PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-16 (16)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Lower airway colonization and inflammatory response in COPD: a focus on Haemophilus influenzae 
Bacterial infection of the lower respiratory tract in chronic obstructive pulmonary disease (COPD) patients is common both in stable patients and during acute exacerbations. The most frequent bacteria detected in COPD patients is Haemophilus influenzae, and it appears this organism is uniquely adapted to exploit immune deficiencies associated with COPD and to establish persistent infection in the lower respiratory tract. The presence of bacteria in the lower respiratory tract in stable COPD is termed colonization; however, there is increasing evidence that this is not an innocuous phenomenon but is associated with airway inflammation, increased symptoms, and increased risk for exacerbations. In this review, we discuss host immunity that offers protection against H. influenzae and how disturbance of these mechanisms, combined with pathogen mechanisms of immune evasion, promote persistence of H. influenzae in the lower airways in COPD. In addition, we examine the role of H. influenzae in COPD exacerbations, as well as interactions between H. influenzae and respiratory virus infections, and review the role of treatments and their effect on COPD outcomes. This review focuses predominantly on data derived from human studies but will refer to animal studies where they contribute to understanding the disease in humans.
doi:10.2147/COPD.S54477
PMCID: PMC4206200  PMID: 25342897
chronic obstructive pulmonary disease; Haemophilus influenzae; nontypeable Haemophilus influenzae; respiratory viruses; vaccination
2.  Outgrowth of the Bacterial Airway Microbiome after Rhinovirus Exacerbation of Chronic Obstructive Pulmonary Disease 
Rationale: Rhinovirus infection is followed by significantly increased frequencies of positive, potentially pathogenic sputum cultures in chronic obstructive pulmonary disease (COPD). However, it remains unclear whether these represent de novo infections or an increased load of organisms from the complex microbial communities (microbiome) in the lower airways.
Objectives: To investigate the effect of rhinovirus infection on the airway bacterial microbiome.
Methods: Subjects with COPD (n = 14) and healthy control subjects with normal lung function (n = 17) were infected with rhinovirus. Induced sputum was collected at baseline before rhinovirus inoculation and again on Days 5, 15, and 42 after rhinovirus infection and DNA was extracted. The V3–V5 region of the bacterial 16S ribosomal RNA gene was amplified and pyrosequenced, resulting in 370,849 high-quality reads from 112 of the possible 124 time points.
Measurements and Main Results: At 15 days after rhinovirus infection, there was a sixfold increase in 16S copy number (P = 0.007) and a 16% rise in numbers of proteobacterial sequences, most notably in potentially pathogenic Haemophilus influenzae (P = 2.7 × 10-20), from a preexisting community. These changes occurred only in the sputum microbiome of subjects with COPD and were still evident 42 days after infection. This was in contrast to the temporal stability demonstrated in the microbiome of healthy smokers and nonsmokers.
Conclusions: After rhinovirus infection, there is a rise in bacterial burden and a significant outgrowth of Haemophilus influenzae from the existing microbiota of subjects with COPD. This is not observed in healthy individuals. Our findings suggest that rhinovirus infection in COPD alters the respiratory microbiome and may precipitate secondary bacterial infections.
doi:10.1164/rccm.201302-0341OC
PMCID: PMC3863728  PMID: 23992479
rhinovirus; chronic obstructive pulmonary disease; bacteria; microbiome
3.  Soluble Major Histocompatibility Complex Class I-Related Chain B Molecules Are Increased and Correlate With Clinical Outcomes During Rhinovirus Infection in Healthy Subjects 
Chest  2014;146(1):32-40.
BACKGROUND:
Surface major histocompatibility complex class I-related chain (MIC) A and B molecules are increased by IL-15 and have a role in the activation of natural killer group 2 member D-positive natural killer and CD8 T cells. MICA and MICB also exist in soluble forms (sMICA and sMICB). Rhinoviruses (RVs) are the major cause of asthma exacerbations, and IL-15 levels are decreased in the airways of subjects with asthma. The role of MIC molecules in immune responses in the lung has not been studied. Here, we determine the relationship between MICA and MICB and RV infection in vitro in respiratory epithelial cells and in vivo in healthy subjects and subjects with asthma.
METHODS:
Surface MICA and MICB, as well as sMICA and sMICB, in respiratory epithelial cells were measured in vitro in response to RV infection and exposure to IL-15. Levels of sMICA and sMICB in serum, sputum, and BAL were measured and correlated with blood and bronchoalveolar immune cells in healthy subjects and subjects with asthma before and during RV infection.
RESULTS:
RV increased MICA and MICB in vitro in epithelial cells. Exogenous IL-15 upregulated sMICB levels in RV-infected epithelial cells. Levels of sMICB molecules in serum were increased in healthy subjects compared with subjects with stable asthma. Following RV infection, airway levels of sMIC are upregulated, and there are positive correlations between sputum MICB levels and the percentage of bronchoalveolar natural killer cells in healthy subjects but not subjects with asthma.
CONCLUSIONS:
RV infection induces MIC molecules in respiratory epithelial cells in vitro and in vivo. Induction of MICB molecules is impaired in subjects with asthma, suggesting these molecules may have a role in the antiviral immune response to RV infections.
doi:10.1378/chest.13-2247
PMCID: PMC4077410  PMID: 24556715
4.  Airway Inflammation and Illness Severity in Response to Experimental Rhinovirus Infection in Asthma 
Chest  2014;145(6):1219-1229.
Background:
The nature of bronchial mucosal inflammation and its physiologic and clinical significance in rhinovirus-induced asthma exacerbations is unclear. We investigated bronchial mucosal inflammatory response and its association with physiologic and clinical outcomes in an experimental model of rhinovirus-induced asthma exacerbations.
Methods:
We used immunohistochemistry methods to detect phenotypes of inflammatory cells infiltrating the bronchial mucosa before and after experimental rhinovirus infection in 10 subjects with asthma and 15 normal subjects.
Results:
Compared with baseline, rhinovirus infection significantly increased the number of epithelial (P = .005) and subepithelial (P = .017) neutrophils in subjects with asthma only and subepithelial CD68+ macrophages in both subjects with asthma (P = .009) and normal subjects (P = .018) but more so in those with asthma (P = .021). Numbers of CD45+, CD68+, and CD20+ cells; neutrophils; and eosinophils at day 4 postinfection were positively associated with virus load (r = 0.50-0.72, P = .016-0.03). At acute infection in subjects with asthma, CD4+ cells correlated with chest symptom scores (r = 0.69, P = .029), the fall in the 10% fall in FEV1 (PC10) correlated with neutrophils (r = −0.89, P = .029), the PC10 correlated inversely with CD4+ (r = −0.67, P = .023) and CD8+ cells (r = −0.65, P = .03), the 20% fall in FEV1 was inversely associated with CD20+ cells (r = −0.65, P = .03), and higher epithelial CD8+ cell counts were significantly associated with a greater maximum fall in FEV1 (r = −0.72, P = .03), whereas higher subepithelial mast cell counts were significantly associated with a lower maximum percent fall in peak expiratory flow (r = 0.8, P = .024).
Conclusions:
In subjects with asthma, rhinovirus infection induces bronchial mucosal neutrophilia and more severe monocyte/macrophage infiltration than in normal subjects. Airway neutrophils, eosinophils, and T and B lymphocytes during infection are related to virus load and physiologic and clinical severity, whereas mast cells are related to greater lung function.
doi:10.1378/chest.13-1567
PMCID: PMC4042510  PMID: 24457412
5.  Lymphocyte subsets in experimental rhinovirus infection in chronic obstructive pulmonary disease☆ 
Respiratory Medicine  2014;108(1):78-85.
Summary
Background
COPD is associated with increased numbers of T cells in the lungs, particularly CD8+ T cells. The mechanisms of increased T cells are unknown but may be related to repeated virus infections in COPD patients. We analysed lymphocyte subsets in blood and bronchoalveolar lavage in smokers and COPD subjects during experimental rhinovirus infections.
Methods
Lymphocytes were isolated from blood and bronchoalveolar lavage from COPD subjects and non-obstructed smokers prior to, and following experimental rhinovirus infection. Lymphocyte surface markers and intracellular cytokines were analysed using flow cytometry.
Results
Following rhinovirus infection CD4+ and CD8+ T cell numbers in the COPD subjects were significantly reduced in blood and CD3+ and CD8+ T cells increased in bronchoalveolar lavage compared to baseline. T cells did not increase in BAL in the control subjects. CD3+ T cells correlated with virus load.
Conclusions
Following rhinovirus infection T cells move from the circulation to the lung. Repeated virus infections may contribute to T cell accumulation in COPD patients.
doi:10.1016/j.rmed.2013.09.010
PMCID: PMC3969590  PMID: 24099891
Chronic obstructive pulmonary disease; Acute exacerbations of COPD; Respiratory viruses; T lymphocytes
6.  Neutrophil adhesion molecules in experimental rhinovirus infection in COPD 
Respiratory Research  2013;14(1):72.
Background
COPD exacerbations are associated with neutrophilic airway inflammation. Adhesion molecules on the surface of neutrophils may play a key role in their movement from blood to the airways. We analysed adhesion molecule expression on blood and sputum neutrophils from COPD subjects and non-obstructed smokers during experimental rhinovirus infections.
Methods
Blood and sputum were collected from 9 COPD subjects and 10 smoking and age-matched control subjects at baseline, and neutrophil expression of the adhesion molecules and activation markers measured using flow cytometry. The markers examined were CD62L and CD162 (mediating initial steps of neutrophil rolling and capture), CD11a and CD11b (required for firm neutrophil adhesion), CD31 and CD54 (involved in neutrophil transmigration through the endothelial monolayer) and CD63 and CD66b (neutrophil activation markers). Subjects were then experimentally infected with rhinovirus-16 and repeat samples collected for neutrophil analysis at post-infection time points.
Results
At baseline there were no differences in adhesion molecule expression between the COPD and non-COPD subjects. Expression of CD11a, CD31, CD62L and CD162 was reduced on sputum neutrophils compared to blood neutrophils. Following rhinovirus infection expression of CD11a expression on blood neutrophils was significantly reduced in both subject groups. CD11b, CD62L and CD162 expression was significantly reduced only in the COPD subjects. Blood neutrophil CD11b expression correlated inversely with inflammatory markers and symptom scores in COPD subjects.
Conclusion
Following rhinovirus infection neutrophils with higher surface expression of adhesion molecules are likely preferentially recruited to the lungs. CD11b may be a key molecule involved in neutrophil trafficking in COPD exacerbations.
doi:10.1186/1465-9921-14-72
PMCID: PMC3726453  PMID: 23834268
Chronic obstructive pulmonary disease; Exacerbations; Respiratory viruses; Neutrophils
7.  Rhinovirus Infection Induces Degradation of Antimicrobial Peptides and Secondary Bacterial Infection in Chronic Obstructive Pulmonary Disease 
Rationale: Chronic obstructive pulmonary disease (COPD) exacerbations are associated with virus (mostly rhinovirus) and bacterial infections, but it is not known whether rhinovirus infections precipitate secondary bacterial infections.
Objectives: To investigate relationships between rhinovirus infection and bacterial infection and the role of antimicrobial peptides in COPD exacerbations.
Methods: We infected subjects with moderate COPD and smokers and nonsmokers with normal lung function with rhinovirus. Induced sputum was collected before and repeatedly after rhinovirus infection and virus and bacterial loads measured with quantitative polymerase chain reaction and culture. The antimicrobial peptides secretory leukoprotease inhibitor (SLPI), elafin, pentraxin, LL-37, α-defensins and β-defensin-2, and the protease neutrophil elastase were measured in sputum supernatants.
Measurements and Main Results: After rhinovirus infection, secondary bacterial infection was detected in 60% of subjects with COPD, 9.5% of smokers, and 10% of nonsmokers (P < 0.001). Sputum virus load peaked on Days 5–9 and bacterial load on Day 15. Sputum neutrophil elastase was significantly increased and SLPI and elafin significantly reduced after rhinovirus infection exclusively in subjects with COPD with secondary bacterial infections, and SLPI and elafin levels correlated inversely with bacterial load.
Conclusions: Rhinovirus infections are frequently followed by secondary bacterial infections in COPD and cleavage of the antimicrobial peptides SLPI and elafin by virus-induced neutrophil elastase may precipitate these secondary bacterial infections. Therapy targeting neutrophil elastase or enhancing innate immunity may be useful novel therapies for prevention of secondary bacterial infections in virus-induced COPD exacerbations.
doi:10.1164/rccm.201205-0806OC
PMCID: PMC3530206  PMID: 23024024
rhinovirus; chronic obstructive pulmonary disease; disease exacerbation; bacteria
8.  Defining critical roles for NF-κB p65 and type I interferon in innate immunity to rhinovirus 
EMBO Molecular Medicine  2012;4(12):1244-1260.
The importance of NF-κB activation and deficient anti-viral interferon induction in the pathogenesis of rhinovirus-induced asthma exacerbations is poorly understood. We provide the first in vivo evidence in man and mouse that rhinovirus infection enhanced bronchial epithelial cell NF-κB p65 nuclear expression, NF-κB p65 DNA binding in lung tissue and NF-κB-regulated airway inflammation. In vitro inhibition of NF-κB reduced rhinovirus-induced pro-inflammatory cytokines but did not affect type I/III interferon induction. Rhinovirus-infected p65-deficient mice exhibited reduced neutrophilic inflammation, yet interferon induction, antiviral responses and virus loads were unaffected, indicating that NF-κB p65 is required for pro-inflammatory responses, but redundant in interferon induction by rhinoviruses in vivo. Conversely, IFNAR1−/− mice exhibited enhanced neutrophilic inflammation with impaired antiviral immunity and increased rhinovirus replication, demonstrating that interferon signalling was critical to antiviral immunity. We thus provide new mechanistic insights into rhinovirus infection and demonstrate the therapeutic potential of targeting NF-κB p65 (to suppress inflammation but preserve anti-viral immunity) and type I IFN signalling (to enhance deficient anti-viral immunity) to treat rhinovirus-induced exacerbations of airway diseases.
doi:10.1002/emmm.201201650
PMCID: PMC3531601  PMID: 23165884
asthma; inflammation; interferon; NF-kappaB; rhinovirus
9.  Lung microbiology and exacerbations in COPD 
Chronic obstructive pulmonary disease (COPD) is the most common chronic respiratory condition in adults and is characterized by progressive airflow limitation that is not fully reversible. The main etiological agents linked with COPD are cigarette smoking and biomass exposure but respiratory infection is believed to play a major role in the pathogenesis of both stable COPD and in acute exacerbations. Acute exacerbations are associated with more rapid decline in lung function and impaired quality of life and are the major causes of morbidity and mortality in COPD. Preventing exacerbations is a major therapeutic goal but currently available treatments for exacerbations are not very effective. Historically, bacteria were considered the main infective cause of exacerbations but with the development of new diagnostic techniques, respiratory viruses are also frequently detected in COPD exacerbations. This article aims to provide a state-of-the art review of current knowledge regarding the role of infection in COPD, highlight the areas of ongoing debate and controversy, and outline emerging technologies and therapies that will influence future diagnostic and therapeutic pathways in COPD.
doi:10.2147/COPD.S28286
PMCID: PMC3437812  PMID: 22969296
COPD; exacerbations; bacteria; viruses
10.  Correction: The Role of IL-15 Deficiency in the Pathogenesis of Virus-Induced Asthma Exacerbations 
PLoS Pathogens  2012;8(4):10.1371/annotation/43a4a197-1739-4561-8b8d-b13cd6d7009f.
doi:10.1371/annotation/43a4a197-1739-4561-8b8d-b13cd6d7009f
PMCID: PMC3321056
11.  Viruses exacerbating chronic pulmonary disease: the role of immune modulation 
BMC Medicine  2012;10:27.
Chronic pulmonary diseases are a major cause of morbidity and mortality and their impact is expected to increase in the future. Respiratory viruses are the most common cause of acute respiratory infections and it is increasingly recognized that respiratory viruses are a major cause of acute exacerbations of chronic pulmonary diseases such as asthma, chronic obstructive pulmonary disease and cystic fibrosis. There is now increasing evidence that the host response to virus infection is dysregulated in these diseases and a better understanding of the mechanisms of abnormal immune responses has the potential to lead to the development of new therapies for virus-induced exacerbations. The aim of this article is to review the current knowledge regarding the role of viruses and immune modulation in chronic pulmonary diseases and discuss avenues for future research and therapeutic implications.
doi:10.1186/1741-7015-10-27
PMCID: PMC3353868  PMID: 22420941
Asthma; cystic fibrosis; chronic obstructive pulmonary disease; respiratory viruses; rhinovirus; interferon
12.  RSV-Induced Bronchial Epithelial Cell PD-L1 Expression Inhibits CD8+ T Cell Nonspecific Antiviral Activity 
Respiratory syncytial virus (RSV) is a major cause of bronchiolitis in infants. It is also responsible for high morbidity and mortality in the elderly. Programmed death ligands (PD-Ls) on antigen-presenting cells interact with receptors on T cells to regulate immune responses. The programmed death receptor-ligand 1/programmed death receptor 1 (PD-L1-PD-1) pathway is inhibitory in chronic viral infections, but its role in acute viral infections is unclear. We hypothesized that bronchial epithelial cell (BEC) expression of PD-Ls would inhibit local effector CD8+ T cell function. We report that RSV infection of primary human BECs strongly induces PD-L1 expression. In a co-culture system of BECs with purified CD8+ T cells, we demonstrated that RSV-infected BECs increased CD8+ T cell activation, proliferation, and antiviral function. Blocking PD-L1 on RSV-infected BECs co-cultured with CD8+ T cells enhanced CD8+ T cell IFN-γ, IL-2, and granzyme B production. It also decreased the virus load of the BECs. Based on our findings, we believe therapeutic strategies that target the PD-L1-PD-1 pathway might increase antiviral immune responses to RSV and other acute virus infections.
doi:10.1093/infdis/jiq020
PMCID: PMC3086441  PMID: 21148500
13.  Experimental Rhinovirus Infection as a Human Model of Chronic Obstructive Pulmonary Disease Exacerbation 
Rationale: Respiratory virus infections are associated with chronic obstructive pulmonary disease (COPD) exacerbations, but a causative relationship has not been proven. Studies of naturally occurring exacerbations are difficult and the mechanisms linking virus infection to exacerbations are poorly understood. We hypothesized that experimental rhinovirus infection in subjects with COPD would reproduce the features of naturally occurring COPD exacerbations and is a valid model of COPD exacerbations.
Objectives: To evaluate experimental rhinovirus infection as a model of COPD exacerbation and to investigate the mechanisms of virus-induced exacerbations.
Methods: We used experimental rhinovirus infection in 13 subjects with COPD and 13 nonobstructed control subjects to investigate clinical, physiologic, pathologic, and antiviral responses and relationships between virus load and these outcomes.
Measurements and Main Results: Clinical data; inflammatory mediators in blood, sputum, and bronchoalveolar lavage; and viral load in nasal lavage, sputum, and bronchoalveolar lavage were measured at baseline and after infection with rhinovirus 16. After rhinovirus infection subjects with COPD developed lower respiratory symptoms, airflow obstruction, and systemic and airway inflammation that were greater and more prolonged compared with the control group. Neutrophil markers in sputum related to clinical outcomes and virus load correlated with inflammatory markers. Virus load was higher and IFN production by bronchoalveolar lavage cells was impaired in the subjects with COPD.
Conclusions: We have developed a new model of COPD exacerbation that strongly supports a causal relationship between rhinovirus infection and COPD exacerbations. Impaired IFN production and neutrophilic inflammation may be important mechanisms in virus-induced COPD exacerbations.
doi:10.1164/rccm.201006-0833OC
PMCID: PMC3081284  PMID: 20889904
disease exacerbation; respiratory tract infections; COPD; rhinovirus
14.  The Role of IL-15 Deficiency in the Pathogenesis of Virus-Induced Asthma Exacerbations 
PLoS Pathogens  2011;7(7):e1002114.
Rhinovirus infections are the major cause of asthma exacerbations. We hypothesised that IL-15, a cytokine implicated in innate and acquired antiviral immunity, may be deficient in asthma and important in the pathogenesis of asthma exacerbations. We investigated regulation of IL-15 induction by rhinovirus in human macrophages in vitro, IL-15 levels in bronchoalveolar lavage (BAL) fluid and IL-15 induction by rhinovirus in BAL macrophages from asthmatic and control subjects, and related these to outcomes of infection in vivo. Rhinovirus induced IL-15 in macrophages was replication-, NF-κB- and α/β interferon-dependent. BAL macrophage IL-15 induction by rhinovirus was impaired in asthmatics and inversely related to lower respiratory symptom severity during experimental rhinovirus infection. IL-15 levels in BAL fluid were also decreased in asthmatics and inversely related with airway hyperresponsiveness and with virus load during in vivo rhinovirus infection. Deficient IL-15 production in asthma may be important in the pathogenesis of asthma exacerbations.
Author Summary
We previously reported deficiency in interferon production in asthma, which correlated with disease severity and viral load during experimental rhinovirus infection. Here we show that macrophages produce IL-15 upon rhinovirus infection and that IFN-β plays an important role in IL-15 production. In asthmatic subjects, there is a deficiency in rhinovirus-induced production of IL-15 by macrophages, which indicates immunodeficiency in asthma is surprisingly broad, also involving IL-15, an important cytokine that bridges innate and acquired immunity. These results show that IFN-β therapy in asthma exacerbations could be effective not only due to direct anti-viral effects of IFN-β, but also by inducing IL-15 production. We also show induction of IFN-β and IL-15 to be NF-kB dependent, an important finding which has implications for NF-kB inhibitor drug development programmes as these drugs have potential to worsen rather than improve asthma exacerbation severity, by further enhancing deficiencies of IL-15 and IFN-β. This study investigating the role of IL-15 in rhinovirus infection and asthma has also major implications in other diseases, for example pandemic influenza, where asthma is a major risk factor for severe disease and death, and COPD and cystic fibrosis where IFN-β deficiency is also present.
doi:10.1371/journal.ppat.1002114
PMCID: PMC3136447  PMID: 21779162
15.  Influenza infection and COPD 
Influenza is a disease with global impact that causes enormous morbidity and mortality on an annual basis. It primarily infects the respiratory tract and causes a broad range of illness ranging from symptomless infection to fulminant primary viral and secondary bacterial pneumonia. The severity of infection depends on both the virus strain and a number of host factors, primarily age and the presence of comorbid conditions such as cardiopulmonary disease. The mortality and utilization of healthcare resources associated with influenza is concentrated in the elderly and those with coexisting disease such as chronic obstructive pulmonary disease (COPD). Increasing use of vaccination and the development of new antiviral drugs hold out hope that the burden of disease associated with influenza can be reduced. However the constant emergence of new influenza strains and the current risk of avian influenza pandemic serve as warnings that influenza will remain a serious pathogen for the foreseeable future.
PMCID: PMC2692119  PMID: 18044066
COPD; influenza; exacerbations
16.  An experimental model of rhinovirus induced chronic obstructive pulmonary disease exacerbations: a pilot study 
Respiratory Research  2006;7(1):116.
Background
Acute exacerbations of COPD are a major cause of morbidity, mortality and hospitalisation. Respiratory viruses are associated with the majority of exacerbations but a causal relationship has not been demonstrated and the mechanisms of virus-induced exacerbations are poorly understood. Development of a human experimental model would provide evidence of causation and would greatly facilitate understanding mechanisms, but no such model exists.
Methods
We aimed to evaluate the feasibility of developing an experimental model of rhinovirus induced COPD exacerbations and to assess safety of rhinovirus infection in COPD patients. We carried out a pilot virus dose escalating study to assess the minimum dose of rhinovirus 16 required to induce experimental rhinovirus infection in subjects with COPD (GOLD stage II). Outcomes were assessed by monitoring of upper and lower respiratory tract symptoms, lung function, and virus replication and inflammatory responses in nasal lavage.
Results
All 4 subjects developed symptomatic colds with the lowest dose of virus tested, associated with evidence of viral replication and increased pro-inflammatory cytokines in nasal lavage. These were accompanied by significant increases in lower respiratory tract symptoms and reductions in PEF and FEV1. There were no severe exacerbations or other adverse events.
Conclusion
Low dose experimental rhinovirus infection in patients with COPD induces symptoms and lung function changes typical of an acute exacerbation of COPD, appears safe, and provides preliminary evidence of causation.
doi:10.1186/1465-9921-7-116
PMCID: PMC1578567  PMID: 16956406

Results 1-16 (16)