PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (44)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Virulence Gene Profiles and Clonal Relationships of Escherichia coli O26:H11 Isolates from Feedlot Cattle as Determined by Whole-Genome Sequencing 
Applied and Environmental Microbiology  2016;82(13):3900-3912.
ABSTRACT
Escherichia coli O26 is the second most important enterohemorrhagic E. coli (EHEC) serogroup worldwide. Serogroup O26 strains are categorized mainly into two groups: enteropathogenic (EPEC) O26, carrying a locus of enterocyte effacement (LEE) and mostly causing mild diarrhea, and Shiga-toxigenic (STEC) O26, which carries the Shiga toxin (STX) gene (stx), responsible for more severe outcomes. stx-negative O26 strains can be further split into two groups. One O26 group differs significantly from O26 EHEC, while the other O26 EHEC-like group shows all the characteristics of EHEC O26 except production of STX. In order to determine the different populations of O26 E. coli present in U.S. cattle, we sequenced 42 O26:H11 strains isolated from feedlot cattle and compared them to 37 O26:H11 genomes available in GenBank. Phylogenetic analysis by whole-genome multilocus sequence typing (wgMLST) showed that O26:H11/H− strains in U.S. cattle were highly diverse. Most strains were sequence type 29 (ST29). By wgMLST, two clear lineages could be distinguished among cattle strains. Lineage 1 consisted of O26:H11 EHEC-like strains (ST29) (4 strains) and O26:H11 EHEC strains (ST21) (2 strains), and lineage 2 (36 strains) consisted of O26:H11 EPEC strains (ST29). Overall, our analysis showed U.S. cattle carried pathogenic (ST21; stx1+ ehxA+ toxB+) and also potentially pathogenic (ST29; ehxA+ toxB+) O26:H11 E. coli strains. Furthermore, in silico analysis showed that 70% of the cattle strains carried at least one antimicrobial resistance gene. Our results showed that whole-genome sequence analysis is a robust and valid approach to identify and genetically characterize E. coli O26:H11, which is of importance for food safety and public health.
IMPORTANCE Escherichia coli O26 is the second most important type of enterohemorrhagic E. coli (EHEC) worldwide. Serogroup O26 strains are categorized into two groups: enteropathogenic (EPEC) carrying LEE, causing mild diarrhea, and Shiga toxigenic (STEC) carrying the stx gene, responsible for more severe outcomes. However, there are currently problems in distinguishing one group from the other. Furthermore, several O26 stx-negative strains are consistently misidentified as either EHEC-like or EPEC. The use of whole-genome sequence (WGS) analysis of O26 strains from cattle in the United States (i) allowed identification of O26 strains present in U.S. cattle, (ii) determined O26 strain diversity, (iii) solved the misidentification problem, and (iv) screened for the presence of antimicrobial resistance and virulence genes in the strains. This study provided a framework showing how to easily and rapidly use WGS information to identify and genetically characterize E. coli O26:H11, which is important for food safety and public health.
doi:10.1128/AEM.00498-16
PMCID: PMC4907181  PMID: 27107118
2.  Evolution and Diversity of Listeria monocytogenes from Clinical and Food Samples in Shanghai, China 
Listeria monocytogenes is a significant foodborne pathogen causing severe systemic infections in humans with high mortality rates. The objectives of this work were to establish a phylogenetic framework of L. monocytogenes from China and to investigate sequence diversity among different serotypes. We selected 17 L. monocytogenes strains recovered from patients and foods in China representing serotypes 1/2a, 1/2b, and 1/2c. Draft genome sequences were determined using Illumina MiSeq technique and associated protocols. Open reading frames were assigned using prokaryotic genome annotation pipeline by NCBI. Twenty-four published genomes were included for comparative genomic and phylogenetic analysis. More than 154,000 single nucleotide polymorphisms (SNPs) were identified from multiple genome alignment and used to reconstruct maximum likelihood phylogenetic tree. The 41 genomes were differentiated into lineages I and II, which consisted of 4 and 11 subgroups, respectively. A clinical strain from China (SHL009) contained significant SNP differences compared to the rest genomes, whereas clinical strain SHL001 shared most recent common ancestor with strain SHL017 from food. Moreover, clinical strains SHL004 and SHL015 clustered together with two strains (08-5578 and 08-5923) recovered from an outbreak in Canada. Partial sequences of a plasmid found in the Canadian strain were also present in SHL004. We investigated the presence of various genes and gene clusters associated with virulence and subgroup-specific genes, including internalins, L. monocytogenes pathogenicity islands (LIPIs), L. monocytogenes genomic islands (LGIs), stress survival islet 1 (SSI-1), and clustered regularly interspaced short palindromic repeats (CRISPR)/cas system. A novel genomic island, denoted as LGI-2 was identified. Comparative sequence analysis revealed differences among the L. monocytogenes strains related to virulence, survival abilities, and attributes against foreign genetic elements. L. monocytogenes from China were genetically diverse. Strains from clinical specimens and food related closely suggesting foodborne transmission of human listeriosis.
doi:10.3389/fmicb.2016.01138
PMCID: PMC4956650  PMID: 27499751
L. monocytogenes; evolution; whole genome analysis; plasmid; China
3.  Genome Sequences of 64 Non-O157:H7 Shiga Toxin-Producing Escherichia coli Strains 
Genome Announcements  2015;3(5):e01067-15.
Shiga toxin-producing Escherichia coli (STEC) strains are human pathogens. Although >400 non-O157 serotypes have been involved in human disease, whole-genome sequencing information is missing for many serotypes. We sequenced 64 STEC strains comprising 38 serotypes, isolated from clinical sources, animals, and environmental samples, to improve the phylogenetic understanding of these important foodborne pathogens.
doi:10.1128/genomeA.01067-15
PMCID: PMC4591298  PMID: 26430026
4.  Genomic Diversity and Virulence Profiles of Historical Escherichia coli O157 Strains Isolated from Clinical and Environmental Sources 
Escherichia coli O157:H7 is, to date, the major E. coli serotype causing food-borne human disease worldwide. Strains of O157 with other H antigens also have been recovered. We analyzed a collection of historic O157 strains (n = 400) isolated in the late 1980s to early 1990s in the United States. Strains were predominantly serotype O157:H7 (55%), and various O157:non-H7 (41%) serotypes were not previously reported regarding their pathogenic potential. Although lacking Shiga toxin (stx) and eae genes, serotypes O157:H1, O157:H2, O157:H11, O157:H42, and O157:H43 carried several virulence factors (iha, terD, and hlyA) also found in virulent serotype E. coli O157:H7. Pulsed-field gel electrophoresis (PFGE) showed the O157 serogroup was diverse, with strains with the same H type clustering together closely. Among non-H7 isolates, serotype O157:H43 was highly prevalent (65%) and carried important enterohemorrhagic E. coli (EHEC) virulence markers (iha, terD, hlyA, and espP). Isolates from two particular H types, H2 and H11, among the most commonly found non-O157 EHEC serotypes (O26:H11, O111:H11, O103:H2/H11, and O45:H2), unexpectedly clustered more closely with O157:H7 than other H types and carried several virulence genes. This suggests an early divergence of the O157 serogroup to clades with different pathogenic potentials. The appearance of important EHEC virulence markers in closely related H types suggests their virulence potential and suggests further monitoring of those serotypes not implicated in severe illness thus far.
doi:10.1128/AEM.02616-14
PMCID: PMC4277581  PMID: 25381234
5.  Comparative Genomic Analysis and Virulence Differences in Closely Related Salmonella enterica Serotype Heidelberg Isolates from Humans, Retail Meats, and Animals 
Genome Biology and Evolution  2014;6(5):1046-1068.
Salmonella enterica subsp. enterica serovar Heidelberg (S. Heidelberg) is one of the top serovars causing human salmonellosis. Recently, an antibiotic-resistant strain of this serovar was implicated in a large 2011 multistate outbreak resulting from consumption of contaminated ground turkey that involved 136 confirmed cases, with one death. In this study, we assessed the evolutionary diversity of 44 S. Heidelberg isolates using whole-genome sequencing (WGS) generated by the 454 GS FLX (Roche) platform. The isolates, including 30 with nearly indistinguishable (one band difference) Xbal pulsed-field gel electrophoresis patterns (JF6X01.0032, JF6X01.0058), were collected from various sources between 1982 and 2011 and included nine isolates associated with the 2011 outbreak. Additionally, we determined the complete sequence for the chromosome and three plasmids from a clinical isolate associated with the 2011 outbreak using the Pacific Biosciences (PacBio) system. Using single-nucleotide polymorphism (SNP) analyses, we were able to distinguish highly clonal isolates, including strains isolated at different times in the same year. The isolates from the recent 2011 outbreak clustered together with a mean SNP variation of only 17 SNPs. The S. Heidelberg isolates carried a variety of phages, such as prophage P22, P4, lambda-like prophage Gifsy-2, and the P2-like phage which carries the sopE1 gene, virulence genes including 62 pathogenicity, and 13 fimbrial markers and resistance plasmids of the incompatibility (Inc)I1, IncA/C, and IncHI2 groups. Twenty-one strains contained an IncX plasmid carrying a type IV secretion system. On the basis of the recent and historical isolates used in this study, our results demonstrated that, in addition to providing detailed genetic information for the isolates, WGS can identify SNP targets that can be utilized for differentiating highly clonal S. Heidelberg isolates.
doi:10.1093/gbe/evu079
PMCID: PMC4040988  PMID: 24732280
outbreak; antimicrobial resistance; plasmid; SNP analysis; trace-back
6.  Escherichia coli O-Antigen Gene Clusters of Serogroups O62, O68, O131, O140, O142, and O163: DNA Sequences and Similarity between O62 and O68, and PCR-Based Serogrouping 
Biosensors  2015;5(1):51-68.
The DNA sequence of the O-antigen gene clusters of Escherichia coli serogroups O62, O68, O131, O140, O142, and O163 was determined, and primers based on the wzx (O-antigen flippase) and/or wzy (O-antigen polymerase) genes within the O-antigen gene clusters were designed and used in PCR assays to identify each serogroup. Specificity was tested with E. coli reference strains, field isolates belonging to the target serogroups, and non-E. coli bacteria. The PCR assays were highly specific for the respective serogroups; however, the PCR assay targeting the O62 wzx gene reacted positively with strains belonging to E. coli O68, which was determined by serotyping. Analysis of the O-antigen gene cluster sequences of serogroups O62 and O68 reference strains showed that they were 94% identical at the nucleotide level, although O62 contained an insertion sequence (IS) element located between the rmlA and rmlC genes within the O-antigen gene cluster. A PCR assay targeting the rmlA and rmlC genes flanking the IS element was used to differentiate O62 and O68 serogroups. The PCR assays developed in this study can be used for the detection and identification of E. coli O62/O68, O131, O140, O142, and O163 strains isolated from different sources.
doi:10.3390/bios5010051
PMCID: PMC4384082  PMID: 25664526
PCR; Escherichia coli; serogroups; DNA sequence; O-antigen gene cluster; detection; identification
7.  Complete Sequences of Six IncA/C Plasmids of Multidrug-Resistant Salmonella enterica subsp. enterica Serotype Newport 
Genome Announcements  2015;3(1):e00027-15.
Multidrug-resistant (MDR) Salmonella enterica subsp. enterica serotype Newport has been a long-standing public health concern in the United States. We present the complete sequences of six IncA/C plasmids from animal-derived MDR S. Newport ranging from 80.1 to 158.5 kb. They shared a genetic backbone with S. Newport IncA/C plasmids pSN254 and pAM04528.
doi:10.1128/genomeA.00027-15
PMCID: PMC4342422  PMID: 25720681
8.  Whole-Genome Sequences of 12 Clinical Strains of Listeria monocytogenes 
Genome Announcements  2015;3(1):e01203-14.
Listeria monocytogenes is a foodborne pathogen of global concern due to the high mortality rate among immunocompromised patients. Whole-genome sequences of 12 strains of L. monocytogenes from humans were reported. The availability of these genomes should provide useful information on the evolutionary history and genetic diversity of L. monocytogenes.
doi:10.1128/genomeA.01203-14
PMCID: PMC4342424  PMID: 25720683
9.  Emergence and Prevalence of Non-H2S-Producing Salmonella enterica Serovar Senftenberg Isolates Belonging to Novel Sequence Type 1751 in China 
Journal of Clinical Microbiology  2014;52(7):2557-2565.
Salmonella enterica serovar Senftenberg is a common nontyphoidal Salmonella serotype which causes human Salmonella infections worldwide. In this study, 182 S. Senftenberg isolates, including 17 atypical non-hydrogen sulfide (H2S)-producing isolates, were detected in China from 2005 to 2011. The microbiological and genetic characteristics of the non-H2S-producing and selected H2S-producing isolates were determined by using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and clustered regularly interspaced short palindromic repeat (CRISPR) analysis. The phs operons were amplified and sequenced. The 17 non-H2S-producing and 36 H2S-producing isolates belonged to 7 sequence types (STs), including 3 new STs, ST1751, ST1757, and ST1758. Fourteen of the 17 non-H2S-producing isolates belonged to ST1751 and had very similar PFGE patterns. All 17 non-H2S-producing isolates had a nonsense mutation at position 1621 of phsA. H2S-producing and non-H2S-producing S. Senftenberg isolates were isolated from the same stool sample from three patients; isolates from the same patients displayed the same antimicrobial susceptibility, ST, and PFGE pattern but could be discriminated based on CRISPR spacers. Non-H2S-producing S. Senftenberg isolates belonging to ST1751 have been prevalent in Shanghai, China. It is possible that these emerging organisms will disseminate further, because they are difficult to detect. Thus, we should strengthen the surveillance for the spread of this atypical S. Senftenberg variant.
doi:10.1128/JCM.00377-14
PMCID: PMC4097678  PMID: 24829240
10.  First Fully Closed Genome Sequence of Salmonella enterica subsp. enterica Serovar Cubana Associated with a Food-Borne Outbreak 
Genome Announcements  2014;2(5):e01112-14.
Salmonella enterica subsp. enterica serovar Cubana (Salmonella serovar Cubana) is associated with human and animal disease. Here, we used third-generation, single-molecule, real-time DNA sequencing to determine the first complete genome sequence of Salmonella serovar Cubana CFSAN002050, which was isolated from fresh alfalfa sprouts during a multistate outbreak in 2012.
doi:10.1128/genomeA.01112-14
PMCID: PMC4214993  PMID: 25359917
11.  Evaluation of a Loop-Mediated Isothermal Amplification Suite for the Rapid, Reliable, and Robust Detection of Shiga Toxin-Producing Escherichia coli in Produce 
Shiga toxin-producing Escherichia coli (STEC) strains are a leading cause of produce-associated outbreaks in the United States. Rapid, reliable, and robust detection methods are needed to better ensure produce safety. We recently developed a loop-mediated isothermal amplification (LAMP) suite for STEC detection. In this study, the STEC LAMP suite was comprehensively evaluated against real-time quantitative PCR (qPCR) using a large panel of bacterial strains (n = 156) and various produce items (several varieties of lettuce, spinach, and sprouts). To simulate real-world contamination events, produce samples were surface inoculated with a low level (1.2 to 1.8 CFU/25 g) of individual STEC strains belonging to seven serogroups (O26, O45, O103, O111, O121, O145, and O157) and held at 4°C for 48 h before testing. Six DNA extraction methods were also compared using produce enrichment broths. All STEC targets and their subtypes were accurately detected by the LAMP suite. The detection limits were 1 to 20 cells per reaction in pure culture and 105 to 106 CFU per 25 g (i.e., 103 to 104 CFU per g) in produce, except for strains harboring the stx2c, eae-β, and eae-θ subtypes. After 6 to 8 h of enrichment, the LAMP suite achieved accurate detection of low levels of STEC strains of various stx2 and eae subtypes in lettuce and spinach varieties but not in sprouts. A similar trend of detection was observed for qPCR. The PrepMan Ultra sample preparation reagent yielded the best results among the six DNA extraction methods. This research provided a rapid, reliable, and robust method for detecting STEC in produce during routine sampling and testing. The challenge with sprouts detection by both LAMP and qPCR calls for special attention to further analysis.
doi:10.1128/AEM.04203-13
PMCID: PMC3993192  PMID: 24509927
12.  Association of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Elements with Specific Serotypes and Virulence Potential of Shiga Toxin-Producing Escherichia coli 
Shiga toxin-producing Escherichia coli (STEC) strains (n = 194) representing 43 serotypes and E. coli K-12 were examined for clustered regularly interspaced short palindromic repeat (CRISPR) arrays to study genetic relatedness among STEC serotypes. A subset of the strains (n = 81) was further analyzed for subtype I-E cas and virulence genes to determine a possible association of CRISPR elements with potential virulence. Four types of CRISPR arrays were identified. CRISPR1 and CRISPR2 were present in all strains tested; 1 strain also had both CRISPR3 and CRISPR4, whereas 193 strains displayed a short, combined array, CRISPR3-4. A total of 3,353 spacers were identified, representing 528 distinct spacers. The average length of a spacer was 32 bp. Approximately one-half of the spacers (54%) were unique and found mostly in strains of less common serotypes. Overall, CRISPR spacer contents correlated well with STEC serotypes, and identical arrays were shared between strains with the same H type (O26:H11, O103:H11, and O111:H11). There was no association identified between the presence of subtype I-E cas and virulence genes, but the total number of spacers had a negative correlation with potential pathogenicity (P < 0.05). Fewer spacers were found in strains that had a greater probability of causing outbreaks and disease than in those with lower virulence potential (P < 0.05). The relationship between the CRISPR-cas system and potential virulence needs to be determined on a broader scale, and the biological link will need to be established.
doi:10.1128/AEM.03018-13
PMCID: PMC3911044  PMID: 24334663
14.  Complete Genome Sequence of a Multidrug-Resistant Salmonella enterica Serovar Typhimurium var. 5− Strain Isolated from Chicken Breast 
Genome Announcements  2013;1(6):e01068-13.
Salmonella enterica subsp. enterica serovar Typhimurium is a leading cause of salmonellosis. Here, we report a closed genome sequence, including sequences of 3 plasmids, of Salmonella serovar Typhimurium var. 5− CFSAN001921 (National Antimicrobial Resistance Monitoring System [NARMS] strain ID N30688), which was isolated from chicken breast meat and shows resistance to 10 different antimicrobials. Whole-genome and plasmid sequence analyses of this isolate will help enhance our understanding of this pathogenic multidrug-resistant serovar.
doi:10.1128/genomeA.01068-13
PMCID: PMC3868858  PMID: 24356834
15.  Distribution of Pathogenicity Islands OI-122, OI-43/48, and OI-57 and a High-Pathogenicity Island in Shiga Toxin-Producing Escherichia coli 
Applied and Environmental Microbiology  2013;79(11):3406-3412.
Pathogenicity islands (PAIs) play an important role in Shiga toxin-producing Escherichia coli (STEC) pathogenicity. The distribution of PAIs OI-122, OI-43/48, and OI-57 and a high-pathogenicity island (HPI) were determined among 98 STEC strains assigned to seropathotypes (SPTs) A to E. PCR and PCR-restriction fragment length polymorphism assays were used to identify 14 virulence genes that belonged to the four PAIs and to subtype eae and stx genes, respectively. Phylogenetic trees were constructed based on the sequences of pagC among 34 STEC strains and iha among 67 diverse pathogenic E. coli, respectively. Statistical analysis demonstrated that the prevalences of OI-122 (55.82%) and OI-57 (82.35%) were significantly greater in SPTs (i.e., SPTs A, B, and C) that are frequently associated with severe disease than in other SPTs. terC (62.5%) and ureC (62.5%) in OI-43/48 were also significantly more prevalent in SPTs A, B, and C than in SPTs D and E. In addition, OI-122, OI-57, and OI-43/48 and their associated virulence genes (except iha) were found to be primarily associated with eae-positive STEC, whereas HPI occurred independently of the eae presence. The strong association of OI-122, OI-43/48, and OI-57 with eae-positive STEC suggests in part that different pathogenic mechanisms exist between eae-positive and eae-negative STEC strains. Virulence genes in PAIs that are associated with severe diseases can be used as potential markers to aid in identifying highly virulent STEC.
doi:10.1128/AEM.03661-12
PMCID: PMC3648051  PMID: 23524679
16.  Draft Genome Sequences of Two Salmonella Strains from the SARA Collection, SARA64 (Muenchen) and SARA33 (Heidelberg), Provide Insight into Their Antibiotic Resistance 
Genome Announcements  2013;1(5):e00806-13.
The Salmonella enterica strains that are representatives of the S. enterica serovar Typhimurium complex in reference collection A (SARA) are closely related but exhibit differences in antibiotic resistance, which could have public health consequences. To better understand the mechanisms behind these resistances, we sequenced the genomes of two multidrug-resistant strains: SARA64 (Muenchen) and SARA33 (Heidelberg).
doi:10.1128/genomeA.00806-13
PMCID: PMC3790100  PMID: 24092796
17.  Phylogenetic Analysis of Non-O157 Shiga Toxin-Producing Escherichia coli Strains by Whole-Genome Sequencing 
Journal of Clinical Microbiology  2012;50(12):4123-4127.
Non-O157 Shiga toxin-producing Escherichia coli (STEC) strains are emerging food-borne pathogens causing life-threatening diseases and food-borne outbreaks. A better understanding of their evolution provides a framework for developing tools to control food safety. We obtained 15 genomes of non-O157 STEC strains, including O26, O111, and O103 strains. Phylogenetic trees revealed a close relationship between O26:H11 and O111:H11 and a scattered distribution of O111. We hypothesize that STEC serotypes with the same H antigens might share common ancestors.
doi:10.1128/JCM.02262-12
PMCID: PMC3502965  PMID: 23052305
18.  Genome Sequences of Two Emerging Non-O157 Shiga Toxin-Producing Escherichia coli Strains 
Genome Announcements  2013;1(3):e00200-13.
Shiga toxin-producing Escherichia coli (STEC) causes severe illness in humans, including hemorrhagic colitis and hemolytic uremic syndrome. A parallel evolutionary model was proposed in which E. coli strains of distinct phylogenies independently integrate Shiga toxin-encoding genes and evolve into STEC. We report the draft genomes of two emerging non-O157 STEC strains.
doi:10.1128/genomeA.00200-13
PMCID: PMC3656200  PMID: 23682138
19.  Whole-Genome Sequences of Four Salmonella enterica Serotype Newport Strains from Humans 
Genome Announcements  2013;1(3):e00213-13.
Salmonellosis contributes significantly to the public health burden globally. Salmonella enterica serotype Newport is among Salmonella serotypes most associated with food-borne illness in the United States and China. It was thought to be polyphyletic and to contain different lineages. We report draft genomes of four S. Newport strains isolated from humans in China.
doi:10.1128/genomeA.00213-13
PMCID: PMC3650444  PMID: 23661485
21.  Draft Genome Sequences of Eight Salmonella enterica Serotype Newport Strains from Diverse Hosts and Locations 
Journal of Bacteriology  2012;194(18):5146.
Salmonellosis is a major contributor to the global public health burden. Salmonella enterica serotype Newport has ranked among three Salmonella serotypes most commonly associated with food-borne outbreaks in the United States. It was thought to be polyphyletic and composed of independent lineages. Here we report draft genomes of eight strains of S. Newport from diverse hosts and locations.
doi:10.1128/JB.01171-12
PMCID: PMC3430313  PMID: 22933769
22.  Draft Genome Sequences of Three Salmonella enterica Serotype Agona Strains from China 
Genome Announcements  2013;1(1):e00203-12.
Salmonellosis has been one of the major contributors to the global public health burden. Salmonella enterica serotype Agona has ranked among the top 10 and top 20 most frequent Salmonella serotypes isolated from human sources in China and the United States, respectively. We report draft genomes of three S. Agona strains from China.
doi:10.1128/genomeA.00203-12
PMCID: PMC3587936  PMID: 23469342
23.  Phylogenetics and Differentiation of Salmonella Newport Lineages by Whole Genome Sequencing 
PLoS ONE  2013;8(2):e55687.
Salmonella Newport has ranked in the top three Salmonella serotypes associated with foodborne outbreaks from 1995 to 2011 in the United States. In the current study, we selected 26 S. Newport strains isolated from diverse sources and geographic locations and then conducted 454 shotgun pyrosequencing procedures to obtain 16–24 × coverage of high quality draft genomes for each strain. Comparative genomic analysis of 28 S. Newport strains (including 2 reference genomes) and 15 outgroup genomes identified more than 140,000 informative SNPs. A resulting phylogenetic tree consisted of four sublineages and indicated that S. Newport had a clear geographic structure. Strains from Asia were divergent from those from the Americas. Our findings demonstrated that analysis using whole genome sequencing data resulted in a more accurate picture of phylogeny compared to that using single genes or small sets of genes. We selected loci around the mutS gene of S. Newport to differentiate distinct lineages, including those between invH and mutS genes at the 3′ end of Salmonella Pathogenicity Island 1 (SPI-1), ste fimbrial operon, and Clustered, Regularly Interspaced, Short Palindromic Repeats (CRISPR) associated-proteins (cas). These genes in the outgroup genomes held high similarity with either S. Newport Lineage II or III at the same loci. S. Newport Lineages II and III have different evolutionary histories in this region and our data demonstrated genetic flow and homologous recombination events around mutS. The findings suggested that S. Newport Lineages II and III diverged early in the serotype evolution and have evolved largely independently. Moreover, we identified genes that could delineate sublineages within the phylogenetic tree and that could be used as potential biomarkers for trace-back investigations during outbreaks. Thus, whole genome sequencing data enabled us to better understand the genetic background of pathogenicity and evolutionary history of S. Newport and also provided additional markers for epidemiological response.
doi:10.1371/journal.pone.0055687
PMCID: PMC3569456  PMID: 23409020
24.  Genetic Characterization of Escherichia coli O104 Isolates from Different Sources in the United States 
Escherichia coli O104 isolates collected from different sources in the United States were examined for virulence genes typical of enterohemorrhagic E. coli and those identified in the O104:H4 isolate associated with the 2011 German outbreak. The unexpected presence of virulence markers in these isolates highlights the importance of screening unusual and potentially pathogenic Shiga toxin-producing E. coli serotypes.
doi:10.1128/AEM.07533-11
PMCID: PMC3294489  PMID: 22210209
25.  Differential Gene Expression by RamA in Ciprofloxacin-Resistant Salmonella Typhimurium 
PLoS ONE  2011;6(7):e22161.
Overexpression of ramA has been implicated in resistance to multiple drugs in several enterobacterial pathogens. In the present study, Salmonella Typhimurium strain LTL with constitutive expression of ramA was compared to its ramA-deletion mutant by employing both DNA microarrays and phenotype microarrays (PM). The mutant strain with the disruption of ramA showed differential expression of at least 33 genes involved in 11 functional groups. The study confirmed at the transcriptional level that the constitutive expression of ramA was directly associated with increased expression of multidrug efflux pump AcrAB-TolC and decreased expression of porin protein OmpF, thereby conferring multiple drug resistance phenotype. Compared to the parent strain constitutively expressing ramA, the ramA mutant had increased susceptibility to over 70 antimicrobials and toxic compounds. The PM analysis also uncovered that the ramA mutant was better in utilization of 10 carbon sources and 5 phosphorus sources. This study suggested that the constitutive expression of ramA locus regulate not only multidrug efflux pump and accessory genes but also genes involved in carbon metabolic pathways.
doi:10.1371/journal.pone.0022161
PMCID: PMC3139621  PMID: 21811569

Results 1-25 (44)