PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (37)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
1.  Antimicrobial Drug Resistance in Escherichia coli from Humans and Food Animals, United States, 1950–2002 
Emerging Infectious Diseases  2012;18(5):741-749.
Determining drug resistance trends will optimize treatment and public health responses.
We conducted a retrospective study of Escherichia coli isolates recovered from human and food animal samples during 1950–2002 to assess historical changes in antimicrobial drug resistance. A total of 1,729 E. coli isolates (983 from humans, 323 from cattle, 138 from chickens, and 285 from pigs) were tested for susceptibility to 15 antimicrobial drugs. A significant upward trend in resistance was observed for ampicillin (p<0.001), sulfonamide (p<0.001), and tetracycline (p<0.001). Animal strains showed increased resistance to 11/15 antimicrobial agents, including ampicillin (p<0.001), sulfonamide (p<0.01), and gentamicin (p<0.001). Multidrug resistance (≥3 antimicrobial drug classes) in E. coli increased from 7.2% during the 1950s to 63.6% during the 2000s. The most frequent co-resistant phenotype observed was to tetracycline and streptomycin (29.7%), followed by tetracycline and sulfonamide (29.0%). These data describe the evolution of resistance after introduction of new antimicrobial agents into clinical medicine and help explain the range of resistance in modern E. coli isolates.
doi:10.3201/eid1805.111153
PMCID: PMC3358085  PMID: 22515968
Escherichia coli; bacteria; antimicrobial drug resistance humans; food animals; United States
3.  Complete Genome Sequence of a Multidrug-Resistant Salmonella enterica Serovar Typhimurium var. 5− Strain Isolated from Chicken Breast 
Genome Announcements  2013;1(6):e01068-13.
Salmonella enterica subsp. enterica serovar Typhimurium is a leading cause of salmonellosis. Here, we report a closed genome sequence, including sequences of 3 plasmids, of Salmonella serovar Typhimurium var. 5− CFSAN001921 (National Antimicrobial Resistance Monitoring System [NARMS] strain ID N30688), which was isolated from chicken breast meat and shows resistance to 10 different antimicrobials. Whole-genome and plasmid sequence analyses of this isolate will help enhance our understanding of this pathogenic multidrug-resistant serovar.
doi:10.1128/genomeA.01068-13
PMCID: PMC3868858  PMID: 24356834
5.  Genome Sequences of Salmonella enterica Serovar Heidelberg Isolates Isolated in the United States from a Multistate Outbreak of Human Salmonella Infections 
Genome Announcements  2013;1(1):e00004-12.
Salmonella enterica is recognized as one of the most common bacterial agents of foodborne illness. We report draft genomes of four Salmonella serovar Heidelberg isolates associated with the recent multistate outbreak of human Salmonella Heidelberg infections linked to kosher broiled chicken livers in the United States in 2011. Isolates 2011K-1259 and 2011K-1232 were recovered from humans, whereas 2011K-1724 and 2011K-1726 were isolated from chicken liver. Whole genome sequence analysis of these isolates provides a tool for studying the short-term evolution of these epidemic clones and can be used for characterizing potentially new virulence factors.
doi:10.1128/genomeA.00004-12
PMCID: PMC3569330  PMID: 23405335
6.  Genome Sequences of Five Salmonella enterica Serovar Heidelberg Isolates Associated with a 2011 Multistate Outbreak in the United States 
Journal of Bacteriology  2012;194(12):3274-3275.
Salmonella enterica serovar Heidelberg has caused numerous outbreaks in humans. Here, we report draft genomes of five isolates of serovar Heidelberg associated with the recent (2011) multistate outbreak linked to ground turkey in the United States. Isolates 2011K-1110 and 2011K-1132 were recovered from humans, while isolates 2011K-1138, 2011K-1224, and 2011K-1225 were recovered from ground turkey. Whole-genome sequence analysis of these isolates provides a tool for studying the short-term evolution of these epidemic clones.
doi:10.1128/JB.00419-12
PMCID: PMC3370844  PMID: 22628505
7.  Comparative Genomics of 28 Salmonella enterica Isolates: Evidence for CRISPR-Mediated Adaptive Sublineage Evolution ▿† 
Journal of Bacteriology  2011;193(14):3556-3568.
Despite extensive surveillance, food-borne Salmonella enterica infections continue to be a significant burden on public health systems worldwide. As the S. enterica species comprises sublineages that differ greatly in antigenic representation, virulence, and antimicrobial resistance phenotypes, a better understanding of the species' evolution is critical for the prediction and prevention of future outbreaks. The roles that virulence and resistance phenotype acquisition, exchange, and loss play in the evolution of S. enterica sublineages, which to a certain extent are represented by serotypes, remains mostly uncharacterized. Here, we compare 17 newly sequenced and phenotypically characterized nontyphoidal S. enterica strains to 11 previously sequenced S. enterica genomes to carry out the most comprehensive comparative analysis of this species so far. These phenotypic and genotypic data comparisons in the phylogenetic species context suggest that the evolution of known S. enterica sublineages is mediated mostly by two mechanisms, (i) the loss of coding sequences with known metabolic functions, which leads to functional reduction, and (ii) the acquisition of horizontally transferred phage and plasmid DNA, which provides virulence and resistance functions and leads to increasing specialization. Matches between S. enterica clustered regularly interspaced short palindromic repeats (CRISPR), part of a defense mechanism against invading plasmid and phage DNA, and plasmid and prophage regions suggest that CRISPR-mediated immunity could control short-term phenotype changes and mediate long-term sublineage evolution. CRISPR analysis could therefore be critical in assessing the evolutionary potential of S. enterica sublineages and aid in the prediction and prevention of future S. enterica outbreaks.
doi:10.1128/JB.00297-11
PMCID: PMC3133335  PMID: 21602358
8.  Horizontal Gene Transfer of a ColV Plasmid Has Resulted in a Dominant Avian Clonal Type of Salmonella enterica Serovar Kentucky 
PLoS ONE  2010;5(12):e15524.
Salmonella enterica continues to be a significant cause of foodborne gastrointestinal illness in humans. A wide variety of Salmonella serovars have been isolated from production birds and from retail poultry meat. Recently, though, S. enterica subsp. enterica serovar Kentucky has emerged as one of the prominent Salmonella serovars isolated from broiler chickens. Recent work suggests that its emergence apparently coincides with its acquisition of a ColV virulence plasmid. In the present study, we examined 902 Salmonella isolates belonging to 59 different serovars for the presence of this plasmid. Of the serovars examined, the ColV plasmid was found only among isolates belonging to the serovars Kentucky (72.9%), Typhimurium (15.0%) and Heidelberg (1.7%). We demonstrated that a single PFGE clonal type of S. Kentucky harbors this plasmid, and acquisition of this plasmid by S. Kentucky significantly increased its ability to colonize the chicken cecum and cause extraintestinal disease. Comparison of the completed sequences of three ColV plasmids from S. Kentucky isolated from different geographical locales, timepoints and sources revealed a nearly identical genetic structure with few single nucleotide changes or insertions/deletions. Overall, it appears that the ColV plasmid was recently acquired by a single clonal type S. Kentucky and confers to its host enhanced colonization and fitness capabilities. Thus, the potential for horizontal gene transfer of virulence and fitness factors to Salmonella from other enteric bacteria exists in poultry, representing a potential human health hazard.
doi:10.1371/journal.pone.0015524
PMCID: PMC3008734  PMID: 21203520
9.  Plasmid-mediated Quinolone Resistance among Non-TyphiSalmonella enterica Isolates, USA 
Emerging Infectious Diseases  2010;16(11):1789-1791.
We determined the prevalence of plasmid-mediated quinolone resistance mechanisms among non-Typhi Salmonella spp. isolated from humans, food animals, and retail meat in the United States in 2007. Six isolates collected from humans harbored aac(6′)Ib-cr or a qnr gene. Most prevalent was qnrS1. No animal or retail meat isolates harbored a plasmid-mediated mechanism.
doi:10.3201/eid1611.100464
PMCID: PMC3294515  PMID: 21029547
Salmonella enterica; bacteria; antimicrobial drug resistance; fluoroquinolones; quinolone resistance; United States; dispatch
10.  Presence and Characterization of Shiga Toxin-Producing Escherichia coli and Other Potentially Diarrheagenic E. coli Strains in Retail Meats▿  
To determine the presence of Shiga toxin-producing Escherichia coli (STEC) and other potentially diarrheagenic E. coli strains in retail meats, 7,258 E. coli isolates collected by the U.S. National Antimicrobial Resistance Monitoring System (NARMS) retail meat program from 2002 to 2007 were screened for Shiga toxin genes. In addition, 1,275 of the E. coli isolates recovered in 2006 were examined for virulence genes specific for other diarrheagenic E. coli strains. Seventeen isolates (16 from ground beef and 1 from a pork chop) were positive for stx genes, including 5 positive for both stx1 and stx2, 2 positive for stx1, and 10 positive for stx2. The 17 STEC strains belonged to 10 serotypes: O83:H8, O8:H16, O15:H16, O15:H17, O88:H38, ONT:H51, ONT:H2, ONT:H10, ONT:H7, and ONT:H46. None of the STEC isolates contained eae, whereas seven carried enterohemorrhagic E. coli (EHEC) hlyA. All except one STEC isolate exhibited toxic effects on Vero cells. DNA sequence analysis showed that the stx2 genes from five STEC isolates encoded mucus-activatable Stx2d. Subtyping of the 17 STEC isolates by pulsed-field gel electrophoresis (PFGE) yielded 14 distinct restriction patterns. Among the 1,275 isolates from 2006, 11 atypical enteropathogenic E. coli (EPEC) isolates were identified in addition to 3 STEC isolates. This study demonstrated that retail meats, mainly ground beef, were contaminated with diverse STEC strains. The presence of atypical EPEC strains in retail meat is also of concern due to their potential to cause human infections.
doi:10.1128/AEM.01968-09
PMCID: PMC2837998  PMID: 20080990
11.  Antimicrobial Resistance-Conferring Plasmids with Similarity to Virulence Plasmids from Avian Pathogenic Escherichia coli Strains in Salmonella enterica Serovar Kentucky Isolates from Poultry▿ †  
Applied and Environmental Microbiology  2009;75(18):5963-5971.
Salmonella enterica, a leading cause of food-borne gastroenteritis worldwide, may be found in any raw food of animal, vegetable, or fruit origin. Salmonella serovars differ in distribution, virulence, and host specificity. Salmonella enterica serovar Kentucky, though often found in the food supply, is less commonly isolated from ill humans. The multidrug-resistant isolate S. Kentucky CVM29188, isolated from a chicken breast sample in 2003, contains three plasmids (146,811 bp, 101,461 bp, and 46,121 bp), two of which carry resistance determinants (pCVM29188_146 [strAB and tetRA] and pCVM29188_101 [blaCMY-2 and sugE]). Both resistance plasmids were transferable by conjugation, alone or in combination, to S. Kentucky, Salmonella enterica serovar Newport, and Escherichia coli recipients. pCVM29188_146 shares a highly conserved plasmid backbone of 106 kb (>90% nucleotide identity) with two virulence plasmids from avian pathogenic Escherichia coli strains (pAPEC-O1-ColBM and pAPEC-O2-ColV). Shared avian pathogenic E. coli (APEC) virulence factors include iutA iucABCD, sitABCD, etsABC, iss, and iroBCDEN. PCR analyses of recent (1997 to 2005) S. Kentucky isolates from food animal, retail meat, and human sources revealed that 172 (60%) contained similar APEC-like plasmid backbones. Notably, though rare in human- and cattle-derived isolates, this plasmid backbone was found at a high frequency (50 to 100%) among S. Kentucky isolates from chickens within the same time span. Ninety-four percent of the APEC-positive isolates showed resistance to tetracycline and streptomycin. Together, our findings of a resistance-conferring APEC virulence plasmid in a poultry-derived S. Kentucky isolate and of similar resistance/virulence plasmids in most recent S. Kentucky isolates from chickens and, to lesser degree, from humans and cattle highlight the need for additional research in order to examine the prevalence and spread of combined virulence and resistance plasmids in bacteria in agricultural, environmental, and clinical settings.
doi:10.1128/AEM.00786-09
PMCID: PMC2747853  PMID: 19648374
12.  Comparative Genomics of the IncA/C Multidrug Resistance Plasmid Family▿ †  
Journal of Bacteriology  2009;191(15):4750-4757.
Multidrug resistance (MDR) plasmids belonging to the IncA/C plasmid family are widely distributed among Salmonella and other enterobacterial isolates from agricultural sources and have, at least once, also been identified in a drug-resistant Yersinia pestis isolate (IP275) from Madagascar. Here, we present the complete plasmid sequences of the IncA/C reference plasmid pRA1 (143,963 bp), isolated in 1971 from the fish pathogen Aeromonas hydrophila, and of the cryptic IncA/C plasmid pRAx (49,763 bp), isolated from Escherichia coli transconjugant D7-3, which was obtained through pRA1 transfer in 1980. Using comparative sequence analysis of pRA1 and pRAx with recent members of the IncA/C plasmid family, we show that both plasmids provide novel insights into the evolution of the IncA/C MDR plasmid family and the minimal machinery necessary for stable IncA/C plasmid maintenance. Our results indicate that recent members of the IncA/C plasmid family evolved from a common ancestor, similar in composition to pRA1, through stepwise integration of horizontally acquired resistance gene arrays into a conserved plasmid backbone. Phylogenetic comparisons predict type IV secretion-like conjugative transfer operons encoded on the shared plasmid backbones to be closely related to a group of integrating conjugative elements, which use conjugative transfer for horizontal propagation but stably integrate into the host chromosome during vegetative growth. A hipAB toxin-antitoxin gene cluster found on pRA1, which in Escherichia coli is involved in the formation of persister cell subpopulations, suggests persistence as an early broad-spectrum antimicrobial resistance mechanism in the evolution of IncA/C resistance plasmids.
doi:10.1128/JB.00189-09
PMCID: PMC2715731  PMID: 19482926
14.  Characterization of Salmonella enterica serovar Heidelberg from Turkey-Associated Sources ▿  
Applied and Environmental Microbiology  2008;74(16):5038-5046.
Salmonella enterica serovar Heidelberg strains are frequently associated with food-borne illness, with recent isolates showing higher rates of resistance to multiple antimicrobial agents. One hundred eighty S. enterica serovar Heidelberg isolates, collected from turkey-associated production and processing sources, were tested for antimicrobial susceptibility and compared by pulsed-field gel electrophoresis (PFGE) and plasmid profile analysis. The potential for the transfer of resistance between strains was studied by conjugation experiments. PFGE analysis using XbaI digestion identified eight clusters (based on 90% similarity), with the largest containing 71% of the isolates. Forty-two percent of the isolates were resistant to at least 1 of the 15 antimicrobial agents tested, and 4% of the isolates were resistant to 8 or more antimicrobial agents. Resistances to streptomycin (32%), tetracycline (30%), and kanamycin (24%) were most commonly detected. Interestingly, the XbaI PFGE profiles of selective multidrug-resistant strains (n = 22) of S. enterica serovar Heidelberg from turkey-associated sources were indistinguishable from the predominant profile (JF6X01.0022) detected in isolates associated with human infections. These isolates were further differentiated into seven distinct profiles following digestion with the BlnI enzyme, with the largest cluster comprising 15 isolates from veterinary diagnostic and turkey processing environments. Conjugation experiments indicated that resistance to multiple antimicrobial agents was transferable among strains with diverse PFGE profiles.
doi:10.1128/AEM.00409-08
PMCID: PMC2519265  PMID: 18586966
16.  Contribution of Target Gene Mutations and Efflux to Decreased Susceptibility of Salmonella enterica Serovar Typhimurium to Fluoroquinolones and Other Antimicrobials▿  
The mechanisms involved in fluoroquinolone resistance in Salmonella enterica include target alterations and overexpression of efflux pumps. The present study evaluated the role of known and putative multidrug resistance efflux pumps and mutations in topoisomerase genes among laboratory-selected and naturally occurring fluoroquinolone-resistant Salmonella enterica serovar Typhimurium strains. Strains with ciprofloxacin MICs of 0.25, 4, 32, and 256 μg/ml were derived in vitro using serovar Typhimurium S21. These mutants also showed decreased susceptibility or resistance to many nonfluoroquinolone antimicrobials, including tetracycline, chloramphenicol, and several β-lactams. The expression of efflux pump genes acrA, acrB, acrE, acrF, emrB, emrD, and mdlB were substantially increased (≥2-fold) among the fluoroquinolone-resistant mutants. Increased expression was also observed, but to a lesser extent, with three other putative efflux pumps: mdtB (yegN), mdtC (yegO), and emrA among mutants with ciprofloxacin MICs of ≥32 μg/ml. Deletion of acrAB or tolC in S21 and its fluoroquinolone-resistant mutants resulted in increased susceptibility to fluoroquinolones and other tested antimicrobials. In naturally occurring fluoroquinolone-resistant serovar Typhimurium strains, deletion of acrAB or tolC increased fluoroquinolone susceptibility 4-fold, whereas replacement of gyrA double mutations (S83F D87N) with wild-type gyrA increased susceptibility >500-fold. These results indicate that a combination of topoisomerase gene mutations, as well as enhanced antimicrobial efflux, plays a critical role in the development of fluoroquinolone resistance in both laboratory-derived and naturally occurring quinolone-resistant serovar Typhimurium strains.
doi:10.1128/AAC.00600-06
PMCID: PMC1797773  PMID: 17043131
17.  International Spread of Multidrug-resistant Salmonella Schwarzengrund in Food Products 
Emerging Infectious Diseases  2007;13(5):726-731.
This serovar was isolated from persons, food, and food animals in Thailand, Denmark, and the United States.
We compared 581 Salmonella enterica serotype Schwarzengrund isolates from persons, food, and food animals in Denmark, Thailand, and the United States by antimicrobial drug susceptibility and pulsed-field gel electrophoresis (PFGE) typing. Resistance, including resistance to nalidixic acid, was frequent among isolates from persons and chickens in Thailand, persons in the United States, and food imported from Thailand to Denmark and the United States. A total of 183 PFGE patterns were observed, and 136 (23.4%) isolates had the 3 most common patterns. Seven of 14 isolates from persons in Denmark had patterns found in persons and chicken meat in Thailand; 22 of 390 human isolates from the United States had patterns found in Denmark and Thailand. This study suggests spread of multidrug-resistant S. Schwarzengrund from chickens to persons in Thailand, and from imported Thai food products to persons in Denmark and the United States.
doi:10.3201/eid1305.061489
PMCID: PMC2738437  PMID: 17553251
Salmonella enterica serovar Schwarzengrund; antimicrobial drug resistance; Thailand; Denmark; United States; pulsed-field gel electrophoresis; research
18.  Multiple Antimicrobial Resistance in Plague: An Emerging Public Health Risk 
PLoS ONE  2007;2(3):e309.
Antimicrobial resistance in Yersinia pestis is rare, yet constitutes a significant international public health and biodefense threat. In 1995, the first multidrug resistant (MDR) isolate of Y. pestis (strain IP275) was identified, and was shown to contain a self-transmissible plasmid (pIP1202) that conferred resistance to many of the antimicrobials recommended for plague treatment and prophylaxis. Comparative analysis of the DNA sequence of Y. pestis plasmid pIP1202 revealed a near identical IncA/C plasmid backbone that is shared by MDR plasmids isolated from Salmonella enterica serotype Newport SL254 and the fish pathogen Yersinia ruckeri YR71. The high degree of sequence identity and gene synteny between the plasmid backbones suggests recent acquisition of these plasmids from a common ancestor. In addition, the Y. pestis pIP1202-like plasmid backbone was detected in numerous MDR enterobacterial pathogens isolated from retail meat samples collected between 2002 and 2005 in the United States. Plasmid-positive strains were isolated from beef, chicken, turkey and pork, and were found in samples from the following states: California, Colorado, Connecticut, Georgia, Maryland, Minnesota, New Mexico, New York and Oregon. Our studies reveal that this common plasmid backbone is broadly disseminated among MDR zoonotic pathogens associated with agriculture. This reservoir of mobile resistance determinants has the potential to disseminate to Y. pestis and other human and zoonotic bacterial pathogens and therefore represents a significant public health concern.
doi:10.1371/journal.pone.0000309
PMCID: PMC1819562  PMID: 17375195
19.  Comparison of Subtyping Methods for Differentiating Salmonella enterica Serovar Typhimurium Isolates Obtained from Food Animal Sources 
Journal of Clinical Microbiology  2006;44(10):3569-3577.
Molecular characterization (e.g., DNA-based typing methods) of Salmonella isolates is frequently employed to compare and distinguish clinical isolates recovered from animals and from patients with food-borne disease and nosocomial infections. In this study, we compared the abilities of different phenotyping and genotyping methods to distinguish isolates of Salmonella enterica serovar Typhimurium from different food animal sources. One hundred twenty-eight S. enterica serovar Typhimurium strains isolated from cattle, pigs, chickens, and turkeys or derived food products were characterized using pulsed-field gel electrophoresis (PFGE), repetitive element PCR (Rep-PCR), multilocus sequence typing (MLST), plasmid profiling, and antimicrobial susceptibility testing. Among the 128 Salmonella isolates tested, we observed 84 Rep-PCR profiles, 86 PFGE patterns, 89 MLST patterns, 36 plasmid profiles, and 38 susceptibility profiles. The molecular typing methods, i.e., PFGE, MLST, and Rep-PCR, demonstrated the best discriminatory power among Salmonella isolates. However, no apparent correlation was evident between the results of one molecular typing method and those of the others, suggesting that a combination of multiple methods is needed to differentiate S. enterica serovar Typhimurium isolates that genetically cluster according to one particular typing method.
doi:10.1128/JCM.00745-06
PMCID: PMC1594788  PMID: 17021084
20.  Effect of Conventional and Organic Production Practices on the Prevalence and Antimicrobial Resistance of Campylobacter spp. in Poultry 
Intestinal tracts of broilers and turkeys from 10 conventional broiler farms and 10 conventional turkey farms, where antimicrobials were routinely used, and from 5 organic broiler farms and 5 organic turkey farms, where antimicrobials had never been used, were collected and cultured for Campylobacter species. A total of 694 Campylobacter isolates from the conventional and organic poultry operations were tested for antimicrobial resistance to nine antimicrobial agents by the agar dilution method. Although Campylobacter species were highly prevalent in both the conventional and organic poultry operations, the antimicrobial resistance rates were significantly different between the organic operations and the conventional operations. Less than 2% of Campylobacter strains isolated from organically raised poultry were resistant to fluoroquinolones, while 46% and 67% of Campylobacter isolates from conventionally raised broilers and conventionally raised turkeys, respectively, were resistant to these antimicrobials. In addition, a high frequency of resistance to erythromycin (80%), clindamycin (64%), kanamycin (76%), and ampicillin (31%) was observed among Campylobacter isolates from conventionally raised turkeys. None of the Campylobacter isolates obtained in this study was resistant to gentamicin, while a large number of the isolates from both conventional and organic poultry operations were resistant to tetracycline. Multidrug resistance was observed mainly among Campylobacter strains isolated from the conventional turkey operation (81%). Findings from this study clearly indicate the influence of conventional and organic poultry production practices on antimicrobial resistance of Campylobacter on poultry farms.
doi:10.1128/AEM.72.5.3600-3607.2006
PMCID: PMC1472326  PMID: 16672508
22.  Broth Microdilution Susceptibility Testing of Campylobacter jejuni and the Determination of Quality Control Ranges for Fourteen Antimicrobial Agents 
Journal of Clinical Microbiology  2005;43(12):6136-6138.
Quality control ranges were developed for broth microdilution testing of Campylobacter jejuni ATCC 33560 against 14 antimicrobials. Cation-adjusted Mueller-Hinton broth containing 2.5% laked horse blood was the preferred medium, with incubation in a microaerobic atmosphere of 10% CO2, 5% O2, and 85% N2 at 36°C for 48 h or 42°C for 24 h.
doi:10.1128/JCM.43.12.6136-6138.2005
PMCID: PMC1317209  PMID: 16333113
23.  Changes in Antimicrobial Susceptibility of Native Enterococcus faecium in Chickens Fed Virginiamycin 
The extent of transfer of antimicrobial resistance from agricultural environments to humans is controversial. To assess the potential hazard posed by streptogramin use in food animals, this study evaluated the effect of virginiamycin exposure on antimicrobial resistance in Enterococcus faecium recovered from treated broilers. Four consecutive broiler feeding trials were conducted using animals raised on common litter. In the first three trials, one group of birds was fed virginiamycin continuously in feed at 20 g/ton, and a second group served as the nontreated control. In the fourth trial, antimicrobial-free feed was given to both groups. Fecal samples were cultured 1 day after chickens hatched and then at 1, 3, 5, and 7 weeks of age. Isolates from each time point were tested for susceptibility to a panel of different antimicrobials. Quinupristin/dalfopristin-resistant E. faecium appeared after 5 weeks of treatment in trial 1 and within 7 days of trials 2 to 4. Following removal of virginiamycin in trial 4, no resistant isolates were detected after 5 weeks. PCR failed to detect vat, vgb, or erm(B) in any of the streptogramin-resistant E. faecium isolates, whereas the msr(C) gene was detected in 97% of resistant isolates. In an experimental setting using broiler chickens, continuous virginiamycin exposure was required to maintain a stable streptogramin-resistant population of E. faecium in the animals. The bases of resistance could not be explained by known genetic determinants.
doi:10.1128/AEM.71.9.4986-4991.2005
PMCID: PMC1214620  PMID: 16151077
24.  Role of Efflux Pumps and Topoisomerase Mutations in Fluoroquinolone Resistance in Campylobacter jejuni and Campylobacter coli 
Point mutations in the topoisomerase (DNA gyrase A) gene are known to be associated with fluoroquinolone resistance in Campylobacter. Recent studies have shown that an efflux pump encoded by cmeABC is also involved in decreased susceptibilities to fluoroquinolones, as well as other antimicrobials. Genome analysis suggests that Campylobacter jejuni contains at least nine other putative efflux pumps. Using insertional inactivation and site-directed mutagenesis, we investigated the potential contributions of these pumps to susceptibilities to chloramphenicol, ciprofloxacin, erythromycin, and tetracycline in C. jejuni and Campylobacter coli. Insertional inactivation of cmeB resulted in 4- to 256-fold decreases in the MICs of chloramphenicol, ciprofloxacin, erythromycin, and tetracycline, with erythromycin being the most significantly affected. In contrast, inactivation of all other putative efflux pumps had no effect on susceptibility to any of the four antimicrobials tested. Mutation of gyrA at codon 86 (Thr-Ile) caused 128- and 64-fold increases in the MICs of ciprofloxacin and nalidixic acid, respectively. The replacement of the mutated gyrA with a wild-type gyrA allele resulted in a 32-fold decrease in the ciprofloxacin MIC and no change in the nalidixic acid MIC. Our findings indicate that CmeABC is the only efflux pump among those tested that influences antimicrobial resistance in Campylobacter and that a point mutation (Thr-86-Ile) in gyrA directly causes fluoroquinolone resistance in Campylobacter. These two mechanisms work synergistically in acquiring and maintaining fluoroquinolone resistance in Campylobacter species.
doi:10.1128/AAC.49.8.3347-3354.2005
PMCID: PMC1196287  PMID: 16048946
25.  Characterization of Multiple-Antimicrobial-Resistant Salmonella Serovars Isolated from Retail Meats 
A total of 133 Salmonella isolates recovered from retail meats purchased in the United States and the People's Republic of China were assayed for antimicrobial susceptibility, the presence of integrons and antimicrobial resistance genes, and horizontal transfer of characterized antimicrobial resistance determinants via conjugation. Seventy-three (82%) of these Salmonella isolates were resistant to at least one antimicrobial agent. Resistance to the following antibiotics was common among the United States isolates: tetracycline (68% of the isolates were resistant), streptomycin (61%), sulfamethoxazole (42%), and ampicillin (29%). Eight Salmonella isolates (6%) were resistant to ceftriaxone. Fourteen isolates (11%) from the People's Republic of China were resistant to nalidixic acid and displayed decreased susceptibility to ciprofloxacin. A total of 19 different antimicrobial resistance genes were identified in 30 multidrug-resistant Salmonella isolates. The blaCMY-2 gene, encoding a class A AmpC β-lactamase, was detected in all 10 Salmonella isolates resistant to extended-spectrum β-lactams. Resistance to ampicillin was most often associated with a TEM-1 family β-lactamase gene. Six aminoglycoside resistance genes, aadA1, aadA2, aacC2, Kn, aph(3)-IIa, and aac(3)-IVa, were commonly present in the Salmonella isolates. Sixteen (54%) of 30 Salmonella isolates tested had integrons ranging in size from 0.75 to 2.7 kb. Conjugation studies demonstrated that there was plasmid-mediated transfer of genes encoding CMY-2 and TEM-1-like β-lactamases. These data indicate that Salmonella isolates recovered from retail raw meats are commonly resistant to multiple antimicrobials, including those used for treating salmonellosis, such as ceftriaxone. Genes conferring antimicrobial resistance in Salmonella are often carried on integrons and plasmids and could be transmitted through conjugation. These mobile DNA elements have likely played an important role in transmission and dissemination of antimicrobial resistance determinants among Salmonella strains.
doi:10.1128/AEM.70.1.1-7.2004
PMCID: PMC321239  PMID: 14711619

Results 1-25 (37)