Search tips
Search criteria

Results 1-25 (44)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Complete Genome Sequence of Salmonella enterica subsp. enterica Serovar Agona 460004 2-1, Associated with a Multistate Outbreak in the United States 
Genome Announcements  2015;3(4):e00690-15.
Within the last several years, Salmonella enterica subsp. enterica serovar Agona has been among the 20 most frequently isolated serovars in clinical cases of salmonellosis. In this report, the complete genome sequence of S. Agona strain 460004 2-1 isolated from unsweetened puffed-rice cereal during a multistate outbreak in 2008 was sequenced using single-molecule real-time DNA sequencing.
PMCID: PMC4490842  PMID: 26139714
2.  Draft Genome Sequence of Salmonella enterica subsp. enterica Serovar Give, Isolated from an Imported Chili Powder Product 
Genome Announcements  2015;3(4):e00726-15.
We report the genome sequence of Salmonella enterica subsp. enterica serovar Give (CFSAN012622), isolated from imported chili powder in 2014. This genome contains genes previously reported to be specific only to S. enterica serovar Enteritidis. This strain shows a unique pulsed-field gel electrophoresis (PFGE) pattern clustering with serovar Enteritidis (JEG X01.0005).
PMCID: PMC4490851  PMID: 26139723
3.  Ecological prevalence, genetic diversity, and epidemiological aspects of Salmonella isolated from tomato agricultural regions of the Virginia Eastern Shore 
Virginia is the third largest producer of fresh-market tomatoes in the United States. Tomatoes grown along the eastern shore of Virginia are implicated almost yearly in Salmonella illnesses. Traceback implicates contamination occurring in the pre-harvest environment. To get a better understanding of the ecological niches of Salmonella in the tomato agricultural environment, a 2-year study was undertaken at a regional agricultural research farm in Virginia. Environmental samples, including tomato (fruit, blossoms, and leaves), irrigation water, surface water and sediment, were collected over the growing season. These samples were analyzed for the presence of Salmonella using modified FDA-BAM methods. Molecular assays were used to screen the samples. Over 1500 samples were tested. Seventy-five samples tested positive for Salmonella yielding over 230 isolates. The most commonly isolated serovars were S. Newport and S. Javiana with pulsed-field gel electrophoresis yielding 39 different patterns. Genetic diversity was further underscored among many other serotypes, which showed multiple PFGE subtypes. Whole genome sequencing (WGS) of several S. Newport isolates collected in 2010 compared to clinical isolates associated with tomato consumption showed very few single nucleotide differences between environmental isolates and clinical isolates suggesting a source link to Salmonella contaminated tomatoes. Nearly all isolates collected during two growing seasons of surveillance were obtained from surface water and sediment sources pointing to these sites as long-term reservoirs for persistent and endemic contamination of this environment.
PMCID: PMC4423467  PMID: 25999938
Salmonella Newport; tomatoes; environmental reservoirs; epidemiological impact; prevalence and diversity
4.  Comparative Genomic Analysis and Virulence Differences in Closely Related Salmonella enterica Serotype Heidelberg Isolates from Humans, Retail Meats, and Animals 
Genome Biology and Evolution  2014;6(5):1046-1068.
Salmonella enterica subsp. enterica serovar Heidelberg (S. Heidelberg) is one of the top serovars causing human salmonellosis. Recently, an antibiotic-resistant strain of this serovar was implicated in a large 2011 multistate outbreak resulting from consumption of contaminated ground turkey that involved 136 confirmed cases, with one death. In this study, we assessed the evolutionary diversity of 44 S. Heidelberg isolates using whole-genome sequencing (WGS) generated by the 454 GS FLX (Roche) platform. The isolates, including 30 with nearly indistinguishable (one band difference) Xbal pulsed-field gel electrophoresis patterns (JF6X01.0032, JF6X01.0058), were collected from various sources between 1982 and 2011 and included nine isolates associated with the 2011 outbreak. Additionally, we determined the complete sequence for the chromosome and three plasmids from a clinical isolate associated with the 2011 outbreak using the Pacific Biosciences (PacBio) system. Using single-nucleotide polymorphism (SNP) analyses, we were able to distinguish highly clonal isolates, including strains isolated at different times in the same year. The isolates from the recent 2011 outbreak clustered together with a mean SNP variation of only 17 SNPs. The S. Heidelberg isolates carried a variety of phages, such as prophage P22, P4, lambda-like prophage Gifsy-2, and the P2-like phage which carries the sopE1 gene, virulence genes including 62 pathogenicity, and 13 fimbrial markers and resistance plasmids of the incompatibility (Inc)I1, IncA/C, and IncHI2 groups. Twenty-one strains contained an IncX plasmid carrying a type IV secretion system. On the basis of the recent and historical isolates used in this study, our results demonstrated that, in addition to providing detailed genetic information for the isolates, WGS can identify SNP targets that can be utilized for differentiating highly clonal S. Heidelberg isolates.
PMCID: PMC4040988  PMID: 24732280
outbreak; antimicrobial resistance; plasmid; SNP analysis; trace-back
5.  Draft Genome Sequences of 33 Salmonella enterica Clinical and Wildlife Isolates from Chile 
Genome Announcements  2015;3(2):e00054-15.
Salmonella enterica causes health problem worldwide. The relationships among strains that are from the same serotype but different hosts, countries, and continents remain elusive. Few genome sequences are available from S. enterica isolates from South America. Therefore, we sequenced the genomes of 33 strains from diverse sources isolated in Chile and determined that they were of different serotypes. These genomes will improve phylogenetic analysis of Salmonella strains from Chile and the rest of South America.
PMCID: PMC4395066  PMID: 25792040
6.  Complete Sequences of Six IncA/C Plasmids of Multidrug-Resistant Salmonella enterica subsp. enterica Serotype Newport 
Genome Announcements  2015;3(1):e00027-15.
Multidrug-resistant (MDR) Salmonella enterica subsp. enterica serotype Newport has been a long-standing public health concern in the United States. We present the complete sequences of six IncA/C plasmids from animal-derived MDR S. Newport ranging from 80.1 to 158.5 kb. They shared a genetic backbone with S. Newport IncA/C plasmids pSN254 and pAM04528.
PMCID: PMC4342422  PMID: 25720681
7.  Characterization of Vibrio parahaemolyticus clinical strains from Maryland (2012–2013) and comparisons to a locally and globally diverse V. parahaemolyticus strains by whole-genome sequence analysis 
Vibrio parahaemolyticus is the leading cause of foodborne illnesses in the US associated with the consumption of raw shellfish. Previous population studies of V. parahaemolyticus have used Multi-Locus Sequence Typing (MLST) or Pulsed Field Gel Electrophoresis (PFGE). Whole genome sequencing (WGS) provides a much higher level of resolution, but has been used to characterize only a few United States (US) clinical isolates. Here we report the WGS characterization of 34 genomes of V. parahaemolyticus strains that were isolated from clinical cases in the state of Maryland (MD) during 2 years (2012–2013). These 2 years saw an increase of V. parahaemolyticus cases compared to previous years. Among these MD isolates, 28% were negative for tdh and trh, 8% were tdh positive only, 11% were trh positive only, and 53% contained both genes. We compared this set of V. parahaemolyticus genomes to those of a collection of 17 archival strains from the US (10 previously sequenced strains and 7 from NCBI, collected between 1988 and 2004) and 15 international strains, isolated from geographically-diverse environmental and clinical sources (collected between 1980 and 2010). A WGS phylogenetic analysis of these strains revealed the regional outbreak strains from MD are highly diverse and yet genetically distinct from the international strains. Some MD strains caused outbreaks 2 years in a row, indicating a local source of contamination (e.g., ST631). Advances in WGS will enable this type of analysis to become routine, providing an excellent tool for improved surveillance. Databases built with phylogenetic data will help pinpoint sources of contamination in future outbreaks and contribute to faster outbreak control.
PMCID: PMC4333860  PMID: 25745421
NGS; WGS; Vibrio parahaemolyticus; clinical; phylogenetic analysis; phylogeny; SNPs
8.  Transoceanic Spreading of Pathogenic Strains of Vibrio parahaemolyticus with Distinctive Genetic Signatures in the recA Gene 
PLoS ONE  2015;10(2):e0117485.
Vibrio parahaemolyticus is an important human pathogen whose transmission is associated with the consumption of contaminated seafood. Consistent multilocus sequence typing for V. parahaemolyticus has shown difficulties in the amplification of the recA gene by PCR associated with a lack of amplification or a larger PCR product than expected. In one strain (090–96, Peru, 1996), the produced PCR product was determined to be composed of two recA fragments derived from different Vibrio species. To better understand this phenomenon, we sequenced the whole genome of this strain. The hybrid recA gene was found to be the result of a fragmentation of the original lineage-specific recA gene resulting from a DNA insertion of approximately 30 kb in length. This insert had a G+C content of 38.8%, lower than that of the average G+C content of V. parahaemolyticus (45.2%), and contained 19 ORFs, including a complete recA gene. This new acquired recA gene deviated 24% in sequence from the original recA and was distantly related to recA genes from bacteria of the Vibrionaceae family. The reconstruction of the original recA gene (recA3) identified the precursor as belonging to ST189, a sequence type reported previously only in Asian countries. The identification of this singular genetic feature in strains from Asia reveals new evidence for genetic connectivity between V. parahaemolyticus populations at both sides of the Pacific Ocean that, in addition to the previously described pandemic clone, supports the existence of a recurrent transoceanic spreading of pathogenic V. parahaemolyticus with the corresponding potential risk of pandemic expansion.
PMCID: PMC4334540  PMID: 25679989
9.  In Situ Evaluation of Paenibacillus alvei in Reducing Carriage of Salmonella enterica Serovar Newport on Whole Tomato Plants 
Applied and Environmental Microbiology  2014;80(13):3842-3849.
Recently, tomatoes have been implicated as a primary vehicle in food-borne outbreaks of Salmonella enterica serovar Newport and other Salmonella serovars. Long-term intervention measures to reduce Salmonella prevalence on tomatoes remain elusive for growing and postharvest environments. A naturally occurring bacterium identified by 16S rRNA gene sequencing as Paenibacillus alvei was isolated epiphytically from plants native to the Virginia Eastern Shore tomato-growing region. After initial antimicrobial activity screening against Salmonella and 10 other bacterial pathogens associated with the human food supply, strain TS-15 was further used to challenge an attenuated strain of S. Newport on inoculated fruits, leaves, and blossoms of tomato plants in an insect-screened high tunnel with a split-plot design. Survival of Salmonella after inoculation was measured for groups with and those without the antagonist at days 0, 1, 2, and 3 and either day 5 for blossoms or day 6 for fruits and leaves. Strain TS-15 exhibited broad-range antimicrobial activity against both major food-borne pathogens and major bacterial phytopathogens of tomato. After P. alvei strain TS-15 was applied onto the fruits, leaves, and blossoms of tomato plants, the concentration of S. Newport declined significantly (P ≤ 0.05) compared with controls. Astonishingly, >90% of the plants had no detectable levels of Salmonella by day 5 for blossoms. The naturally occurring antagonist strain TS-15 is highly effective in reducing the carriage of Salmonella Newport on whole tomato plants. The application of P. alvei strain TS-15 is a promising approach for reducing the risk of Salmonella contamination during tomato production.
PMCID: PMC4054204  PMID: 24747888
10.  Enhanced Subtyping Scheme for Salmonella Enteritidis 
Emerging Infectious Diseases  2007;13(12):1932-1935.
To improve pulsed-field gel electrophoresis–based strain discrimination of 76 Salmonella Enteritidis strains, we evaluated 6 macro-restriction endonucleases, separately and in various combinations. One 3-enzyme subset, SfiI/PacI/NotI, was highly discriminatory. Five different indices, including the Simpson diversity index, supported this 3-enzyme combination for improved differentiation of S. Enteritidis.
PMCID: PMC2876743  PMID: 18258051
Salmonella Enteritidis; subtyping; differentiation; pulsed-field gel electrophoresis; molecular epidemiology; clone; restriction endonuclease; genetic diversity; dispatch
11.  Draft Genome Sequence of Bivalent Clostridium botulinum Strain IBCA10-7060, Encoding Botulinum Neurotoxin B and a New FA Mosaic Type 
Genome Announcements  2014;2(6):e01275-14.
Here we report the genome sequence of a Clostridium botulinum strain IBCA10-7060 producing botulinum neurotoxin serotype B and a new toxin serotype. Multilocus sequence typing analysis revealed that this strain belongs to a new sequence type, and whole-genome single nucleotide polymorphism analysis showed that this strain clustered with strains in lineage 2 from group I.
PMCID: PMC4263833  PMID: 25502671
12.  Genetic Diversity and Evolution of Salmonella enterica Serovar Enteritidis Strains with Different Phage Types 
Journal of Clinical Microbiology  2014;52(5):1490-1500.
Phage typing has been used for the epidemiological surveillance of Salmonella enterica serovar Enteritidis for over 2 decades. However, knowledge of the genetic and evolutionary relationships between phage types is very limited, making differences difficult to interpret. Here, single nucleotide polymorphisms (SNPs) identified from whole-genome comparisons were used to determine the relationships between some S. Enteritidis phage types (PTs) commonly associated with food-borne outbreaks in the United States. Emphasis was placed on the predominant phage types PT8, PT13a, and PT13 in North America. With >89,400 bp surveyed across 98 S. Enteritidis isolates representing 14 distinct phage types, 55 informative SNPs were discovered within 23 chromosomally anchored loci. To maximize the discriminatory and evolutionary partitioning of these highly homogeneous strains, sequences comprising informative SNPs were concatenated into a single combined data matrix and subjected to phylogenetic analysis. The resultant phylogeny allocated most S. Enteritidis isolates into two distinct clades (clades I and II) and four subclades. Synapomorphic (shared and derived) sets of SNPs capable of distinguishing individual clades/subclades were identified. However, individual phage types appeared to be evolutionarily disjunct when mapped to this phylogeny, suggesting that phage typing may not be valid for making phylogenetic inferences. Furthermore, the set of SNPs identified here represents useful genetic markers for strain differentiation of more clonal S. Enteritidis strains and provides core genotypic markers for future development of a SNP typing scheme with S. Enteritidis.
PMCID: PMC3993623  PMID: 24574287
13.  First Fully Closed Genome Sequence of Salmonella enterica subsp. enterica Serovar Cubana Associated with a Food-Borne Outbreak 
Genome Announcements  2014;2(5):e01112-14.
Salmonella enterica subsp. enterica serovar Cubana (Salmonella serovar Cubana) is associated with human and animal disease. Here, we used third-generation, single-molecule, real-time DNA sequencing to determine the first complete genome sequence of Salmonella serovar Cubana CFSAN002050, which was isolated from fresh alfalfa sprouts during a multistate outbreak in 2012.
PMCID: PMC4214993  PMID: 25359917
14.  Differentiation of Salmonella strains from the SARA, SARB and SARC reference collections by using three genes PCR-RFLP and the 2100 Agilent Bioanalyzer 
Rapid molecular typing methods are important tools in surveillance and outbreak investigations of human Salmonella infections. Here we described the development of a three-genes PCR-RFLP typing method for the differentiation of Salmonella species, subspecies and serovars using the Agilent 2100 Bioanalyzer. The fliC, gnd, and mutS genes were PCR-amplified in 160 Salmonella strains representing the two Salmonella species, six subspecies, and 41 different serovars of S. enterica subspecies enterica. PCR products were individually cut with two different restriction enzymes and the resulting 930 restriction patterns were collected using the Agilent 2100 Bioanalyzer followed by cluster analysis. Both species of Salmonella were differentiated by conventional PCR. All of S. bongori tested were gnd PCR negative due to a mismatch at the 3′-end in one the PCR primers. Salmonella subspecies were differentiated into third-teen homogeneous groups representing each of the six subspecies by cluster analysis of restriction patterns generated from the mutS gene cut with AciI. S. enterica subspecies enterica serovars were further differentiated by the combination of the three target genes and five out the six sets of restriction patterns with a discriminatory power of 0.9725 by cluster analysis. The combined RFLP results of five sets of restriction patterns allowed us to assign each of the 160 strains to one of 128 restriction types. During inoculation studies we were able to identify S. Saintpaul and Typhimurium from 24 h pre-enrichment samples using the described method. The use of fliC, gnd, and mutS PCR-RFLP with the Agilent 2100 Bioanalyzer can provide an accessible and automated alternative method for differentiation of Salmonella pathogens.
PMCID: PMC4127528  PMID: 25157247
Salmonella enterica; Bioanalyzer; PCR-RFLP; restriction type; reference collection
15.  Draft Genome Sequences of Clinical Vibrio parahaemolyticus Strains Isolated in Maryland (2010–2013) 
Genome Announcements  2014;2(4):e00776-14.
Vibrio parahaemolyticus is the leading cause of food-borne illnesses associated with the consumption of raw shellfish worldwide. Here, we report 45 draft genomes of V. parahaemolyticus. Thirty-five of them are strains that were isolated from clinical cases in the state of Maryland from 2010 to 2013. The remaining 10 strains were historical isolates, isolated mostly from the West Coast of the United States during the period of 1988 to 2004. The availability of these genomes will allow for future phylogenetic analyses with other V. parahaemolyticus strains.
PMCID: PMC4125775  PMID: 25103764
16.  Rapid Whole-Genome Sequencing for Surveillance of Salmonella enterica Serovar Enteritidis 
Emerging Infectious Diseases  2014;20(8):1306-1314.
For Salmonella enterica serovar Enteritidis, 85% of isolates can be classified into 5 pulsed-field gel electrophoresis (PFGE) types. However, PFGE has limited discriminatory power for outbreak detection. Although whole-genome sequencing has been found to improve discrimination of outbreak clusters, whether this procedure can be used in real-time in a public health laboratory is not known. Therefore, we conducted a retrospective and prospective analysis. The retrospective study investigated isolates from 1 confirmed outbreak. Additional cases could be attributed to the outbreak strain on the basis of whole-genome data. The prospective study included 58 isolates obtained in 2012, including isolates from 1 epidemiologically defined outbreak. Whole-genome sequencing identified additional isolates that could be attributed to the outbreak, but which differed from the outbreak-associated PFGE type. Additional putative outbreak clusters were detected in the retrospective and prospective analyses. This study demonstrates the practicality of implementing this approach for outbreak surveillance in a state public health laboratory.
PMCID: PMC4111163  PMID: 25062035
Salmonella enterica serovar Enteritidis; bacteria; high-throughput nucleotide sequencing; whole-genome sequencing; pulsed-field gel electrophoresis; infectious disease outbreaks; public health laboratory surveillance
17.  Complete Genome Sequences of Salmonella enterica Serovar Heidelberg Strains Associated with a Multistate Food-Borne Illness Investigation 
Genome Announcements  2014;2(3):e01154-13.
Next-generation sequencing is being evaluated for use with food-borne illness investigations, especially when the outbreak strains produce patterns that cannot be discriminated from non-outbreak strains using conventional procedures. Here we report complete genome assemblies of two Salmonella enterica serovar Heidelberg strains with a common pulsed-field gel electrophoresis pattern isolated during an outbreak investigation.
PMCID: PMC4047461  PMID: 24903882
18.  The evolutionary history and diagnostic utility of the CRISPR-Cas system within Salmonella enterica ssp. enterica 
PeerJ  2014;2:e340.
Evolutionary studies of clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (cas) genes can provide insights into host-pathogen co-evolutionary dynamics and the frequency at which different genomic events (e.g., horizontal vs. vertical transmission) occur. Within this study, we used whole genome sequence (WGS) data to determine the evolutionary history and genetic diversity of CRISPR loci and cas genes among a diverse set of 427 Salmonella enterica ssp. enterica isolates representing 64 different serovars. We also evaluated the performance of CRISPR loci for typing when compared to whole genome and multilocus sequence typing (MLST) approaches. We found that there was high diversity in array length within both CRISPR1 (median = 22; min = 3; max = 79) and CRISPR2 (median = 27; min = 2; max = 221). There was also much diversity within serovars (e.g., arrays differed by as many as 50 repeat-spacer units among Salmonella ser. Senftenberg isolates). Interestingly, we found that there are two general cas gene profiles that do not track phylogenetic relationships, which suggests that non-vertical transmission events have occurred frequently throughout the evolutionary history of the sampled isolates. There is also considerable variation among the ranges of pairwise distances estimated within each cas gene, which may be indicative of the strength of natural selection acting on those genes. We developed a novel clustering approach based on CRISPR spacer content, but found that typing based on CRISPRs was less accurate than the MLST-based alternative; typing based on WGS data was the most accurate. Notwithstanding cost and accessibility, we anticipate that draft genome sequencing, due to its greater discriminatory power, will eventually become routine for traceback investigations.
PMCID: PMC3994646  PMID: 24765574
Salmonella; Horizontal gene transfer; Evolution; CRISPR; Outbreak; Phylogeny; Whole genome sequencing; Typing
21.  Pandemic Vibrio parahaemolyticus, Maryland, USA, 2012 
Emerging Infectious Diseases  2014;20(4):718-720.
PMCID: PMC3966373  PMID: 24655659
bacteria; pandemic; Vibrio parahaemolyticus; Maryland; USA; United States; cross contamination; food preparation; traceback; PFGE pattern; pulsed-field gel electrophoresis pattern; seafood; epidemiology; gastroenteritis
22.  Complete Genome Sequence of a Multidrug-Resistant Salmonella enterica Serovar Typhimurium var. 5− Strain Isolated from Chicken Breast 
Genome Announcements  2013;1(6):e01068-13.
Salmonella enterica subsp. enterica serovar Typhimurium is a leading cause of salmonellosis. Here, we report a closed genome sequence, including sequences of 3 plasmids, of Salmonella serovar Typhimurium var. 5− CFSAN001921 (National Antimicrobial Resistance Monitoring System [NARMS] strain ID N30688), which was isolated from chicken breast meat and shows resistance to 10 different antimicrobials. Whole-genome and plasmid sequence analyses of this isolate will help enhance our understanding of this pathogenic multidrug-resistant serovar.
PMCID: PMC3868858  PMID: 24356834
23.  Phylogenomic Analysis Identifies Gene Gains That Define Salmonella enterica Subspecies I 
PLoS ONE  2013;8(10):e76821.
Comparative methods for analyzing whole genome sequence (WGS) data enable us to assess the genetic information available for reconstructing the evolutionary history of pathogens. We used the comparative approach to determine diagnostic genes for Salmonella enterica subspecies I. S. enterica subsp. I strains are known to infect warm-blooded organisms regularly while its close relatives tend to infect only cold-blooded organisms. We found 71 genes gained by the common ancestor of Salmonella enterica subspecies I and not subsequently lost by any member of this subspecies sequenced to date. These genes included many putative functional phenotypes. Twenty-seven of these genes are found only in Salmonella enterica subspecies I; we designed primers to test these genes for use as diagnostic sequence targets and data mined the NCBI Sequence Read Archive (SRA) database for draft genomes which carried these genes. We found that the sequence specificity and variability of these amplicons can be used to detect and discriminate among 317 different serovars and strains of Salmonella enterica subspecies I.
PMCID: PMC3810377  PMID: 24204679
24.  Phylogenetic Diversity of the Enteric Pathogen Salmonella enterica subsp. enterica Inferred from Genome-Wide Reference-Free SNP Characters 
Genome Biology and Evolution  2013;5(11):2109-2123.
The enteric pathogen Salmonella enterica is one of the leading causes of foodborne illness in the world. The species is extremely diverse, containing more than 2,500 named serovars that are designated for their unique antigen characters and pathogenicity profiles—some are known to be virulent pathogens, while others are not. Questions regarding the evolution of pathogenicity, significance of antigen characters, diversity of clustered regularly interspaced short palindromic repeat (CRISPR) loci, among others, will remain elusive until a strong evolutionary framework is established. We present the first large-scale S. enterica subsp. enterica phylogeny inferred from a new reference-free k-mer approach of gathering single nucleotide polymorphisms (SNPs) from whole genomes. The phylogeny of 156 isolates representing 78 serovars (102 were newly sequenced) reveals two major lineages, each with many strongly supported sublineages. One of these lineages is the S. Typhi group; well nested within the phylogeny. Lineage-through-time analyses suggest there have been two instances of accelerated rates of diversification within the subspecies. We also found that antigen characters and CRISPR loci reveal different evolutionary patterns than that of the phylogeny, suggesting that a horizontal gene transfer or possibly a shared environmental acquisition might have influenced the present character distribution. Our study also shows the ability to extract reference-free SNPs from a large set of genomes and then to use these SNPs for phylogenetic reconstruction. This automated, annotation-free approach is an important step forward for bacterial disease tracking and in efficiently elucidating the evolutionary history of highly clonal organisms.
PMCID: PMC3845640  PMID: 24158624
H antigens; serovar; O antigens; CRISPR; lineage-through-time plot; comparative method
25.  Draft Genome Sequences of Two O104:H21 Escherichia coli Isolates Causing Hemorrhagic Colitis during a 1994 Montana Outbreak Provide Insight into Their Pathogenicity 
Genome Announcements  2013;1(5):e00805-13.
We sequenced the genomes of two strains of O104:H21 enterohemorrhagic Escherichia coli (EHEC) isolated during an outbreak of hemorrhagic colitis in Montana in 1994. These strains carried a plasmid that contains several virulence genes not present in pO157. The genome sequences will improve phylogenetic analysis of other non-O157 E. coli strains in the future.
PMCID: PMC3790099  PMID: 24092795

Results 1-25 (44)