Search tips
Search criteria

Results 1-25 (51)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Molecular mechanism and function of CD40/CD40L engagement in the immune system 
Immunological reviews  2009;229(1):10.1111/j.1600-065X.2009.00782.x.
During the generation of a successful adaptive immune response, multiple molecular signals are required. A primary signal is the binding of cognate antigen to an antigen receptor expressed by T and B lymphocytes. Multiple secondary signals involve the engagement of costimulatory molecules expressed by T and B lymphocytes with their respective ligands. Because of its essential role in immunity, one of the best characterized of the costimulatory molecules is the receptor CD40. This receptor, a member of the tumor necrosis factor receptor family, is expressed by B cells, professional antigen-presenting cells, as well as non-immune cells and tumors. CD40 binds its ligand CD40L, which is transiently expressed on T cells and other non-immune cells under inflammatory conditions. A wide spectrum of molecular and cellular processes is regulated by CD40 engagement including the initiation and progression of cellular and humoral adaptive immunity. In this review, we describe the downstream signaling pathways initiated by CD40 and overview how CD40 engagement or antagonism modulates humoral and cellular immunity. Lastly, we discuss the role of CD40 as a target in harnessing anti-tumor immunity. This review underscores the essential role CD40 plays in adaptive immunity.
PMCID: PMC3826168  PMID: 19426221
CD40; CD40L; tumor necrosis family; TRAF proteins; humoral immunity; cellular immunity; graft tolerance; tumor immunity
2.  Mast cell mediators in tolerance 
Current opinion in immunology  2010;22(5):10.1016/j.coi.2010.08.015.
Our knowledge on the function of mast cells (MC) as part of the immune system has expanded from ‘key cells in mediating allergy’ to ‘tunable regulators of the immune response’. Over the past years however, a large body of evidence has been presented indicating a more regulatory role for MC in the immune system by both contact dependent and independent mechanisms. Considering the vast amount of soluble mediators released by MC, it is not surprising that some are involved in the maintenance of peripheral tolerance and the control or even help to resolve ongoing inflammation. In this review we will focus on the immunosuppressive function of some of these mediators produced by MC in a wide variety of disease models.
PMCID: PMC3809014  PMID: 20884193
3.  Mast cells impair the development of protective anti-tumor immunity 
Cancer immunology, immunotherapy : CII  2012;61(12):10.1007/s00262-012-1276-7.
Mast cells have emerged as critical intermediaries in the regulation of peripheral tolerance. Their presence in many precancerous lesions and tumors is associated with a poor prognosis, suggesting mast cells may promote an immunosuppressive tumor microenvironment and impede the development of protective anti-tumor immunity. The studies presented herein investigate how mast cells influence tumor-specific T cell responses. Male MB49 tumor cells, expressing HY antigens, induce anti-tumor IFN-γ+ T cell responses in female mice. However, normal female mice cannot control progressive MB49 tumor growth. In contrast, mast cell-deficient c-KitWsh (Wsh) female mice controlled tumor growth and exhibited enhanced survival. The role of mast cells in curtailing the development of protective immunity was shown by increased mortality in mast cell-reconstituted Wsh mice with tumors. Confirmation of enhanced immunity in female Wsh mice was provided by (1) higher frequency of tumor specific IFN-γ+ CD8+ T cells in tumor-draining lymph nodes compared with WT females and (2) significantly increased ratios of intratumoral CD4+ and CD8+ T effector cells relative to tumor cells in Wsh mice compared to WT. These studies are the first to reveal that mast cells impair both regional adaptive immune responses and responses within the tumor microenvironment to diminish protective anti-tumor immunity.
PMCID: PMC3808181  PMID: 22684520
4.  A Retinoic Acid—Rich Tumor Microenvironment Provides Clonal Survival Cues for Tumor-Specific CD8+ T Cells 
Cancer research  2012;72(20):5230-5239.
While vitamin A has been implicated in host resistance to infectious disease, little is known about the role of vitamin A and its active metabolite, retinoic acid (RA) in host defenses against cancer. Here, we show that local RA production within the tumor microenvironment (TME) is increased up to 5-fold as compared with naïve surrounding tissue, with a commensurate increase in RA signaling to regionally infiltrating tumor-reactive T cells. Conditional disruption of RA signaling in CD8+ T cells using a dominant negative retinoic acid receptor α (dnRARα) established that RA signaling is required for tumor-specific CD8+ T-cell expansion/accumulation and protective antitumor immunity. In vivo analysis of antigen-specific CD8+ T-cell responses revealed that early T-cell expansion was RA-independent; however, late T-cell expansion and clonal accumulation was suppressed strongly in the absence of RA signaling. Our findings indicate that RA function is essential for the survival of tumor-reactive CD8+ T cells within the TME.
PMCID: PMC3766319  PMID: 22902413
5.  Strategies for Selective Priming of Memory B cells 
Immunology letters  2007;109(2):93-100.
Long-term humoral immunity elicited by pathogens and vaccines alike relies upon the generation of both memory B cells (Bmem) and long-lived plasma cells (PCs). Virtually all vaccine formulations induce the concomitant emergence of both Bmem and PCs, suggesting that the emergence of these two differentiated B cells subsets is commonly controlled. Evidence presented shows specific Toll-like Receptor (TLR) agonists coupled with soluble protein antigen (sAg) can selectively induce the expansion of antigen specific Bmem in the absence of PC generation. The co-administration of either TLR 3 or 9 agonists with sAg induced germinal centre (GC) formation, antigen-specific Bmem, but failed to substantively induce the generation of long-lived bone marrow (BM) PCs. Upon re-challenge, high levels of PCs were induced with concomitant high titres of antigen-specific serum IgG. Hence, vaccines can be developed that can prime and protect the host to subsequent infectious agents without initial, high levels of antibody production. Furthermore, these studies suggest that the signals that govern the expansion and differentiation of Bmem can be uncoupled from those that induce long-lived BM PCs.
PMCID: PMC3757542  PMID: 17374402
Memory B cell; Vaccine; Adjuvant; TLRs; B Cell Differentiation
6.  Tryptophan hydroxylase-1 regulates immune tolerance and inflammation 
The Journal of Experimental Medicine  2012;209(11):2127-2135.
Tryptophan hydroxylase deficiency in mast cells breaks allograft tolerance, induces tumor remission, and intensifies neuroinflammation.
Nutrient deprivation based on the loss of essential amino acids by catabolic enzymes in the microenvironment is a critical means to control inflammatory responses and immune tolerance. Here we report the novel finding that Tph-1 (tryptophan hydroxylase-1), a synthase which catalyses the conversion of tryptophan to serotonin and exhausts tryptophan, is a potent regulator of immunity. In models of skin allograft tolerance, tumor growth, and experimental autoimmune encephalomyelitis, Tph-1 deficiency breaks allograft tolerance, induces tumor remission, and intensifies neuroinflammation, respectively. All of these effects of Tph-1 deficiency are independent of its downstream product serotonin. Because mast cells (MCs) appear to be the major source of Tph-1 and restoration of Tph-1 in the MC compartment in vivo compensates for the defect, these experiments introduce a fundamentally new mechanism of MC-mediated immune suppression that broadly impacts multiple arms of immunity.
PMCID: PMC3478935  PMID: 23008335
7.  All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation 
The Journal of Experimental Medicine  2007;204(8):1765-1774.
We demonstrate that all-trans retinoic acid (RA) induces FoxP3+ adaptive T regulatory cells (A-Tregs) to acquire a gut-homing phenotype (α4β7+ CC chemokine receptor 9+) and the capacity to home to the lamina propria of the small intestine. Under conditions that favor the differentiation of A-Tregs (transforming growth factor–β1 and interleukin 2) in vitro, the inclusion of RA induces nearly all activated CD4+ T cells to express FoxP3 and greatly increases the accumulation of these cells. In the absence of RA, A-Treg differentiation is abruptly impaired by proficient antigen presenting cells or through direct co-stimulation. In the presence of RA, A-Treg generation occurs even in the presence of high levels of co-stimulation, with RA attenuating co-stimulation from interfering from FoxP3 induction. The recognition that RA induces gut imprinting, together with our finding that it enhances A-Treg conversion, differentiation, and expansion, indicates that RA production in vivo may drive both the imprinting and A-Treg development in the face of overt inflammation.
PMCID: PMC2118687  PMID: 17620363
8.  Critical role for all-trans retinoic acid for optimal effector and effector memory CD8 T cell differentiation1 
A plethora of work implicates important effects of the Vitamin A derivative, retinoic acid (RA), in myeloid differentiation, while fewer studies explore the role of RA on lymphoid cells. Most work on lymphoid cells has focused on the influence of RA on CD4 T cells. There is little information about the role of RA in CD8 T cell differentiation, and even less on cell-intrinsic effects in the CD8 T cell. This study explores the role of RA on effector and memory differentiation in a cell intrinsic manner in the context of vaccinia virus infection. We observed the loss of the short-lived effector cell phenotype (reduced KLRG1+, T-bethi, granzyme Bhi), accompanied by an enhanced memory precursor phenotype at the effector (increased CD127hi, IL-2+) and contraction phase (increased CD127hi, IL-2+, eomesoderminhi) of the CD8 response in the absence of RA signaling. The lack of RA also increased the proportion of central memory CD8s. Collectively; these results introduce RA in a new role in CD8 T cell activation and differentiation. This may have significant implication in optimal vaccine design where Vitamin A supplementation is used to augment effector responses, but this may be to the detriment of the long-term central memory response.
PMCID: PMC3578118  PMID: 23338237
9.  Interleukin-9 and T cell subsets 
Cell cycle (Georgetown, Tex.)  2009;8(23):3798-3799.
PMCID: PMC3826157  PMID: 19934658
10.  Retinoic Acid in the Immune System 
Annals of the New York Academy of Sciences  2008;1143:10.1196/annals.1443.017.
On occasion, emerging scientific fields intersect and great discoveries result. In the last decade, the discovery of regulatory T cells (Treg) in immunity has revolutionized our understanding of how the immune system is controlled. Intersecting the rapidly emerging field of Treg function, has been the discovery that retinoic acid (RA) controls both the homing and differentiation of Treg. Instantly, the wealth and breadth of knowledge of the molecular basis for RA action, its receptors, and how it controls cellular differentiation can and will be exploited to understand its profound effects on Treg. Historically, vitamin A deprivation and repletion and RA agonists have been shown to profoundly affect immunity. Now these findings can be interpreted in light of the revelations that RA controls leukocyte homing and Treg function.
PMCID: PMC3826166  PMID: 19076350
vitamin A; retinoic acid; immune system; tolerance
11.  Mast Cells Condition Dendritic Cells to Mediate Allograft Tolerance 
Immunity  2011;35(4):550-561.
Peripheral tolerance orchestrated by regulatory T cells, dendritic cells (DCs), and mast cells (MCs) has been studied in several models including skin allograft tolerance. We now define a role for MCs in controlling DC behavior (“conditioning”) to facilitate tolerance. Under tolerant conditions, we show that MCs mediated a marked increase in tumor necrosis factor (TNFα)-dependent accumulation of graft-derived DCs in the dLN compared to nontolerant conditions. This increase of DCs in the dLN is due to the local production of granulocyte macrophage colony-stimulating factor (GM-CSF) by MCs that induces a survival advantage of graft-derived DCs. DCs that migrated to the dLN from the tolerant allograft were tolerogenic; i.e., they dominantly suppress T cell responses and control regional immunity. This study underscores the importance of MCs in conditioning DCs to mediate peripheral tolerance and shows a functional impact of peripherally produced TNFα and GM-CSF on the migration and function of tolerogenic DCs.
PMCID: PMC3753083  PMID: 22035846
12.  A retinoic acid–dependent checkpoint in the development of CD4+ T cell–mediated immunity 
The Journal of Experimental Medicine  2011;208(9):1767-1775.
Immune cell activation induces concurrent temporal and spatial retinoic acid signaling, and CD4+ T cell–specific loss of RA signals reduces effector function, migration, and polarity.
It is known that vitamin A and its metabolite, retinoic acid (RA), are essential for host defense. However, the mechanisms for how RA controls inflammation are incompletely understood. The findings presented in this study show that RA signaling occurs concurrent with the development of inflammation. In models of vaccination and allogeneic graft rejection, whole body imaging reveals that RA signaling is temporally and spatially restricted to the site of inflammation. Conditional ablation of RA signaling in T cells significantly interferes with CD4+ T cell effector function, migration, and polarity. These findings provide a new perspective of the role of RA as a mediator directly controlling CD4+ T cell differentiation and immunity.
PMCID: PMC3171100  PMID: 21859847
13.  VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses 
VISTA suppresses T cell proliferation and cytokine production and can influence autoimmunity and antitumor responses in mice.
The immunoglobulin (Ig) superfamily consists of many critical immune regulators, including the B7 family ligands and receptors. In this study, we identify a novel and structurally distinct Ig superfamily inhibitory ligand, whose extracellular domain bears homology to the B7 family ligand PD-L1. This molecule is designated V-domain Ig suppressor of T cell activation (VISTA). VISTA is primarily expressed on hematopoietic cells, and VISTA expression is highly regulated on myeloid antigen-presenting cells (APCs) and T cells. A soluble VISTA-Ig fusion protein or VISTA expression on APCs inhibits T cell proliferation and cytokine production in vitro. A VISTA-specific monoclonal antibody interferes with VISTA-induced suppression of T cell responses by VISTA-expressing APCs in vitro. Furthermore, anti-VISTA treatment exacerbates the development of the T cell–mediated autoimmune disease experimental autoimmune encephalomyelitis in mice. Finally, VISTA overexpression on tumor cells interferes with protective antitumor immunity in vivo in mice. These findings show that VISTA, a novel immunoregulatory molecule, has functional activities that are nonredundant with other Ig superfamily members and may play a role in the development of autoimmunity and immune surveillance in cancer.
PMCID: PMC3058578  PMID: 21383057
15.  Distinction of the memory B cell response to cognate antigen versus bystander inflammatory signals 
The Journal of Experimental Medicine  2009;206(9):2013-2025.
The hypothesis that bystander inflammatory signals promote memory B cell (BMEM) self-renewal and differentiation in an antigen-independent manner is critically evaluated herein. To comprehensively address this hypothesis, a detailed analysis is presented examining the response profiles of B-2 lineage B220+IgG+ BMEM toward cognate protein antigen in comparison to bystander inflammatory signals. After in vivo antigen encounter, quiescent BMEM clonally expand. Surprisingly, proliferating BMEM do not acquire germinal center (GC) B cell markers before generating daughter BMEM and differentiating into plasma cells or form structurally identifiable GCs. In striking contrast to cognate antigen, inflammatory stimuli, including Toll-like receptor agonists or bystander T cell activation, fail to induce even low levels of BMEM proliferation or differentiation in vivo. Under the extreme conditions of adjuvanted protein vaccination or acute viral infection, no detectable bystander proliferation or differentiation of BMEM occurred. The absence of a BMEM response to nonspecific inflammatory signals clearly shows that BMEM proliferation and differentiation is a process tightly controlled by the availability of cognate antigen.
PMCID: PMC2737154  PMID: 19703988
16.  Affinity of antigen encounter and other early B-cell signals determine B-cell fate 
Current opinion in immunology  2007;19(3):275-280.
Three possible effector fates await the naïve follicular B cell following antigen stimulation in thymus-dependent reactions. Short-lived plasma cells produce an initial burst of germline-encoded protective antibodies, and long-lived plasma cells and memory B cells arise from the germinal center and function to enhance and sustain the humoral immune response. The inherent B-cell receptor affinity of naïve follicular B cells and the contribution of other early B-cell signals pre-determines the pattern of transcription factor expression and the differentiation path taken by these cells. High initial B-cell receptor affinity shunts naïve follicular B-cell clones towards the short-lived plasma cell fate, whereas modest-affinity clones are skewed towards a plasma cell fate and low-affinity clones are recruited into the germinal center and are selected for both long-lived plasma cells and memory B cell pathways. In the germinal center reaction, increased levels of the transcription factor interferon regulatory factor-4 drive the molecular program that dictates differentiation into the long-lived plasma cell phenotype but has no impact on the memory B cell compartment. We hypothesize that graded interferon regulatory factor-4 levels driven by signals to B cells, including B-cell receptor signal strength, are responsible for this branch point in the B-cell terminal differentiation pathway.
PMCID: PMC2827202  PMID: 17433651
17.  B cell immunopoiesis: visualizing the impact of CD40 engagement on the course of T cell-independent immune responses in an Ig transgenic system 
European journal of immunology  2000;30(11):3121-3131.
This study tracks the fate of antigen-reactive B cells through follicular and extrafollicular responses and addresses the function of CD40 in these processes. The unique feature of this system is the use of transgenic B cells in which the heavy chain locus has been altered by site-directed insertion of a rearranged VH DJH exon such that they are able to clonally expand, isotype-switch and follow a normal course of differentiation upon immunization. These Ig transgenic B cells when adoptively transferred into non-transgenic (Tg) mice in measured amounts expanded and differentiated distinctively in response to T cell-independent (TI) or T cell-dependent (TD) antigens. The capacity of these Tg B cells to faithfully recapitulate the humoral immune response to TI and TD antigens provides the means to track clonal B cell behavior in vivo. Challenge with TI antigen in the presence of agonistic anti-CD40 mAb resulted in well-defined alterations of the TI response. In vivo triggering of Tg B cells with TI antigen and CD40 caused an increase in the levels IgG produced and a broadening of the Ig isotype profile, characteristics which partially mimic TD responses. Although some TD characteristics were induced by TI antigen and CD40 triggering, the Tg B cells failed to acquire a germinal center phenotype and failed to generate a memory response. Therefore, TD-like immunity can be only partially reconstituted with CD40 agonists and TI antigens, suggesting that there are additional signals required for germinal center formation and development of memory.
PMCID: PMC2827196  PMID: 11093126
B lymphocyte; Isotype switching; Memory; Adoptive transfer; Transgenic mouse
18.  IL-9 as a mediator of Th17-driven inflammatory disease 
The Journal of Experimental Medicine  2009;206(8):1653-1660.
We report that like other T cells cultured in the presence of transforming growth factor (TGF) β, Th17 cells also produce interleukin (IL) 9. Th17 cells generated in vitro with IL-6 and TGF-β as well as purified ex vivo Th17 cells both produced IL-9. To determine if IL-9 has functional consequences in Th17-mediated inflammatory disease, we evaluated the role of IL-9 in the development and progression of experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. The data show that IL-9 neutralization and IL-9 receptor deficiency attenuates disease, and this correlates with decreases in Th17 cells and IL-6–producing macrophages in the central nervous system, as well as mast cell numbers in the regional lymph nodes. Collectively, these data implicate IL-9 as a Th17-derived cytokine that can contribute to inflammatory disease.
PMCID: PMC2722185  PMID: 19596803
19.  BCMA Is Essential for the Survival of Long-lived Bone Marrow Plasma Cells 
Long-lived humoral immunity is manifested by the ability of bone marrow plasma cells (PCs) to survive for extended periods of time. Recent studies have underscored the importance of BLyS and APRIL as factors that can support the survival of B lineage lymphocytes. We show that BLyS can sustain PC survival in vitro, and this survival can be further enhanced by interleukin 6. Selective up-regulation of Mcl-1 in PCs by BLyS suggests that this α-apoptotic gene product may play an important role in PC survival. Blockade of BLyS, via transmembrane activator and cyclophilin ligand interactor–immunoglobulin treatment, inhibited PC survival in vitro and in vivo. Heightened expression of B cell maturation antigen (BCMA), and lowered expression of transmembrane activator and cyclophilin ligand interactor and BAFF receptor in PCs relative to resting B cells suggests a vital role of BCMA in PC survival. Affirmation of the importance of BCMA in PC survival was provided by studies in BCMA−/− mice in which the survival of long-lived bone marrow PCs was impaired compared with wild-type controls. These findings offer new insights into the molecular basis for the long-term survival of PCs.
PMCID: PMC1887725  PMID: 14707116
B lymphocyte subsets; antibody formation; cell differentiation; cell lineage; immunophenotyping
20.  Short-lived and Long-lived Bone Marrow Plasma Cells Are Derived from a Novel Precursor Population 
The contribution that long-lived bone marrow (BM) plasma cells (PCs) provide to enduring humoral immunity has been underscored by a number of recent studies. However, little is known about the immediate precursors that give rise to long-lived PCs in the BM of immune individuals. We have identified subsets of antigen-experienced B cells within the immune BM that are precursors to PCs. These PC precursors arise in the BM 14 days after immunization and persist for greater than 9 months. Phenotypically distinct subsets of PC precursors give rise to short-lived or long-lived PCs. The differentiation of PC precursors to PCs occurs in the absence of antigen and requires cell division. The functional significance of these newly identified PC precursors in the persistence and quality of the humoral immune response is discussed.
PMCID: PMC2193741  PMID: 11901199
B lymphocyte subsets; antibody formation; cell differentiation; cell lineage; immunophenotyping
21.  Short-circuiting long-lived humoral immunity by the heightened engagement of CD40 
Agonistic αCD40 Ab’s have been shown to be potent immune adjuvants for both cell- and humoral-mediated immunity. While enhancing short-lived humoral immunity, the administration of a CD40 agonist during thymus-dependent immune responses ablates germinal center formation, prematurely terminates the humoral immune response, blocks the generation of B cell memory, and prevents the generation of long-lived bone marrow plasma cells. Interestingly, some of these effects of heightened CD40 engagement could be mimicked by enhancing the magnitude of antigen-specific T cell help. Taken together, these studies demonstrate that as the magnitude of CD40 signaling intensifies, the fate of antigen-reactive B cells can be dramatically altered. These are the first studies to describe the multifaceted function of CD40 in determining the fate of antigen-reactive B cells and provide novel insights into how CD40 agonists can short-circuit humoral immunity.
PMCID: PMC150892  PMID: 11877469
22.  Retinoic Acid Is Essential for Th1 Cell Lineage Stability and Prevents Transition to a Th17 Cell Program 
Immunity  2015;42(3):499-511.
CD4+ T cells differentiate into phenotypically distinct T helper cells upon antigenic stimulation. Regulation of plasticity between these CD4+ T-cell lineages is critical for immune homeostasis and prevention of autoimmune disease. However, the factors that regulate lineage stability are largely unknown. Here we investigate a role for retinoic acid (RA) in the regulation of lineage stability using T helper 1 (Th1) cells, traditionally considered the most phenotypically stable Th subset. We found that RA, through its receptor RARα, sustains stable expression of Th1 lineage specifying genes, as well as repressing genes that instruct Th17-cell fate. RA signaling is essential for limiting Th1-cell conversion into Th17 effectors and for preventing pathogenic Th17 responses in vivo. Our study identifies RA-RARα as a key component of the regulatory network governing maintenance and plasticity of Th1-cell fate and defines an additional pathway for the development of Th17 cells.
Graphical Abstract
•Retinoic acid (RA) stabilizes Th1 fate commitment•Signaling through RA receptor α (RARα) activates enhancers of Th1-cell-lineage-specifying genes•RA-RARα represses Th17-cell genes in Th1 cells and constrains Th1-cell plasticity•RA-RARα prevents development of pathogenic Th17 cells in vivo
Maintenance of T helper (Th)-cell identity is critical for appropriate immune responses; however, the factors that regulate Th-cell plasticity are unresolved. Brown et al. show that retinoic-acid signaling confers Th1 cell stability and restrains their conversion to Th17 cells.
PMCID: PMC4372260  PMID: 25769610
23.  The Sequential Role of Lymphotoxin and B Cells in the Development of Splenic Follicles  
The Journal of Experimental Medicine  1998;187(7):997-1007.
The transfer of lymphocytes into severe combined immunodeficiency (SCID) mice induces a series of histological changes in the spleen, including the appearance of mature follicular dendritic cells (FDCs). Studies were undertaken to clarify the role of lymphotoxin (LT) in this process. The results show that SCID mice have a small and partially differentiated white pulp containing marginal zone and interdigitating dendritic cells, but lacking FDCs. Transferred spleen cells can segregate into T and B cell areas shortly after their injection to SCID mice. This ability is dependent on signaling through LT-β receptor (LT-βR), since blocking ligand–receptor interaction in recipient SCID mice ablates the capacity of the transferred cells to segregate. A week after lymphocyte transfer, host-derived FDCs appeared in the reconstituted SCID mice. This induction of FDCs is dependent on LT-βR signaling by B cells since LT-α−/− B cells are incapable of inducing development of FDCs in SCID mice, even after cotransfer of LT-α+/+ T cells. Therefore, LT plays at least two discrete roles in splenic organization. First, it appears that LT induces the differentiation of the white pulp to create sites for lymphocyte segregation. Second, LT expression by B cells drives the maturation of FDCs and the organization of B cell follicles.
PMCID: PMC2212214  PMID: 9529316
24.  Assembly and Regulation of the CD40 Receptor Complex in Human B Cells 
CD40 is a member of the tumor necrosis factor (TNF) receptor superfamily. Studies with human B cells show that the binding of CD154 (gp39, CD40L) to CD40 recruits TNF receptor– associated factor 2 (TRAF2) and TRAF3 to the receptor complex, induces the downregulation of the nonreceptor-associated TRAFs in the cell and induces an increased expression of Fas on the cell surface. Combined signaling through the interluekin 4 receptor and CD40 induces an increased expression of Fas with a commensurate increase in the level of TRAF2, but not TRAF3, that is recruited to the receptor complex. In contrast, engagement of the membrane immunoglobulin and CD40 limits Fas upregulation and reduces the recruitment of TRAF2, relative to TRAF3, to the CD40 receptor complex. These studies show that the TRAF composition of the CD40 receptor complex can be altered by signals that influence B cell differentiation.
PMCID: PMC2198982  PMID: 9221764
25.  B7 family checkpoint regulators in immune regulation and disease 
Trends in immunology  2013;34(11):10.1016/
Fine-tuning the immune response and maintaining tolerance to self antigens involves a complex network of co-stimulatory and co-inhibitory molecules. The recent FDA approval of ipilimumab, a monoclonal antibody blocking CTLA-4, demonstrates the impact of checkpoint regulators in disease. This is reinforced by ongoing clinical trials targeting not only CTLA-4, but also the PD-1 and B7-H4 pathways in various disease states. Recently two new B7 family inhibitory ligands, VISTA and B7-H6 were identified. Here we review recent understanding of B7 family members and their concerted regulation of the immune response to either self or foreign pathogens. We also discuss clinical developments in targeting these pathways in different disease settings, and introduce VISTA as a putative therapeutic target.
PMCID: PMC3821798  PMID: 23954143

Results 1-25 (51)