PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("Ge, abeillei")
1.  Rapid and Specific Detection of Escherichia coli Serogroups O26, O45, O103, O111, O121, O145, and O157 in Ground Beef, Beef Trim, and Produce by Loop-Mediated Isothermal Amplification 
Escherichia coli O157 and six additional serogroups of Shiga toxin-producing E. coli (STEC) (O26, O45, O103, O111, O121, and O145) account for the majority of STEC infections in the United States. In this study, O serogroup-specific genes (wzx or wzy) were used to design loop-mediated isothermal amplification (LAMP) assays for the rapid and specific detection of these leading STEC serogroups. The assays were evaluated in pure culture and spiked food samples (ground beef, beef trim, lettuce, and spinach) and compared with real-time quantitative PCR (qPCR). No false-positive or false-negative results were observed among 120 bacterial strains used to evaluate assay specificity. The limits of detection of various STEC strains belonging to these target serogroups were approximately 1 to 20 CFU/reaction mixture in pure culture and 103 to 104 CFU/g in spiked food samples, which were comparable to those of qPCR. Standard curves generated suggested good linear relationships between STEC cell numbers and LAMP turbidity signals. In various beef and produce samples spiked with two low levels (1 to 2 and 10 to 20 CFU/25 g) of respective STEC strains, the LAMP assays consistently achieved accurate detection after 6 to 8 h of enrichment. In conclusion, these newly developed LAMP assays may facilitate rapid and reliable detection of the seven major STEC serogroups in ground beef, beef trim, and produce during routine sample testing.
doi:10.1128/AEM.07975-11
PMCID: PMC3318793  PMID: 22327594
2.  Loop-Mediated Isothermal Amplification Assays for Detecting Shiga Toxin-Producing Escherichia coli in Ground Beef and Human Stools 
Shiga toxin-producing Escherichia coli (STEC), encompassing E. coli O157 and non-O157 STEC, is a significant cause of food-borne illnesses and deaths in the United States and worldwide. Shiga toxins (encoded by stx) and intimin (encoded by eae) are important virulence factors for STEC strains linked to severe human illnesses such as hemorrhagic colitis and hemolytic-uremic syndrome. In this study, the stx1, stx2, and eae genes were chosen as targets to design loop-mediated isothermal amplification (LAMP) assays for the rapid, specific, sensitive, and quantitative detection of STEC strains. The assay performances in pure culture and spiked ground beef and human stools were evaluated and compared with those of quantitative PCR (qPCR). No false-positive or false-negative results were observed among 90 bacterial strains used to evaluate assay specificity. The limits of detection for seven STEC strains of various serogroups (O26, O45, O103, O111, O121, O145, and O157) were approximately 1 to 20 CFU/reaction in pure culture and 103 to 104 CFU/g in spiked ground beef, which were comparable to the results of qPCR. Standard curves generated suggested good linear relationships between STEC cell numbers and LAMP turbidity signals. When applied in ground beef samples spiked with two low levels (1 to 2 and 10 to 20 CFU/25 g) of STEC cultures, the LAMP assays achieved accurate detection after 6 to 8 h enrichment. The assays also consistently detected STEC in human stool specimens spiked with 103 or 104 CFU/0.5 g stool after 4 h enrichment, while qPCR required 4 to 6 h. In conclusion, the LAMP assays developed in this study may facilitate rapid and reliable identification of STEC contaminations in high-risk food commodities and also facilitate prompt diagnosis of STEC infections in clinical laboratories.
doi:10.1128/JCM.05612-11
PMCID: PMC3256711  PMID: 22031701
3.  Rapid Detection of Viable Salmonellae in Produce by Coupling Propidium Monoazide with Loop-Mediated Isothermal Amplification ▿  
Applied and Environmental Microbiology  2011;77(12):4008-4016.
Recent outbreaks linked to Salmonella-contaminated produce heightened the need to develop simple, rapid, and accurate detection methods, particularly those capable of determining cell viability. In this study, we examined a novel strategy for the rapid detection and quantification of viable salmonellae in produce by coupling a simple propidium monoazide sample treatment with loop-mediated isothermal amplification (PMA-LAMP). We first designed and optimized a LAMP assay targeting Salmonella. Second, the performance of PMA-LAMP for detecting and quantifying viable salmonellae was determined. Finally, the assay was evaluated in experimentally contaminated produce items (cantaloupe, spinach, and tomato). Under the optimized condition, PMA-LAMP consistently gave negative results for heat-killed Salmonella cells with concentrations up to 108 CFU/ml (or CFU/g in produce). The detection limits of PMA-LAMP were 3.4 to 34 viable Salmonella cells in pure culture and 6.1 × 103 to 6.1 × 104 CFU/g in spiked produce samples. In comparison, PMA-PCR was up to 100-fold less sensitive. The correlation between LAMP time threshold (TT) values and viable Salmonella cell numbers was high (R2 = 0.949 to 0.993), with a quantification range (102 to 105 CFU/reaction in pure culture and 104 to 107 CFU/g in produce) comparable to that of PMA in combination with quantitative real-time PCR (PMA-qPCR). The complete PMA-LAMP assay took about 3 h to complete when testing produce samples. In conclusion, this rapid, accurate, and simple method to detect and quantify viable Salmonella cells in produce may present a useful tool for the produce industry to better control potential microbial hazards in produce.
doi:10.1128/AEM.00354-11
PMCID: PMC3131628  PMID: 21498750
4.  Detecting Potentially Virulent Vibrio vulnificus Strains in Raw Oysters by Quantitative Loop-Mediated Isothermal Amplification ▿  
Vibrio vulnificus is a leading cause of seafood-related deaths in the United States. Sequence variations in the virulence-correlated gene (vcg) have been used to distinguish between clinical and environmental V. vulnificus strains, with a strong association between clinical ones and the C sequence variant (vcgC). In this study, vcgC was selected as the target to design a loop-mediated isothermal amplification (LAMP) assay for the rapid, sensitive, specific, and quantitative detection of potentially virulent V. vulnificus strains in raw oysters. No false-positive or false-negative results were generated among the 125 bacterial strains used to evaluate assay specificity. The detection limit was 5.4 CFU per reaction for a virulent V. vulnificus strain (ATCC 33815) in pure culture, 100-fold more sensitive than that of PCR. In spiked raw oysters, the assay was capable of detecting 2.5 × 103 CFU/g of V. vulnificus ATCC 33815, while showing negative results for a nonvirulent V. vulnificus strain (515-4c2) spiked at 107 CFU/g. After 6 h of enrichment, the LAMP assay could detect 1 CFU/g of the virulent V. vulnificus strain ATCC 33815. Standard curves generated in pure culture and spiked oysters suggested a good linear relationship between cell numbers of the virulent V. vulnificus strain and turbidity signals. In conclusion, the LAMP assay developed in this study could quantitatively detect potentially virulent V. vulnificus in raw oysters with high speed, specificity, and sensitivity, which may facilitate better control of V. vulnificus risks associated with raw oyster consumption.
doi:10.1128/AEM.02992-10
PMCID: PMC3126371  PMID: 21357428
5.  Development of a toxR-based loop-mediated isothermal amplification assay for detecting Vibrio parahaemolyticus 
BMC Microbiology  2010;10:41.
Background
Vibrio parahaemolyticus is a leading cause of seafood-related bacterial gastroenteritis and outbreaks worldwide. Sensitive and specific detection methods are needed to better control V. parahaemolyticus infections. This study aimed at developing a highly specific and sensitive loop-mediated isothermal amplification (LAMP) assay for detecting V. parahaemolyticus in oysters. A set of five LAMP primers, two outer, two inner, and one loop were designed based on the published V. parahaemolyticus toxR sequence. Specificity of the assay was evaluated using a panel of 36 V. parahaemolyticus and 39 other strains. The assay sensitivity was determined using serial dilutions of V. parahaemolyticus ATCC 27969 culture ranging from 108 CFU/ml to extinction. The assay was also tested in experimentally inoculated oyster samples.
Results
The toxR-based LAMP assay was able to specifically detect all of the 36 V. parahaemolyticus strains without amplification from 39 other strains. The detection limit was 47-470 cells per reaction in pure culture, up to 100-fold more sensitive than that of toxR-PCR. When applied in spiked oysters, the assay was able to detect 1.1 × 105 V. parahaemolyticus cells per gram of oyster without enrichment, up to 100-fold more sensitive than that of toxR-PCR. Standard curves generated for detecting V. parahaemolyticus in both pure culture and spiked oyster samples showed good linear relationship between cell numbers and the fluorescence or turbidity signals.
Conclusions
The toxR-based LAMP assay developed in this study was sensitive, specific, and quantitative, holding great potential for future field detection of V. parahaemolyticus in raw oysters.
doi:10.1186/1471-2180-10-41
PMCID: PMC2838873  PMID: 20146814
6.  Isolation and Characterization of Methicillin-Resistant Staphylococcus aureus Strains from Louisiana Retail Meats▿  
We investigated the prevalence of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in 120 retail meat samples from 30 grocery stores in Baton Rouge, LA. S. aureus strains were recovered from 45.6% of pork samples and 20% of beef samples, whereas MRSA strains were isolated from six meat samples (five pork samples and one beef sample). The MRSA isolates were of two strain types (clones), one harboring Panton-Valentine leucocidin and belonging to pulsed-field gel electrophoresis type USA300 and the other one belonging to USA100.
doi:10.1128/AEM.01110-08
PMCID: PMC2612222  PMID: 18978079
7.  Antimicrobial Susceptibilities of Vibrio parahaemolyticus and Vibrio vulnificus Isolates from Louisiana Gulf and Retail Raw Oysters▿  
Applied and Environmental Microbiology  2007;73(21):7096-7098.
The antimicrobial susceptibilities of 168 Vibrio parahaemolyticus and 151 Vibrio vulnificus isolates recovered from 82 Louisiana Gulf and retail oysters in 2005 and 2006 were determined. Overall, the two vibrios remained susceptible to the majority of antimicrobials tested; reduced susceptibility was detected only in V. parahaemolyticus for ampicillin (81%; MIC ≥ 16 μg/ml). Additionally, V. parahaemolyticus displayed significantly higher MICs for cefotaxime, ciprofloxacin, and tetracycline than V. vulnificus.
doi:10.1128/AEM.01116-07
PMCID: PMC2074966  PMID: 17827331
8.  Role of Efflux Pumps and Topoisomerase Mutations in Fluoroquinolone Resistance in Campylobacter jejuni and Campylobacter coli 
Point mutations in the topoisomerase (DNA gyrase A) gene are known to be associated with fluoroquinolone resistance in Campylobacter. Recent studies have shown that an efflux pump encoded by cmeABC is also involved in decreased susceptibilities to fluoroquinolones, as well as other antimicrobials. Genome analysis suggests that Campylobacter jejuni contains at least nine other putative efflux pumps. Using insertional inactivation and site-directed mutagenesis, we investigated the potential contributions of these pumps to susceptibilities to chloramphenicol, ciprofloxacin, erythromycin, and tetracycline in C. jejuni and Campylobacter coli. Insertional inactivation of cmeB resulted in 4- to 256-fold decreases in the MICs of chloramphenicol, ciprofloxacin, erythromycin, and tetracycline, with erythromycin being the most significantly affected. In contrast, inactivation of all other putative efflux pumps had no effect on susceptibility to any of the four antimicrobials tested. Mutation of gyrA at codon 86 (Thr-Ile) caused 128- and 64-fold increases in the MICs of ciprofloxacin and nalidixic acid, respectively. The replacement of the mutated gyrA with a wild-type gyrA allele resulted in a 32-fold decrease in the ciprofloxacin MIC and no change in the nalidixic acid MIC. Our findings indicate that CmeABC is the only efflux pump among those tested that influences antimicrobial resistance in Campylobacter and that a point mutation (Thr-86-Ile) in gyrA directly causes fluoroquinolone resistance in Campylobacter. These two mechanisms work synergistically in acquiring and maintaining fluoroquinolone resistance in Campylobacter species.
doi:10.1128/AAC.49.8.3347-3354.2005
PMCID: PMC1196287  PMID: 16048946
9.  Prevalence and Antimicrobial Resistance of Campylobacter spp. and Salmonella Serovars in Organic Chickens from Maryland Retail Stores 
Retail organic (n = 198) and conventional (n = 61) chickens were analyzed. Most organic (76%) and conventional (74%) chickens were contaminated with campylobacters. Salmonellae were recovered from 61% of organic and 44% of conventional chickens. All Salmonella enterica serovar Typhimurium isolates from conventional chickens were resistant to five or more antimicrobials, whereas most S. enterica serovar Typhimurium isolates (79%) from organic chickens were susceptible to 17 antimicrobials tested.
doi:10.1128/AEM.71.7.4108-4111.2005
PMCID: PMC1169031  PMID: 16000828
10.  Antimicrobial-Resistant Campylobacter Species from Retail Raw Meats 
The antimicrobial susceptibilities of 378 Campylobacter isolates were determined. Resistance to tetracycline was the most common (82%), followed by resistance to doxycycline (77%), erythromycin (54%), nalidixic acid (41%), and ciprofloxacin (35%). Campylobacter coli displayed significantly higher rates of resistance to ciprofloxacin and erythromycin than Campylobacter jejuni, and Campylobacter isolates from turkey meat showed a greater resistance than those from chicken meat.
doi:10.1128/AEM.69.5.3005-3007.2003
PMCID: PMC154538  PMID: 12732579
11.  Prevalence of Campylobacter spp., Escherichia coli, and Salmonella Serovars in Retail Chicken, Turkey, Pork, and Beef from the Greater Washington, D.C., Area 
Applied and Environmental Microbiology  2001;67(12):5431-5436.
A total of 825 samples of retail raw meats (chicken, turkey, pork, and beef) were examined for the presence of Escherichia coli and Salmonella serovars, and 719 of these samples were also tested for Campylobacter spp. The samples were randomly obtained from 59 stores of four supermarket chains during 107 sampling visits in the Greater Washington, D.C., area from June 1999 to July 2000. The majority (70.7%) of chicken samples (n = 184) were contaminated with Campylobacter, and a large percentage of the stores visited (91%) had Campylobacter-contaminated chickens. Approximately 14% of the 172 turkey samples yielded Campylobacter, whereas fewer pork (1.7%) and beef (0.5%) samples were positive for this pathogen. A total of 722 Campylobacter isolates were obtained from 159 meat samples; 53.6% of these isolates were Campylobacter jejuni, 41.3% were Campylobacter coli, and 5.1% were other species. Of the 212 chicken samples, 82 (38.7%) yielded E. coli, while 19.0% of the beef samples, 16.3% of the pork samples, and 11.9% of the turkey samples were positive for E. coli. However, only 25 (3.0%) of the retail meat samples tested were positive for Salmonella. Significant differences in the bacterial contamination rates were observed for the four supermarket chains. This study revealed that retail raw meats are often contaminated with food-borne pathogens; however, there are marked differences in the prevalence of such pathogens in different meats. Raw retail meats are potential vehicles for transmitting food-borne diseases, and our findings stress the need for increased implementation of hazard analysis of critical control point (HACCP) and consumer food safety education efforts.
doi:10.1128/AEM.67.12.5431-5436.2001
PMCID: PMC93326  PMID: 11722889
12.  Identification and Characterization of Integron-Mediated Antibiotic Resistance among Shiga Toxin-Producing Escherichia coli Isolates 
A total of 50 isolates of Shiga toxin-producing Escherichia coli (STEC), including 29 O157:H7 and 21 non-O157 STEC strains, were analyzed for antimicrobial susceptibilities and the presence of class 1 integrons. Seventy-eight (n = 39) percent of the isolates exhibited resistance to two or more antimicrobial classes. Multiple resistance to streptomycin, sulfamethoxazole, and tetracycline was most often observed. Class 1 integrons were identified among nine STEC isolates, including serotypes O157:H7, O111:H11, O111:H8, O111:NM, O103:H2, O45:H2, O26:H11, and O5:NM. The majority of the amplified integron fragments were 1 kb in size with the exception of one E. coli O111:H8 isolate which possessed a 2-kb amplicon. DNA sequence analysis revealed that the integrons identified within the O111:H11, O111:NM, O45:H2, and O26:H11 isolates contained the aadA gene encoding resistance to streptomycin and spectinomycin. Integrons identified among the O157:H7 and O103:H2 isolates also possessed a similar aadA gene. However, DNA sequencing revealed only 86 and 88% homology, respectively. The 2-kb integron of the E. coli O111:H8 isolate contained three genes, dfrXII, aadA2, and a gene of unknown function, orfF, which were 86, 100, and 100% homologous, respectively, to previously reported gene cassettes identified in integrons found in Citrobacter freundii and Klebsiella pneumoniae. Furthermore, integrons identified among the O157:H7 and O111:NM strains were transferable via conjugation to another strain of E. coli O157:H7 and to several strains of Hafnia alvei. To our knowledge, this is the first report of integrons and antibiotic resistance gene cassettes in STEC, in particular E. coli O157:H7.
doi:10.1128/AEM.67.4.1558-1564.2001
PMCID: PMC92769  PMID: 11282605

Results 1-12 (12)