PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (32)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
2.  Complete Genome Sequence of a Multidrug-Resistant Salmonella enterica Serovar Typhimurium var. 5− Strain Isolated from Chicken Breast 
Genome Announcements  2013;1(6):e01068-13.
Salmonella enterica subsp. enterica serovar Typhimurium is a leading cause of salmonellosis. Here, we report a closed genome sequence, including sequences of 3 plasmids, of Salmonella serovar Typhimurium var. 5− CFSAN001921 (National Antimicrobial Resistance Monitoring System [NARMS] strain ID N30688), which was isolated from chicken breast meat and shows resistance to 10 different antimicrobials. Whole-genome and plasmid sequence analyses of this isolate will help enhance our understanding of this pathogenic multidrug-resistant serovar.
doi:10.1128/genomeA.01068-13
PMCID: PMC3868858  PMID: 24356834
3.  Distribution of Pathogenicity Islands OI-122, OI-43/48, and OI-57 and a High-Pathogenicity Island in Shiga Toxin-Producing Escherichia coli 
Applied and Environmental Microbiology  2013;79(11):3406-3412.
Pathogenicity islands (PAIs) play an important role in Shiga toxin-producing Escherichia coli (STEC) pathogenicity. The distribution of PAIs OI-122, OI-43/48, and OI-57 and a high-pathogenicity island (HPI) were determined among 98 STEC strains assigned to seropathotypes (SPTs) A to E. PCR and PCR-restriction fragment length polymorphism assays were used to identify 14 virulence genes that belonged to the four PAIs and to subtype eae and stx genes, respectively. Phylogenetic trees were constructed based on the sequences of pagC among 34 STEC strains and iha among 67 diverse pathogenic E. coli, respectively. Statistical analysis demonstrated that the prevalences of OI-122 (55.82%) and OI-57 (82.35%) were significantly greater in SPTs (i.e., SPTs A, B, and C) that are frequently associated with severe disease than in other SPTs. terC (62.5%) and ureC (62.5%) in OI-43/48 were also significantly more prevalent in SPTs A, B, and C than in SPTs D and E. In addition, OI-122, OI-57, and OI-43/48 and their associated virulence genes (except iha) were found to be primarily associated with eae-positive STEC, whereas HPI occurred independently of the eae presence. The strong association of OI-122, OI-43/48, and OI-57 with eae-positive STEC suggests in part that different pathogenic mechanisms exist between eae-positive and eae-negative STEC strains. Virulence genes in PAIs that are associated with severe diseases can be used as potential markers to aid in identifying highly virulent STEC.
doi:10.1128/AEM.03661-12
PMCID: PMC3648051  PMID: 23524679
4.  Draft Genome Sequences of Two Salmonella Strains from the SARA Collection, SARA64 (Muenchen) and SARA33 (Heidelberg), Provide Insight into Their Antibiotic Resistance 
Genome Announcements  2013;1(5):e00806-13.
The Salmonella enterica strains that are representatives of the S. enterica serovar Typhimurium complex in reference collection A (SARA) are closely related but exhibit differences in antibiotic resistance, which could have public health consequences. To better understand the mechanisms behind these resistances, we sequenced the genomes of two multidrug-resistant strains: SARA64 (Muenchen) and SARA33 (Heidelberg).
doi:10.1128/genomeA.00806-13
PMCID: PMC3790100  PMID: 24092796
5.  Phylogenetic Analysis of Non-O157 Shiga Toxin-Producing Escherichia coli Strains by Whole-Genome Sequencing 
Journal of Clinical Microbiology  2012;50(12):4123-4127.
Non-O157 Shiga toxin-producing Escherichia coli (STEC) strains are emerging food-borne pathogens causing life-threatening diseases and food-borne outbreaks. A better understanding of their evolution provides a framework for developing tools to control food safety. We obtained 15 genomes of non-O157 STEC strains, including O26, O111, and O103 strains. Phylogenetic trees revealed a close relationship between O26:H11 and O111:H11 and a scattered distribution of O111. We hypothesize that STEC serotypes with the same H antigens might share common ancestors.
doi:10.1128/JCM.02262-12
PMCID: PMC3502965  PMID: 23052305
6.  Genome Sequences of Two Emerging Non-O157 Shiga Toxin-Producing Escherichia coli Strains 
Genome Announcements  2013;1(3):e00200-13.
Shiga toxin-producing Escherichia coli (STEC) causes severe illness in humans, including hemorrhagic colitis and hemolytic uremic syndrome. A parallel evolutionary model was proposed in which E. coli strains of distinct phylogenies independently integrate Shiga toxin-encoding genes and evolve into STEC. We report the draft genomes of two emerging non-O157 STEC strains.
doi:10.1128/genomeA.00200-13
PMCID: PMC3656200  PMID: 23682138
7.  Whole-Genome Sequences of Four Salmonella enterica Serotype Newport Strains from Humans 
Genome Announcements  2013;1(3):e00213-13.
Salmonellosis contributes significantly to the public health burden globally. Salmonella enterica serotype Newport is among Salmonella serotypes most associated with food-borne illness in the United States and China. It was thought to be polyphyletic and to contain different lineages. We report draft genomes of four S. Newport strains isolated from humans in China.
doi:10.1128/genomeA.00213-13
PMCID: PMC3650444  PMID: 23661485
9.  Draft Genome Sequences of Eight Salmonella enterica Serotype Newport Strains from Diverse Hosts and Locations 
Journal of Bacteriology  2012;194(18):5146.
Salmonellosis is a major contributor to the global public health burden. Salmonella enterica serotype Newport has ranked among three Salmonella serotypes most commonly associated with food-borne outbreaks in the United States. It was thought to be polyphyletic and composed of independent lineages. Here we report draft genomes of eight strains of S. Newport from diverse hosts and locations.
doi:10.1128/JB.01171-12
PMCID: PMC3430313  PMID: 22933769
10.  Draft Genome Sequences of Three Salmonella enterica Serotype Agona Strains from China 
Genome Announcements  2013;1(1):e00203-12.
Salmonellosis has been one of the major contributors to the global public health burden. Salmonella enterica serotype Agona has ranked among the top 10 and top 20 most frequent Salmonella serotypes isolated from human sources in China and the United States, respectively. We report draft genomes of three S. Agona strains from China.
doi:10.1128/genomeA.00203-12
PMCID: PMC3587936  PMID: 23469342
11.  Phylogenetics and Differentiation of Salmonella Newport Lineages by Whole Genome Sequencing 
PLoS ONE  2013;8(2):e55687.
Salmonella Newport has ranked in the top three Salmonella serotypes associated with foodborne outbreaks from 1995 to 2011 in the United States. In the current study, we selected 26 S. Newport strains isolated from diverse sources and geographic locations and then conducted 454 shotgun pyrosequencing procedures to obtain 16–24 × coverage of high quality draft genomes for each strain. Comparative genomic analysis of 28 S. Newport strains (including 2 reference genomes) and 15 outgroup genomes identified more than 140,000 informative SNPs. A resulting phylogenetic tree consisted of four sublineages and indicated that S. Newport had a clear geographic structure. Strains from Asia were divergent from those from the Americas. Our findings demonstrated that analysis using whole genome sequencing data resulted in a more accurate picture of phylogeny compared to that using single genes or small sets of genes. We selected loci around the mutS gene of S. Newport to differentiate distinct lineages, including those between invH and mutS genes at the 3′ end of Salmonella Pathogenicity Island 1 (SPI-1), ste fimbrial operon, and Clustered, Regularly Interspaced, Short Palindromic Repeats (CRISPR) associated-proteins (cas). These genes in the outgroup genomes held high similarity with either S. Newport Lineage II or III at the same loci. S. Newport Lineages II and III have different evolutionary histories in this region and our data demonstrated genetic flow and homologous recombination events around mutS. The findings suggested that S. Newport Lineages II and III diverged early in the serotype evolution and have evolved largely independently. Moreover, we identified genes that could delineate sublineages within the phylogenetic tree and that could be used as potential biomarkers for trace-back investigations during outbreaks. Thus, whole genome sequencing data enabled us to better understand the genetic background of pathogenicity and evolutionary history of S. Newport and also provided additional markers for epidemiological response.
doi:10.1371/journal.pone.0055687
PMCID: PMC3569456  PMID: 23409020
12.  Genetic Characterization of Escherichia coli O104 Isolates from Different Sources in the United States 
Escherichia coli O104 isolates collected from different sources in the United States were examined for virulence genes typical of enterohemorrhagic E. coli and those identified in the O104:H4 isolate associated with the 2011 German outbreak. The unexpected presence of virulence markers in these isolates highlights the importance of screening unusual and potentially pathogenic Shiga toxin-producing E. coli serotypes.
doi:10.1128/AEM.07533-11
PMCID: PMC3294489  PMID: 22210209
13.  Differential Gene Expression by RamA in Ciprofloxacin-Resistant Salmonella Typhimurium 
PLoS ONE  2011;6(7):e22161.
Overexpression of ramA has been implicated in resistance to multiple drugs in several enterobacterial pathogens. In the present study, Salmonella Typhimurium strain LTL with constitutive expression of ramA was compared to its ramA-deletion mutant by employing both DNA microarrays and phenotype microarrays (PM). The mutant strain with the disruption of ramA showed differential expression of at least 33 genes involved in 11 functional groups. The study confirmed at the transcriptional level that the constitutive expression of ramA was directly associated with increased expression of multidrug efflux pump AcrAB-TolC and decreased expression of porin protein OmpF, thereby conferring multiple drug resistance phenotype. Compared to the parent strain constitutively expressing ramA, the ramA mutant had increased susceptibility to over 70 antimicrobials and toxic compounds. The PM analysis also uncovered that the ramA mutant was better in utilization of 10 carbon sources and 5 phosphorus sources. This study suggested that the constitutive expression of ramA locus regulate not only multidrug efflux pump and accessory genes but also genes involved in carbon metabolic pathways.
doi:10.1371/journal.pone.0022161
PMCID: PMC3139621  PMID: 21811569
14.  Simultaneous Analysis of Multiple Enzymes Increases Accuracy of Pulsed-Field Gel Electrophoresis in Assigning Genetic Relationships among Homogeneous Salmonella Strains▿  
Due to a highly homogeneous genetic composition, the subtyping of Salmonella enterica serovar Enteritidis strains to an epidemiologically relevant level remains intangible for pulsed-field gel electrophoresis (PFGE). We reported previously on a highly discriminatory PFGE-based subtyping scheme for S. enterica serovar Enteritidis that relies on a single combined cluster analysis of multiple restriction enzymes. However, the ability of a subtyping method to correctly infer genetic relatedness among outbreak strains is also essential for effective molecular epidemiological traceback. In this study, genetic and phylogenetic analyses were performed to assess whether concatenated enzyme methods can cluster closely related salmonellae into epidemiologically relevant hierarchies. PFGE profiles were generated by use of six restriction enzymes (XbaI, BlnI, SpeI, SfiI, PacI, and NotI) for 74 strains each of S. enterica serovar Enteritidis and S. enterica serovar Typhimurium. Correlation analysis of Dice similarity coefficients for all pairwise strain comparisons underscored the importance of combining multiple enzymes for the accurate assignment of genetic relatedness among Salmonella strains. The mean correlation increased from 81% and 41% for single-enzyme PFGE up to 99% and 96% for five-enzyme combined PFGE for S. enterica serovar Enteritidis and S. enterica serovar Typhimurium strains, respectively. Data regressions approached 100% correlation among Dice similarities for S. enterica serovar Enteritidis and S. enterica serovar Typhimurium strains when a minimum of six enzymes were concatenated. Phylogenetic congruence measures singled out XbaI, BlnI, SfiI, and PacI as most concordant for S. enterica serovar Enteritidis, while XbaI, BlnI, and SpeI were most concordant among S. enterica serovar Typhimurium strains. Together, these data indicate that PFGE coupled with sufficient enzyme numbers and combinations is capable of discerning accurate genetic relationships among Salmonella serovars comprising highly homogeneous strain complexes.
doi:10.1128/JCM.00120-10
PMCID: PMC3020462  PMID: 20980570
15.  Presence and Characterization of Shiga Toxin-Producing Escherichia coli and Other Potentially Diarrheagenic E. coli Strains in Retail Meats▿  
To determine the presence of Shiga toxin-producing Escherichia coli (STEC) and other potentially diarrheagenic E. coli strains in retail meats, 7,258 E. coli isolates collected by the U.S. National Antimicrobial Resistance Monitoring System (NARMS) retail meat program from 2002 to 2007 were screened for Shiga toxin genes. In addition, 1,275 of the E. coli isolates recovered in 2006 were examined for virulence genes specific for other diarrheagenic E. coli strains. Seventeen isolates (16 from ground beef and 1 from a pork chop) were positive for stx genes, including 5 positive for both stx1 and stx2, 2 positive for stx1, and 10 positive for stx2. The 17 STEC strains belonged to 10 serotypes: O83:H8, O8:H16, O15:H16, O15:H17, O88:H38, ONT:H51, ONT:H2, ONT:H10, ONT:H7, and ONT:H46. None of the STEC isolates contained eae, whereas seven carried enterohemorrhagic E. coli (EHEC) hlyA. All except one STEC isolate exhibited toxic effects on Vero cells. DNA sequence analysis showed that the stx2 genes from five STEC isolates encoded mucus-activatable Stx2d. Subtyping of the 17 STEC isolates by pulsed-field gel electrophoresis (PFGE) yielded 14 distinct restriction patterns. Among the 1,275 isolates from 2006, 11 atypical enteropathogenic E. coli (EPEC) isolates were identified in addition to 3 STEC isolates. This study demonstrated that retail meats, mainly ground beef, were contaminated with diverse STEC strains. The presence of atypical EPEC strains in retail meat is also of concern due to their potential to cause human infections.
doi:10.1128/AEM.01968-09
PMCID: PMC2837998  PMID: 20080990
16.  Campylobacter-Induced Interleukin-8 Secretion in Polarized Human Intestinal Epithelial Cells Requires Campylobacter-Secreted Cytolethal Distending Toxin- and Toll-Like Receptor-Mediated Activation of NF-κB ▿  
Infection and Immunity  2008;76(10):4498-4508.
Campylobacter jejuni and Campylobacter coli colonize and infect the intestinal epithelium and cause acute inflammatory diarrhea. The intestinal epithelium serves as a physical barrier to, and a sensor of, bacterial infection by secreting proinflammatory cytokines. This study examined the mechanisms for Campylobacter-induced secretion of the proinflammatory chemokine interleukin-8 (IL-8) by using polarized T84 human colonic epithelial cells as a model. C. jejuni increased the secretion of both IL-8 and tumor necrosis factor alpha (TNF-α) in polarized epithelial cells. However, the increase in IL-8 secretion was independent of Campylobacter-stimulated TNF-α secretion. Polarized T84 cells secreted IL-8 predominantly to the basolateral medium independently of the inoculation direction. While there was a significant correlation between the levels of IL-8 secretion and Campylobacter invasion, all 11 strains tested increased IL-8 secretion by polarized T84 cells despite their differences in adherence, invasion, and transcytosis efficiencies. Cell-free supernatants of Campylobacter-T84-cell culture increased IL-8 secretion to levels similar to those induced by live bacterial inoculation. The ability of the supernatant to induce IL-8 secretion was reduced by flagellum and cytolethal distending toxin (CDT) gene mutants, treatment of the supernatant with protease K or heat, or treatment of T84 cells with the Toll-like receptor (TLR) inhibitor MyD88 inhibitory peptide or chloroquine. NF-κB inhibitors or cdtB mutation plus MyD88 inhibitor, but not flaA cdtB double mutations, abolished the ability of the supernatant to induce IL-8 secretion. Taken together, our results demonstrate that Campylobacter-induced IL-8 secretion requires functional flagella and CDT and depends on the activation of NF-κB through TLR signaling and CDT in human intestinal epithelial cells.
doi:10.1128/IAI.01317-07
PMCID: PMC2546826  PMID: 18644884
17.  Identification and Characterization of Shiga Toxin Type 2 Variants in Escherichia coli Isolates from Animals, Food, and Humans▿  
Applied and Environmental Microbiology  2008;74(18):5645-5652.
There is considerable heterogeneity among the Shiga toxin type 2 (Stx2) toxins elaborated by Shiga toxin-producing Escherichia coli (STEC). One such Stx2 variant, the Stx2d mucus-activatable toxin (Stx2dact), is rendered more toxic by the action of elastase present in intestinal mucus, which cleaves the last two amino acids of the A2 portion of the toxin A subunit. We screened 153 STEC isolates from food, animals, and humans for the gene encoding Stx2dact by using a novel one-step PCR procedure. This method targeted the region of stx2dact that encodes the elastase recognition site. The presence of stx2dact was confirmed by DNA sequencing of the complete toxin genes. Seven STEC isolates from cows (four isolates), meat (two isolates), and a human (one isolate) that carried the putative stx2dact gene were identified; all were eae negative, and none was the O157:H7 serotype. Three of the isolates (CVM9322, CVM9557, and CVM9584) also carried stx1, two (P1332 and P1334) carried stx1 and stx2c, and one (CL-15) carried stx2c. One isolate, P1130, harbored only stx2dact. The Vero cell cytotoxicities of supernatants from P1130 and stx1 deletion mutants of CVM9322, CVM9557, and CVM9584 were increased 13- to 30-fold after treatment with porcine elastase. Thus, Stx2dact-producing strains, as detected by our one-step PCR method, can be isolated not only from humans, as previously documented, but also from food and animals. The latter finding has important public health implications based on a recent report from Europe of a link between disease severity and infection with STEC isolates that produce Stx2dact.
doi:10.1128/AEM.00503-08
PMCID: PMC2547040  PMID: 18658282
18.  Enhanced Subtyping Scheme for Salmonella Enteritidis 
Emerging Infectious Diseases  2007;13(12):1932-1935.
To improve pulsed-field gel electrophoresis–based strain discrimination of 76 Salmonella Enteritidis strains, we evaluated 6 macro-restriction endonucleases, separately and in various combinations. One 3-enzyme subset, SfiI/PacI/NotI, was highly discriminatory. Five different indices, including the Simpson diversity index, supported this 3-enzyme combination for improved differentiation of S. Enteritidis.
doi:10.3201/eid1312.070185
PMCID: PMC2876743  PMID: 18258051
Salmonella Enteritidis; subtyping; differentiation; pulsed-field gel electrophoresis; molecular epidemiology; clone; restriction endonuclease; genetic diversity; dispatch
19.  Contribution of Target Gene Mutations and Efflux to Decreased Susceptibility of Salmonella enterica Serovar Typhimurium to Fluoroquinolones and Other Antimicrobials▿  
The mechanisms involved in fluoroquinolone resistance in Salmonella enterica include target alterations and overexpression of efflux pumps. The present study evaluated the role of known and putative multidrug resistance efflux pumps and mutations in topoisomerase genes among laboratory-selected and naturally occurring fluoroquinolone-resistant Salmonella enterica serovar Typhimurium strains. Strains with ciprofloxacin MICs of 0.25, 4, 32, and 256 μg/ml were derived in vitro using serovar Typhimurium S21. These mutants also showed decreased susceptibility or resistance to many nonfluoroquinolone antimicrobials, including tetracycline, chloramphenicol, and several β-lactams. The expression of efflux pump genes acrA, acrB, acrE, acrF, emrB, emrD, and mdlB were substantially increased (≥2-fold) among the fluoroquinolone-resistant mutants. Increased expression was also observed, but to a lesser extent, with three other putative efflux pumps: mdtB (yegN), mdtC (yegO), and emrA among mutants with ciprofloxacin MICs of ≥32 μg/ml. Deletion of acrAB or tolC in S21 and its fluoroquinolone-resistant mutants resulted in increased susceptibility to fluoroquinolones and other tested antimicrobials. In naturally occurring fluoroquinolone-resistant serovar Typhimurium strains, deletion of acrAB or tolC increased fluoroquinolone susceptibility 4-fold, whereas replacement of gyrA double mutations (S83F D87N) with wild-type gyrA increased susceptibility >500-fold. These results indicate that a combination of topoisomerase gene mutations, as well as enhanced antimicrobial efflux, plays a critical role in the development of fluoroquinolone resistance in both laboratory-derived and naturally occurring quinolone-resistant serovar Typhimurium strains.
doi:10.1128/AAC.00600-06
PMCID: PMC1797773  PMID: 17043131
20.  Isolation and Characterization of Listeria monocytogenes Isolates from Ready-To-Eat Foods in Florida†  
Of 3,063 ready-to-eat food samples tested, 91 (2.97%) were positive for Listeria monocytogenes, and lineage 1 strains outnumbered lineage 2 strains 57 to 34. Seventy-one isolates (78%) exhibited multiple antibiotic resistance, and an L. monocytogenes-specific bacteriophage cocktail lysed 65 of 91 (71%) isolates. Determining phage, acid, and antibiotic susceptibility phenotypes enabled us to identify differences among strains which were otherwise indistinguishable by conventional methods.
doi:10.1128/AEM.00435-06
PMCID: PMC1489337  PMID: 16820508
21.  Use of Ramification Amplification Assay for Detection of Escherichia coli O157:H7 and Other E. coli Shiga Toxin-Producing Strains 
Journal of Clinical Microbiology  2005;43(12):6086-6090.
Escherichia coli O157:H7 and other Shiga toxin-producing E. coli (STEC) strains are important human pathogens that are mainly transmitted through the food chain. These pathogens have a low infectious dose and may cause life-threatening illnesses. However, detection of this microorganism in contaminated food or a patient's stool specimens presents a diagnostic challenge because of the low copy number in the sample. Often, a more sensitive nucleic acid amplification method, such as PCR, is required for rapid detection of this microorganism. Ramification amplification (RAM) is a recently introduced isothermal DNA amplification technique that utilizes a circular probe for target detection and achieves exponential amplification through the mechanism of primer extension, strand displacement, and ramification. In this study, we synthesized a circular probe specific for the Shiga toxin 2 gene (stx2). Our results showed that as few as 10 copies of stx2 could be detected, indicating that the RAM assay was as sensitive as conventional PCR. We further tested 33 isolates of E coli O157:H7, STEC, Shigella dysenteriae, and nonpathogenic E. coli by RAM assay. Results showed that all 27 STEC isolates containing the stx2 gene were identified by RAM assay, while S. dysenteriae and nonpathogenic E. coli isolates were undetected. The RAM results were 100% in concordance with those of PCR. Because of its simplicity and isothermal amplification, the RAM assay could be a useful method for detecting STEC in food and human specimens.
doi:10.1128/JCM.43.12.6086-6090.2005
PMCID: PMC1317159  PMID: 16333102
22.  Role of Efflux Pumps and Topoisomerase Mutations in Fluoroquinolone Resistance in Campylobacter jejuni and Campylobacter coli 
Point mutations in the topoisomerase (DNA gyrase A) gene are known to be associated with fluoroquinolone resistance in Campylobacter. Recent studies have shown that an efflux pump encoded by cmeABC is also involved in decreased susceptibilities to fluoroquinolones, as well as other antimicrobials. Genome analysis suggests that Campylobacter jejuni contains at least nine other putative efflux pumps. Using insertional inactivation and site-directed mutagenesis, we investigated the potential contributions of these pumps to susceptibilities to chloramphenicol, ciprofloxacin, erythromycin, and tetracycline in C. jejuni and Campylobacter coli. Insertional inactivation of cmeB resulted in 4- to 256-fold decreases in the MICs of chloramphenicol, ciprofloxacin, erythromycin, and tetracycline, with erythromycin being the most significantly affected. In contrast, inactivation of all other putative efflux pumps had no effect on susceptibility to any of the four antimicrobials tested. Mutation of gyrA at codon 86 (Thr-Ile) caused 128- and 64-fold increases in the MICs of ciprofloxacin and nalidixic acid, respectively. The replacement of the mutated gyrA with a wild-type gyrA allele resulted in a 32-fold decrease in the ciprofloxacin MIC and no change in the nalidixic acid MIC. Our findings indicate that CmeABC is the only efflux pump among those tested that influences antimicrobial resistance in Campylobacter and that a point mutation (Thr-86-Ile) in gyrA directly causes fluoroquinolone resistance in Campylobacter. These two mechanisms work synergistically in acquiring and maintaining fluoroquinolone resistance in Campylobacter species.
doi:10.1128/AAC.49.8.3347-3354.2005
PMCID: PMC1196287  PMID: 16048946
23.  Prevalence and Antimicrobial Resistance of Campylobacter spp. and Salmonella Serovars in Organic Chickens from Maryland Retail Stores 
Retail organic (n = 198) and conventional (n = 61) chickens were analyzed. Most organic (76%) and conventional (74%) chickens were contaminated with campylobacters. Salmonellae were recovered from 61% of organic and 44% of conventional chickens. All Salmonella enterica serovar Typhimurium isolates from conventional chickens were resistant to five or more antimicrobials, whereas most S. enterica serovar Typhimurium isolates (79%) from organic chickens were susceptible to 17 antimicrobials tested.
doi:10.1128/AEM.71.7.4108-4111.2005
PMCID: PMC1169031  PMID: 16000828
24.  Characterization of Multiple-Antimicrobial-Resistant Escherichia coli Isolates from Diseased Chickens and Swine in China 
Journal of Clinical Microbiology  2004;42(8):3483-3489.
Escherichia coli isolates from diseased piglets (n = 89) and chickens (n = 71) in China were characterized for O serogroups, virulence genes, antimicrobial susceptibility, class 1 integrons, and mechanisms of fluoroquinolone resistance. O78 was the most common serogroup identified (63%) among the chicken E. coli isolates. Most isolates were PCR positive for the increased serum survival gene (iss; 97%) and the temperature-sensitive hemagglutinin gene (tsh; 93%). The O serogroups of swine E. coli were not those typically associated with pathogenic strains, nor did they posses common characteristic virulence factors. Twenty-three serogroups were identified among the swine isolates; however, 38% were O nontypeable. Overall, isolates displayed resistance to nalidixic acid (100%), tetracycline (98%), sulfamethoxazole (84%), ampicillin (79%), streptomycin (77%), and trimethoprim-sulfamethoxazole (76%). Among the fluoroquinolones, resistance ranged between 64% to levofloxacin, 79% to ciprofloxacin, and 95% to difloxacin. DNA sequencing of gyrA, gyrB, parC, and parE quinolone resistance-determining regions of 39 nalidixic acid-resistant E. coli isolates revealed that a single gyrA mutation was found in all of the isolates; mutations in parC together with double gyrA mutations conferred high-level resistance to fluoroquinolones (ciprofloxacin MIC, ≥8 μg/ml). Class 1 integrons were identified in 17 (19%) isolates from swine and 42 (47%) from chickens. The majority of integrons possessed genes conferring resistance to streptomycin and trimethoprim. These findings suggest that multiple-antimicrobial-resistant E. coli isolates, including fluoroquinolone-resistant variants, are commonly present among diseased swine and chickens in China, and they also suggest the need for the introduction of surveillance programs in China to monitor antimicrobial resistance in pathogenic bacteria that can be potentially transmitted to humans from food animals.
doi:10.1128/JCM.42.8.3483-3489.2004
PMCID: PMC497637  PMID: 15297487
25.  Characterization of Multiple-Antimicrobial-Resistant Salmonella Serovars Isolated from Retail Meats 
A total of 133 Salmonella isolates recovered from retail meats purchased in the United States and the People's Republic of China were assayed for antimicrobial susceptibility, the presence of integrons and antimicrobial resistance genes, and horizontal transfer of characterized antimicrobial resistance determinants via conjugation. Seventy-three (82%) of these Salmonella isolates were resistant to at least one antimicrobial agent. Resistance to the following antibiotics was common among the United States isolates: tetracycline (68% of the isolates were resistant), streptomycin (61%), sulfamethoxazole (42%), and ampicillin (29%). Eight Salmonella isolates (6%) were resistant to ceftriaxone. Fourteen isolates (11%) from the People's Republic of China were resistant to nalidixic acid and displayed decreased susceptibility to ciprofloxacin. A total of 19 different antimicrobial resistance genes were identified in 30 multidrug-resistant Salmonella isolates. The blaCMY-2 gene, encoding a class A AmpC β-lactamase, was detected in all 10 Salmonella isolates resistant to extended-spectrum β-lactams. Resistance to ampicillin was most often associated with a TEM-1 family β-lactamase gene. Six aminoglycoside resistance genes, aadA1, aadA2, aacC2, Kn, aph(3)-IIa, and aac(3)-IVa, were commonly present in the Salmonella isolates. Sixteen (54%) of 30 Salmonella isolates tested had integrons ranging in size from 0.75 to 2.7 kb. Conjugation studies demonstrated that there was plasmid-mediated transfer of genes encoding CMY-2 and TEM-1-like β-lactamases. These data indicate that Salmonella isolates recovered from retail raw meats are commonly resistant to multiple antimicrobials, including those used for treating salmonellosis, such as ceftriaxone. Genes conferring antimicrobial resistance in Salmonella are often carried on integrons and plasmids and could be transmitted through conjugation. These mobile DNA elements have likely played an important role in transmission and dissemination of antimicrobial resistance determinants among Salmonella strains.
doi:10.1128/AEM.70.1.1-7.2004
PMCID: PMC321239  PMID: 14711619

Results 1-25 (32)