased expression of suppressor of cytokine signaling (SOCS) proteins, which inhibit cytokine and insulin signaling. Thus, reducing SOCS expression could prevent the development of obesity-induced insulin resistance. Using SOCS-1 knockout mice, we investigated the contribution of SOCS-1 in the development of insulin resistance induced by a high fat diet (HFD). SOCS-1 knockout mice on HFD gained 70% more weight, displayed a 2.3-fold increase in epididymal fat pads mass and increased hepatic lipid content. This was accompanied by increased mRNA expression of leptin and the macrophage marker CD68 in white adipose tissue and of SREBP1c and FAS in liver. HFD also induced hyperglycemia in SOCS-1 deficient mice with impairment of glucose and insulin tolerance tests. Thus, despite the role of SOCS proteins in obesity-related insulin resistance, SOCS-1 deficiency alone is not able to prevent insulin resistance induced by a diet rich in fat.
doi:10.1016/j.bbrc.2008.09.158
PMCID: PMC3204362  PMID: 18929539
Insulin resistance; diabetes; obesity; cytokines; SOCS
24.  Measurement of Human Brown Adipose Tissue Volume and Activity Using Anatomical MRI and Functional MRI 
The existence of brown adipose tissue (BAT) in humans has previously been assessed in vivo via sequential 18F-FDG PET/CT imaging. We developed a MRI protocol to detect BAT mass based on BAT’s property of having higher water-to-fat ratio than white adipose tissue (WAT). We showed that the signal contrast obtained between water-saturation and without water-saturation was higher in BAT than in WAT in fast spin echo images and in T2-weighted images. The water-to-fat ratio was also higher in BAT via contrasting the water and fat images of the Dixon method. The MRI measured volume and location of BAT was similar to PET/CT results in the same subjects. In addition, we also demonstrated that cold challenges (14 °C) led to significant fMRI BOLD signal increases in BAT.
doi:10.2967/jnumed.112.117275
PMCID: PMC4167352  PMID: 23868958
11F-FDG; MRI; fMRI; cold-activation; brown adipose tissue
25.  PKCδ regulates hepatic insulin sensitivity and hepatosteatosis in mice and humans 
The Journal of Clinical Investigation  2011;121(6):2504-2517.
C57BL/6J and 129S6/Sv (B6 and 129) mice differ dramatically in their susceptibility to developing diabetes in response to diet- or genetically induced insulin resistance. A major locus contributing to this difference has been mapped to a region on mouse chromosome 14 that contains the gene encoding PKCδ. Here, we found that PKCδ expression in liver was 2-fold higher in B6 versus 129 mice from birth and was further increased in B6 but not 129 mice in response to a high-fat diet. PRKCD gene expression was also elevated in obese humans and was positively correlated with fasting glucose and circulating triglycerides. Mice with global or liver-specific inactivation of the Prkcd gene displayed increased hepatic insulin signaling and reduced expression of gluconeogenic and lipogenic enzymes. This resulted in increased insulin-induced suppression of hepatic gluconeogenesis, improved glucose tolerance, and reduced hepatosteatosis with aging. Conversely, mice with liver-specific overexpression of PKCδ developed hepatic insulin resistance characterized by decreased insulin signaling, enhanced lipogenic gene expression, and hepatosteatosis. Therefore, changes in the expression and regulation of PKCδ between strains of mice and in obese humans play an important role in the genetic risk of hepatic insulin resistance, glucose intolerance, and hepatosteatosis; and thus PKCδ may be a potential target in the treatment of metabolic syndrome.
doi:10.1172/JCI46045
PMCID: PMC3104767  PMID: 21576825

Results 1-25 (117)