Search tips
Search criteria

Results 1-25 (32)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  T cell lipid peroxidation induces ferroptosis and prevents immunity to infection 
Matsushita et al. investigated the role of the selenoenzyme glutathione peroxidae 4 (Gpx4) in T cell responses and found that loss of Gpx4 results in an intrinsic T cell developmental defect in the periphery, which leads to a failure to expand and protect from acute viral and parasitic infection.The defects were rescued with dietary supplementation of vitamin E. The Gp4−/− T cells accumulate membrane lipid peroxides and undergo cell death by ferroptosis.
The selenoenzyme glutathione peroxidase 4 (Gpx4) is a major scavenger of phospholipid hydroperoxides. Although Gpx4 represents a key component of the reactive oxygen species-scavenging network, its relevance in the immune system is yet to be defined. Here, we investigated the importance of Gpx4 for physiological T cell responses by using T cell–specific Gpx4-deficient mice. Our results revealed that, despite normal thymic T cell development, CD8+ T cells from TΔGpx4/ΔGpx4 mice had an intrinsic defect in maintaining homeostatic balance in the periphery. Moreover, both antigen-specific CD8+ and CD4+ T cells lacking Gpx4 failed to expand and to protect from acute lymphocytic choriomeningitis virus and Leishmania major parasite infections, which were rescued with diet supplementation of high dosage of vitamin E. Notably, depletion of the Gpx4 gene in the memory phase of viral infection did not affect T cell recall responses upon secondary infection. Ex vivo, Gpx4-deficient T cells rapidly accumulated membrane lipid peroxides and concomitantly underwent cell death driven by ferroptosis but not necroptosis. These studies unveil an essential role of Gpx4 for T cell immunity.
PMCID: PMC4387287  PMID: 25824823
2.  A lymphotoxin-driven pathway to hepatocellular carcinoma 
Cancer cell  2009;16(4):295-308.
Hepatitis B and C viruses (HBV, HCV) cause chronic hepatitis and hepatocellular carcinoma (HCC) by poorly understood mechanisms. We show that cytokines lymphotoxin (LT) α, β and their receptor (LTβR) are upregulated in HBV- or HCV-induced hepatitis and HCC. Liver-specific LTαβ expression in mice induces liver inflammation and HCC causally linking hepatic LT overexpression to hepatitis and HCC. Development of HCC, composed in part of A6+ oval cells, depends on lymphocytes and IKappa B kinase β expressed by hepatocytes but is independent of TNFR1. In vivo LTβR stimulation implicates hepatocytes as the major LT-responsive liver cells and LTβR inhibition in LTαβ-transgenic mice with hepatitis suppresses HCC formation. Thus, sustained LT signaling represents a pathway involved in hepatitis-induced HCC.
PMCID: PMC4422166  PMID: 19800575
3.  Phospholipid oxidation generates potent anti-inflammatory lipid mediators that mimic structurally related pro-resolving eicosanoids by activating Nrf2 
EMBO Molecular Medicine  2015;7(5):593-607.
Exposure of biological membranes to reactive oxygen species creates a complex mixture of distinct oxidized phospholipid (OxPL) species, which contribute to the development of chronic inflammatory diseases and metabolic disorders. While the ability of OxPL to modulate biological processes is increasingly recognized, the nature of the biologically active OxPL species and the molecular mechanisms underlying their signaling remain largely unknown. We have employed a combination of mass spectrometry, synthetic chemistry, and immunobiology approaches to characterize the OxPL generated from the abundant phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) and investigated their bioactivities and signaling pathways in vitro and in vivo. Our study defines epoxycyclopentenones as potent anti-inflammatory lipid mediators that mimic the signaling of endogenous, pro-resolving prostanoids by activating the transcription factor nuclear factor E2-related factor 2 (Nrf2). Using a library of OxPL variants, we identified a synthetic OxPL derivative, which alleviated endotoxin-induced lung injury and inhibited development of pro-inflammatory T helper (Th) 1 cells. These findings provide a molecular basis for the negative regulation of inflammation by lipid peroxidation products and propose a novel class of highly bioactive compounds for the treatment of inflammatory diseases.
PMCID: PMC4492819  PMID: 25770125
inflammation; isoprostanes; lung injury; Nrf2; oxidized phospholipids
4.  Advantages of Foxp3+ regulatory T cell depletion using DEREG mice 
Several mechanisms enable immunological self-tolerance. Regulatory T cells (Tregs) are a specialized T cell subset that prevents autoimmunity and excessive immune responses, but can also mediate detrimental tolerance to tumors and pathogens in a Foxp3-dependent manner. Genetic tools exploiting the foxp3 locus including bacterial artificial chromosome (BAC)-transgenic DEREG mice have provided essential information on Treg biology and the potential therapeutic modulation of tolerance. In DEREG mice, Foxp3+ Tregs selectively express eGFP and diphtheria toxin (DT) receptor, allowing for the specific depletion of Tregs through DT administration. We here provide a detailed overview about important considerations such as DT toxicity, which affects any mouse strain treated with DT, and Treg rebound after depletion. Additionally, we point out the specific advantages of BAC-transgenic DEREG mice including their suitability to study organ-specific autoimmunity such as type I diabetes. Moreover, we discuss recent insights into the role of Tregs in viral infections. In summary, DEREG mice are an important tool to study Treg-mediated tolerance and its therapeutic circumvention.
PMCID: PMC4257761  PMID: 25505550
Autoimmunity; DEREG; diphtheria toxin (DT); regulatory T cells; tolerance; Treg
5.  Alveolar Macrophages Are Essential for Protection from Respiratory Failure and Associated Morbidity following Influenza Virus Infection 
PLoS Pathogens  2014;10(4):e1004053.
Alveolar macrophages (AM) are critical for defense against bacterial and fungal infections. However, a definitive role of AM in viral infections remains unclear. We here report that AM play a key role in survival to influenza and vaccinia virus infection by maintaining lung function and thereby protecting from asphyxiation. Absence of AM in GM-CSF-deficient (Csf2−/−) mice or selective AM depletion in wild-type mice resulted in impaired gas exchange and fatal hypoxia associated with severe morbidity to influenza virus infection, while viral clearance was affected moderately. Virus-induced morbidity was far more severe in Csf2−/− mice lacking AM, as compared to Batf3-deficient mice lacking CD8α+ and CD103+ DCs. Csf2−/− mice showed intact anti-viral CD8+ T cell responses despite slightly impaired CD103+ DC development. Importantly, selective reconstitution of AM development in Csf2rb−/− mice by neonatal transfer of wild-type AM progenitors prevented severe morbidity and mortality, demonstrating that absence of AM alone is responsible for disease severity in mice lacking GM-CSF or its receptor. In addition, CD11c-Cre/Ppargfl/fl mice with a defect in AM but normal adaptive immunity showed increased morbidity and lung failure to influenza virus. Taken together, our results suggest a superior role of AM compared to CD103+ DCs in protection from acute influenza and vaccinia virus infection-induced morbidity and mortality.
Author Summary
Acute respiratory viral infections can cause severe morbidity and pneumonia in infected individuals. Alveolar macrophages and various subsets of dendritic cells have been implicated in innate immunity and induction of anti-viral T cell responses that contribute to host defense against influenza virus infection. However, their relative importance in protection from pathology and disease severity has never been compared side by side. In this report, we demonstrate that mice lacking alveolar macrophages succumb to infection with low dose influenza virus and vaccinia virus infection due to respiratory failure. In contrast, mice lacking lymphoid CD8α+ and lung CD103+ DCs survived and showed little if any differences in disease severity compared to infected wild-type mice. These results indicate that therapies supporting AM and lung function may be beneficial during severe respiratory viral infection.
PMCID: PMC3974877  PMID: 24699679
6.  TREM-1 Deficiency Can Attenuate Disease Severity without Affecting Pathogen Clearance 
PLoS Pathogens  2014;10(1):e1003900.
Triggering receptor expressed on myeloid cells-1 (TREM-1) is a potent amplifier of pro-inflammatory innate immune reactions. While TREM-1-amplified responses likely aid an improved detection and elimination of pathogens, excessive production of cytokines and oxygen radicals can also severely harm the host. Studies addressing the pathogenic role of TREM-1 during endotoxin-induced shock or microbial sepsis have so far mostly relied on the administration of TREM-1 fusion proteins or peptides representing part of the extracellular domain of TREM-1. However, binding of these agents to the yet unidentified TREM-1 ligand could also impact signaling through alternative receptors. More importantly, controversial results have been obtained regarding the requirement of TREM-1 for microbial control. To unambiguously investigate the role of TREM-1 in homeostasis and disease, we have generated mice deficient in Trem1. Trem1−/− mice are viable, fertile and show no altered hematopoietic compartment. In CD4+ T cell- and dextran sodium sulfate-induced models of colitis, Trem1−/− mice displayed significantly attenuated disease that was associated with reduced inflammatory infiltrates and diminished expression of pro-inflammatory cytokines. Trem1−/− mice also exhibited reduced neutrophilic infiltration and decreased lesion size upon infection with Leishmania major. Furthermore, reduced morbidity was observed for influenza virus-infected Trem1−/− mice. Importantly, while immune-associated pathologies were significantly reduced, Trem1−/− mice were equally capable of controlling infections with L. major, influenza virus, but also Legionella pneumophila as Trem1+/+ controls. Our results not only demonstrate an unanticipated pathogenic impact of TREM-1 during a viral and parasitic infection, but also indicate that therapeutic blocking of TREM-1 in distinct inflammatory disorders holds considerable promise by blunting excessive inflammation while preserving the capacity for microbial control.
Author Summary
Triggering receptor expressed on myeloid cells-1 (TREM-1) is an immune receptor expressed by myeloid cells that has the capacity to augment pro-inflammatory responses in the context of a microbial infection. While a TREM-1-amplified response likely serves the efficient clearance of pathogens, it also bears the potential to cause substantial tissue damage or even death. Hence, TREM-1 appears a possible therapeutic target for tempering deleterious host-pathogen interactions. However, in models of bacterial sepsis controversial findings have been obtained regarding the requirement of TREM-1 for bacterial control - depending on the overall degree of the TREM-1 blockade that was achieved. In order to conclusively investigate harmful versus essential functions of TREM-1 in vivo, we have generated mice deficient in Trem1. Trem1−/− mice were subjected to experimentally-induced intestinal inflammation (as a model of a non-infectious, yet microbial-driven disease) and also analysed following infections with Leishmania major, influenza virus and Legionella pneumophila. Across all models analysed, Trem1−/− mice showed substantially reduced immune-associated disease. We thus describe a previously unanticipated pathogenic role for TREM-1 also during a parasitic and viral infection. Importantly, our data suggest that in certain diseases microbial control can be achieved in the context of blunted inflammation in the absence of TREM-1.
PMCID: PMC3894224  PMID: 24453980
7.  Cell-wall deficient L. monocytogenes L-forms feature abrogated pathogenicity 
Stable L-forms are cell wall-deficient bacteria which are able to multiply and propagate indefinitely, despite the absence of a rigid peptidoglycan cell wall. We investigated whether L-forms of the intracellular pathogen L. monocytogenes possibly retain pathogenicity, and if they could trigger an innate immune response. While phagocytosis of L. monocytogenes L-forms by non-activated macrophages sometimes resulted in an unexpected persistence of the bacteria in the phagocytes, they were effectively eliminated by IFN-γ preactivated or bone marrow-derived macrophages (BMM). These findings were in line with the observed down-regulation of virulence factors in the cell-wall deficient L. monocytogenes. Absence of Interferon-β (IFN-β) triggering indicated inability of L-forms to escape from the phagosome into the cytosol. Moreover, abrogated cytokine response in MyD88-deficient dendritic cells (DC) challenged with L. monocytogenes L-forms suggested an exclusive TLR-dependent host response. Taken together, our data demonstrate a strong attenuation of Listeria monocytogenes L-form pathogenicity, due to diminished expression of virulence factors and innate immunity recognition, eventually resulting in elimination of L-form bacteria from phagocytes.
PMCID: PMC4033035  PMID: 24904838
L-forms; L. monocytogenes; innate immunity; pathogenicity; virulence genes
8.  IL-21 Restricts Virus-driven Treg Cell Expansion in Chronic LCMV Infection 
PLoS Pathogens  2013;9(5):e1003362.
Foxp3+ regulatory T (Treg) cells are essential for the maintenance of immune homeostasis and tolerance. During viral infections, Treg cells can limit the immunopathology resulting from excessive inflammation, yet potentially inhibit effective antiviral T cell responses and promote virus persistence. We report here that the fast-replicating LCMV strain Docile triggers a massive expansion of the Treg population that directly correlates with the size of the virus inoculum and its tendency to establish a chronic, persistent infection. This Treg cell proliferation was greatly enhanced in IL-21R−/− mice and depletion of Treg cells partially rescued defective CD8+ T cell cytokine responses and improved viral clearance in some but not all organs. Notably, IL-21 inhibited Treg cell expansion in a cell intrinsic manner. Moreover, experimental augmentation of Treg cells driven by injection of IL-2/anti-IL-2 immune complexes drastically impaired the functionality of the antiviral T cell response and impeded virus clearance. As a consequence, mice became highly susceptible to chronic infection following exposure to low virus doses. These findings reveal virus-driven Treg cell proliferation as potential evasion strategy that facilitates T cell exhaustion and virus persistence. Furthermore, they suggest that besides its primary function as a direct survival signal for antiviral CD8+ T cells during chronic infections, IL-21 may also indirectly promote CD8+ T cell poly-functionality by restricting the suppressive activity of infection-induced Treg cells.
Author Summary
T cell exhaustion represents a state of T cell dysfunction associated with clinically relevant diseases, such as persistent viral infections or cancer. Although the molecular signature of exhausted T cells has been characterized in detail at the functional and transcriptional level, the immunological mechanisms that lead to T cell exhaustion during chronic infections remain poorly understood. Our present study reports two major findings that illustrate a pathway that contributes to T cell exhaustion during viral infection, and indicate its modulation by both, the pathogen and the host. First, we show that a persistence-inducing virus triggers the massive proliferation of Foxp3+ regulatory T (Treg) cells and demonstrate the potential of Treg cells to promote T cell exhaustion and chronic infection. Second, we identify IL-21 as a crucial host factor that antagonizes this virus-driven expansion of the Treg population in a cell intrinsic manner independent of IL-2. Thus, in addition to its known pre-dominant direct positive effects on antiviral T cells, IL-21 can also alleviate the suppressive activity of Treg cells. Together, these results suggest enhanced Treg cell responses as a mechanism of immune evasion that could be therapeutically targeted with IL-21.
PMCID: PMC3656089  PMID: 23696736
9.  Psoriasiform dermatitis is driven by IL-36–mediated DC-keratinocyte crosstalk 
The Journal of Clinical Investigation  2012;122(11):3965-3976.
Psoriasis is a chronic inflammatory disorder of the skin affecting approximately 2% of the world’s population. Accumulating evidence has revealed that the IL-23/IL-17/IL-22 pathway is key for development of skin immunopathology. However, the role of keratinocytes and their crosstalk with immune cells at the onset of disease remains poorly understood. Here, we show that IL-36R–deficient (Il36r–/–) mice were protected from imiquimod-induced expansion of dermal IL-17–producing γδ T cells and psoriasiform dermatitis. Furthermore, IL-36R antagonist-deficient (Il36rn–/–) mice showed exacerbated pathology. TLR7 ligation on DCs induced IL-36–mediated crosstalk with keratinocytes and dermal mesenchymal cells that was crucial for control of the pathological IL-23/IL-17/IL-22 axis and disease development. Notably, mice lacking IL-23, IL-17, or IL-22 were less well protected from disease compared with Il36r–/– mice, indicating an additional distinct activity of IL-36 beyond induction of the pathological IL-23 axis. Moreover, while the absence of IL-1R1 prevented neutrophil infiltration, it did not protect from acanthosis and hyperkeratosis, demonstrating that neutrophils are dispensable for disease manifestation. These results highlight a central and unique IL-1–independent role for IL-36 in control of the IL-23/IL-17/IL-22 pathway and development of psoriasiform dermatitis.
PMCID: PMC3484446  PMID: 23064362
11.  HVEM Signalling Promotes Colitis 
PLoS ONE  2011;6(4):e18495.
Tumor necrosis factor super family (TNFSF) members regulate important processes involved in cell proliferation, survival and differentiation and are therefore crucial for the balance between homeostasis and inflammatory responses. Several members of the TNFSF are closely associated with inflammatory bowel disease (IBD). Thus, they represent interesting new targets for therapeutic treatment of IBD.
Methodology/Principal Findings
We have used mice deficient in TNFSF member HVEM in experimental models of IBD to investigate its role in the disease process. Two models of IBD were employed: i) chemical-induced colitis primarily mediated by innate immune cells; and ii) colitis initiated by CD4+CD45RBhigh T cells following their transfer into immuno-deficient RAG1-/- hosts. In both models of disease the absence of HVEM resulted in a significant reduction in colitis and inflammatory cytokine production.
These data show that HVEM stimulatory signals promote experimental colitis driven by innate or adaptive immune cells.
PMCID: PMC3078914  PMID: 21533159
12.  IL-17A/F-Signaling Does Not Contribute to the Initial Phase of Mucosal Inflammation Triggered by S. Typhimurium 
PLoS ONE  2010;5(11):e13804.
Salmonella enterica subspecies 1 serovar Typhimurium (S. Typhimurium) causes diarrhea and acute inflammation of the intestinal mucosa. The pro-inflammatory cytokines IL-17A and IL-17F are strongly induced in the infected mucosa but their contribution in driving the tissue inflammation is not understood. We have used the streptomycin mouse model to analyze the role of IL-17A and IL-17F and their cognate receptor IL-17RA in S. Typhimurium enterocolitis. Neutralization of IL-17A and IL-17F did not affect mucosal inflammation triggered by infection or spread of S. Typhimurium to systemic sites by 48 h p.i. Similarly, Il17ra−/− mice did not display any reduction in infection or inflammation by 12 h p.i. The same results were obtained using S. Typhimurium variants infecting via the TTSS1 type III secretion system, the TTSS1 effector SipA or the TTSS1 effector SopE. Moreover, the expression pattern of 45 genes encoding chemokines/cytokines (including CXCL1, CXCL2, IL-17A, IL-17F, IL-1α, IL-1β, IFNγ, CXCL-10, CXCL-9, IL-6, CCL3, CCL4) and antibacterial molecules was not affected by Il17ra deficiency by 12 h p.i. Thus, in spite of the strong increase in Il17a/Il17f mRNA in the infected mucosa, IL-17RA signaling seems to be dispensable for eliciting the acute disease. Future work will have to address whether this is attributable to redundancy in the cytokine signaling network.
PMCID: PMC2990720  PMID: 21124903
13.  Fibroblast growth factor receptors 1 and 2 in keratinocytes control the epidermal barrier and cutaneous homeostasis 
The Journal of Cell Biology  2010;188(6):935-952.
Loss of FGFRs results in skin abnormalities due to activation of keratinocytes and epidermal T cells.
Fibroblast growth factors (FGFs) are master regulators of organogenesis and tissue homeostasis. In this study, we used different combinations of FGF receptor (FGFR)-deficient mice to unravel their functions in the skin. Loss of the IIIb splice variants of FGFR1 and FGFR2 in keratinocytes caused progressive loss of skin appendages, cutaneous inflammation, keratinocyte hyperproliferation, and acanthosis. We identified loss of FGF-induced expression of tight junction components with subsequent deficits in epidermal barrier function as the mechanism underlying the progressive inflammatory skin disease. The defective barrier causes activation of keratinocytes and epidermal γδ T cells, which produce interleukin-1 family member 8 and S100A8/A9 proteins. These cytokines initiate an inflammatory response and induce a double paracrine loop through production of keratinocyte mitogens by dermal cells. Our results identify essential roles for FGFs in the regulation of the epidermal barrier and in the prevention of cutaneous inflammation, and highlight the importance of stromal–epithelial interactions in skin homeostasis and disease.
PMCID: PMC2845079  PMID: 20308431
14.  Malarial Hemozoin Is a Nalp3 Inflammasome Activating Danger Signal 
PLoS ONE  2009;4(8):e6510.
Characteristic symptoms of malaria include recurrent fever attacks and neurodegeneration, signs that are also found in patients with a hyperactive Nalp3 inflammasome. Plasmodium species produce a crystal called hemozoin that is generated by detoxification of heme after hemoglobin degradation in infected red blood cells. Thus, we hypothesized that hemozoin could activate the Nalp3 inflammasome, due to its particulate nature reminiscent of other inflammasome-activating agents.
Methodology/Principal Findings
We found that hemozoin acts as a proinflammatory danger signal that activates the Nalp3 inflammasome, causing the release of IL-1β. Similar to other Nalp3-activating particles, hemozoin activity is blocked by inhibiting phagocytosis, K+ efflux and NADPH oxidase. In vivo, intraperitoneal injection of hemozoin results in acute peritonitis, which is impaired in Nalp3-, caspase-1- and IL-1R-deficient mice. Likewise, the pathogenesis of cerebral malaria is dampened in Nalp3-deficient mice infected with Plasmodium berghei sporozoites, while parasitemia remains unchanged.
The potent pro-inflammatory effect of hemozoin through inflammasome activation may possibly be implicated in plasmodium-associated pathologies such as cerebral malaria.
PMCID: PMC2714977  PMID: 19652710
15.  GM-CSF mediates autoimmunity by enhancing IL-6–dependent Th17 cell development and survival 
The Journal of Experimental Medicine  2008;205(10):2281-2294.
Granulocyte macrophage–colony stimulating factor (GM-CSF) is critically involved in development of organ-related autoimmune inflammatory diseases including experimental allergic encephalitis and collagen-induced arthritis. Roles of GM-CSF in the initiation and in the effector phase of the autoimmune response have been proposed. Our study was designed to investigate the mechanisms of GM-CSF in autoimmunity using a model of autoimmune heart inflammatory disease (myocarditis). The pathological sequel after immunization with heart myosin has been shown previously to depend on IL-1, IL-6, IL-23, and IL-17. We found that innate GM-CSF was critical for IL-6 and IL-23 responses by dendritic cells and generation of pathological Th17 cells in vivo. Moreover, GM-CSF promoted autoimmunity by enhancing IL-6–dependent survival of antigen specific CD4+ T cells. These results suggest a novel role for GM-CSF in promoting generation and maintenance of Th17 cells by regulation of IL-6 and IL-23 in vivo.
PMCID: PMC2556786  PMID: 18779348
16.  Distinct roles for IL-6 and IL-12p40 in mediating protection against Leishmania donovani and the expansion of IL-10+CD4+ T Cells 
European journal of immunology  2006;36(7):1764-1771.
Adoptive dendritic cell (DC) immunotherapy provides a useful experimental tool to evaluate immunoregulation in vivo, and has previously been used successfully to enhance host resistance in a variety of experimental models of leishmaniasis. Here, we used this approach to identify IL-6 and IL-12 as critical cytokines that cooperate to mediate host protection to Leishmania donovani but act independently to regulate expansion of IL-10+ CD4+ T cells, shown here for the first time to be associated with this infection. Adoptive transfer of LPS-activated bone marrow-derived DC (BMDC) from wild-type mice was therapeutically beneficial and led to enhanced resistance as measured by spleen parasite burden. In contrast, IL-6- or IL-12p40-deficient BMDC had no protective benefit, indicating that production of both cytokines was essential for the therapeutic efficacy of DC. IL-10 production by CD25 FoxP3-IL-10+ CD4+ T cells is a strong correlate of disease progression, and BMDC from wild-type mice inhibited expansion of these cells. Strikingly, IL-12-deficient BMDC could also inhibit the expansion of this T cell population, whereas IL-6-deficient BMDC could not, indicating that IL-6 played a key role in this aspect of DC function in vivo. Breadth of cytokine production is thus an important factor when considering strategies for DC-based interventions.
PMCID: PMC2659577  PMID: 16791879
Leishmania; dendritic cells; immunotherapy; cytokines
17.  Dyslipidemia inhibits Toll-like receptor–induced activation of CD8α-negative dendritic cells and protective Th1 type immunity 
Environmental factors, including diet, play a central role in influencing the balance of normal immune homeostasis; however, many of the cellular mechanisms maintaining this balance remain to be elucidated. Using mouse models of genetic and high-fat/cholesterol diet–induced dyslipidemia, we examined the influence of dyslipidemia on T cell and dendritic cell (DC) responses in vivo and in vitro. We show that dyslipidemia inhibited Toll-like receptor (TLR)–induced production of proinflammatory cytokines, including interleukin (IL)-12, IL-6, and tumor necrosis factor-α, as well as up-regulation of costimulatory molecules by CD8α− DCs, but not by CD8α+ DCs, in vivo. Decreased DC activation profoundly influenced T helper (Th) cell responses, leading to impaired Th1 and enhanced Th2 responses. As a consequence of this immune modulation, host resistance to Leishmania major was compromised. We found that oxidized low-density lipoprotein (oxLDL) was the key active component responsible for this effect, as it could directly uncouple TLR-mediated signaling on CD8α− myeloid DCs and inhibit NF-κB nuclear translocation. These results show that a dyslipidemic microenvironment can directly interfere with DC responses to pathogen-derived signals and skew the development of T cell–mediated immunity.
PMCID: PMC2118729  PMID: 17296788
18.  VSIG4, a B7 family–related protein, is a negative regulator of T cell activation 
Journal of Clinical Investigation  2006;116(10):2817-2826.
T cell activation by APCs is positively and negatively regulated by members of the B7 family. We have identified a previously unknown function for B7 family–related protein V-set and Ig domain–containing 4 (VSIG4). In vitro experiments using VSIG4-Ig fusion molecules showed that VSIG4 is a strong negative regulator of murine and human T cell proliferation and IL-2 production. Administration to mice of soluble VSIG4-Ig fusion molecules reduced the induction of T cell responses in vivo and inhibited the production of Th cell–dependent IgG responses. Unlike that of B7 family members, surface expression of VSIG4 was restricted to resting tissue macrophages and absent upon activation by LPS or in autoimmune inflammatory foci. The specific expression of VSIG4 on resting macrophages in tissue suggests that this inhibitory ligand may be important for the maintenance of T cell unresponsiveness in healthy tissues.
PMCID: PMC1578631  PMID: 17016562
19.  Complement receptors regulate differentiation of bone marrow plasma cell precursors expressing transcription factors Blimp-1 and XBP-1 
The Journal of Experimental Medicine  2005;201(6):993-1005.
Humoral immune responses are thought to be enhanced by complement-mediated recruitment of the CD21–CD19–CD81 coreceptor complex into the B cell antigen receptor (BCR) complex, which lowers the threshold of B cell activation and increases the survival and proliferative capacity of responding B cells. To investigate the role of the CD21–CD35 complement receptors in the generation of B cell memory, we analyzed the response against viral particles derived from the bacteriophage Qβ in mice deficient in CD21–CD35 (Cr2−/−). Despite highly efficient induction of early antibody responses and germinal center (GC) reactions to immunization with Qβ, Cr2−/− mice exhibited impaired antibody persistence paralleled by a strongly reduced development of bone marrow plasma cells. Surprisingly, antigen-specific memory B cells were essentially normal in these mice. In the absence of CD21-mediated costimulation, Qβ-specific post-GC B cells failed to induce the transcriptional regulators Blimp-1 and XBP-1 driving plasma cell differentiation, and the antiapoptotic protein Bcl-2, which resulted in failure to generate the precursor population of long-lived plasma cells residing in the bone marrow. These results suggest that complement receptors maintain antibody responses by delivery of differentiation and survival signals to precursors of bone marrow plasma cells.
PMCID: PMC2213108  PMID: 15767369
20.  Interleukin-1 Is Responsible for Acute Lung Immunopathology but Increases Survival of Respiratory Influenza Virus Infection 
Journal of Virology  2005;79(10):6441-6448.
Interleukin-1α (IL-1α) and IL-1β are proinflammatory cytokines, which induce a plethora of genes and activities by binding to the type 1 IL-1 receptor (IL-1R1). We have investigated the role of IL-1 during pulmonary antiviral immune responses in IL-1R1−/− mice infected with influenza virus. IL-1R1−/− mice showed markedly reduced inflammatory pathology in the lung, primarily due to impaired neutrophil recruitment. Activation of CD4+ T cells in secondary lymphoid organs and subsequent migration to the lung were impaired in the absence of IL-1R1. In contrast, activation of virus-specific cytotoxic T lymphocytes and killing of virus-infected cells in the lung were intact. Influenza virus-specific immunoglobulin G (IgG) and IgA antibody responses were intact, while the IgM response was markedly reduced in both serum and mucosal sites in IL-1R1−/− mice. We found significantly increased mortality in the absence of IL-1R1; however, lung viral titers were only moderately increased. Our results demonstrate that IL-1α/β mediate acute pulmonary inflammatory pathology while enhancing survival during influenza virus infection. IL-1α/β appear not to influence killing of virus-infected cells but to enhance IgM antibody responses and recruitment of CD4+ T cells to the site of infection.
PMCID: PMC1091664  PMID: 15858027
21.  Protein Kinase C θ Is Critical for the Development of In Vivo T Helper (Th)2 Cell But Not Th1 Cell Responses 
The serine/threonine-specific protein kinase C (PKC)-θ is predominantly expressed in T cells and localizes to the center of the immunological synapse upon T cell receptor (TCR) and CD28 signaling. T cells deficient in PKC-θ exhibit reduced interleukin (IL)-2 production and proliferative responses in vitro, however, its significance in vivo remains unclear. We found that pkc-θ−/− mice were protected from pulmonary allergic hypersensitivity responses such as airway hyperresponsiveness, eosinophilia, and immunoglobulin E production to inhaled allergen. Furthermore, T helper (Th)2 cell immune responses against Nippostrongylus brasiliensis were severely impaired in pkc-θ−/− mice. In striking contrast, pkc-θ−/− mice on both the C57BL/6 background and the normally susceptible BALB/c background mounted protective Th1 immune responses and were resistant against infection with Leishmania major. Using in vitro TCR transgenic T cell–dendritic cell coculture systems and antigen concentration-dependent Th polarization, PKC-θ–deficient T cells were found to differentiate into Th1 cells after activation with high concentrations of specific peptide, but to have compromised Th2 development at low antigen concentration. The addition of IL-2 partially reconstituted Th2 development in pkc-θ−/− T cells, consistent with an important role for this cytokine in Th2 polarization. Taken together, our results reveal a central role for PKC-θ signaling during Th2 responses.
PMCID: PMC2212016  PMID: 15263025
PKC-θ; asthma; Leishmania; nippostrongylus; Th2 cell
22.  Activation of Dendritic Cells through the Interleukin 1 Receptor 1 Is Critical for the Induction of Autoimmune Myocarditis 
Dilated cardiomyopathy, resulting from myocarditis, is the most common cause of heart failure in young patients. We here show that interleukin (IL)-1 receptor type 1–deficient (IL-1R1−/−) mice are protected from development of autoimmune myocarditis after immunization with α-myosin-peptide(614–629). CD4+ T cells from immunized IL-1R1−/− mice proliferated poorly and failed to transfer disease after injection into naive severe combined immunodeficiency (SCID) mice. In vitro stimulation experiments suggested that the function of IL-1R1−/−CD4+ T cells was not intrinsically defect, but their activation by dendritic cells was impaired in IL-1R1−/− mice. Accordingly, production of tumor necrosis factor (TNF)-α, IL-1, IL-6, and IL-12p70 was reduced in dendritic cells lacking the IL-1 receptor type 1. In fact, injection of immature, antigen-loaded IL-1R1+/+ but not IL-1R1−/− dendritic cells into IL-1R1−/− mice fully restored disease susceptibility by rendering IL-1R1−/− CD4+ T cells pathogenic. Thus, IL-1R1 triggering is required for efficient activation of dendritic cells, which is in turn a prerequisite for induction of autoreactive CD4+ T cells and autoimmunity.
PMCID: PMC2193833  PMID: 12566416
dendritic cells; interleukin 1; interleukin 1 receptor type 1; autoimmunity; myocarditis
24.  Inducible Costimulator Protein (Icos) Controls T Helper Cell Subset Polarization after Virus and Parasite Infection 
It has been shown that certain pathogens can trigger efficient T cell responses in the absence of CD28, a key costimulatory receptor expressed on resting T cells. Inducible costimulator protein (ICOS) is an inducible costimulator structurally and functionally related to CD28. Here, we show that in the absence of CD28 both T helper cell type 1 (Th1) and Th2 responses were impaired but not abrogated after infection with lymphocytic choriomeningitis virus (LCMV), vesicular stomatitis virus (VSV), and the nematode Nippostrongylus brasiliensis. Inhibition of ICOS in CD28-deficient mice further reduced Th1/Th2 polarization. Blocking of ICOS alone had a limited but significant capacity to downregulate Th subset development. In contrast, cytotoxic T lymphocyte (CTL) responses, which are regulated to a minor and major extent by CD28 after LCMV and VSV infection, respectively, remained unaffected by blocking ICOS. Together, our results demonstrate that ICOS regulates both CD28-dependent and CD28-independent CD4+ subset (Th1 and Th2) responses but not CTL responses in vivo.
PMCID: PMC1887704  PMID: 10880526
ICOS; CD28; Th1/Th2; Nippostrongylus brasiliensis; LCMV
25.  Severe Schistosomiasis in the Absence of Interleukin-4 (IL-4) Is IL-12 Independent 
Infection and Immunity  2001;69(1):589-592.
An interleukin-4 (IL-4)-dependent Th2 response allows wild-type mice to survive infection with the parasite Schistosoma mansoni. In the absence of IL-4, infected mice mount a Th1-like proinflammatory response, develop severe disease, and succumb. Neither the Th1 response nor morbidity is IL-12 dependent in this system.
PMCID: PMC97925  PMID: 11119559

Results 1-25 (32)