Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Role of type I interferons in the activation of autoreactive B cells 
Immunology and cell biology  2012;90(5):498-504.
Type I interferons (IFNs) are a family of cytokines involved in the defense against viral infections that play a key role in the activation of both the innate and adaptive immune system. IFNs both directly and indirectly enhance the capacity of B lymphocytes to respond to viral challenge and produce cytotoxic and neutralizing antibodies. However, prolonged type I IFN exposure is not always beneficial to the host. If not regulated properly IFN can drive autoantibody production as well as other parameters of systemic autoimmune disease. Type I IFNs impact B-cell function through a variety of mechanisms, including effects on receptor engagement, Toll-like receptor expression, cell migration, antigen presentation, cytokine responsiveness, cytokine production, survival, differentiation and class-switch recombination. Type I IFNs are also cytotoxic for a variety of cell types and thereby contribute to the accumulation of cell debris that serves as a potential source for autoantigens. Type I IFN engagement of a variety of accessory cells further promotes B-cell survival and activation, as exemplified by the capacity of type I IFNs to increase the level of B-cell survival factors, such as B lymphocyte stimulator, produced by dendritic cells. Therefore, it is not surprising that the loss of expression of the type I IFN receptor can have dramatic effects on the production of autoantibodies and on the clinical features of systemic autoimmune diseases such as systemic lupus erythematosus.
PMCID: PMC3701256  PMID: 22430248
type I IFN; B cell; autoimmunity; SLE
2.  TRPM5-mediated calcium uptake regulates mucin secretion from human colon goblet cells 
eLife  2013;2:e00658.
Mucin 5AC (MUC5AC) is secreted by goblet cells of the respiratory tract and, surprisingly, also expressed de novo in mucus secreting cancer lines. siRNA-mediated knockdown of 7343 human gene products in a human colonic cancer goblet cell line (HT29-18N2) revealed new proteins, including a Ca2+-activated channel TRPM5, for MUC5AC secretion. TRPM5 was required for PMA and ATP-induced secretion of MUC5AC from the post-Golgi secretory granules. Stable knockdown of TRPM5 reduced a TRPM5-like current and ATP-mediated Ca2+ signal. ATP-induced MUC5AC secretion depended strongly on Ca2+ influx, which was markedly reduced in TRPM5 knockdown cells. The difference in ATP-induced Ca2+ entry between control and TRPM5 knockdown cells was abrogated in the absence of extracellular Ca2+ and by inhibition of the Na+/Ca2+ exchanger (NCX). Accordingly, MUC5AC secretion was reduced by inhibition of NCX. Thus TRPM5 activation by ATP couples TRPM5-mediated Na+ entry to promote Ca2+ uptake via an NCX to trigger MUC5AC secretion.
eLife digest
Goblet cells are specialized cells that produce proteins called mucins, which combine with water, salt and other proteins to form mucus, the slippery fluid that protects the respiratory and digestive tracts from bacteria, viruses and other pathogens. However, a defect in the production of one particular type of mucin—Mucin 5AC—can result in diseases such as cystic fibrosis, chronic obstructive pulmonary disease and Crohn’s disease, so there is a clear need to understand the production of mucus in detail.
Before they are secreted, the mucins are packaged inside granules in the goblet cells. When a certain extracellular signal arrives at a goblet cell, these granules move through the cell, fuse with the cell membrane and release the mucins, which then expand their volume by a factor of up to a 1000. Calcium ions (Ca2+) have a critical role in the signal that leads to the secretion of mucins, but many details about the signalling and secretion processes are poorly understood.
Now, Mitrovic et al. have used genetic methods to study 7343 gene products in goblet cells derived from a human colon. They identified 16 new proteins that are involved in the secretion of Mucin 5AC, including a channel protein called TRPM5. This protein is activated when the concentration of Ca2+ inside the cell increases, and its activation allows sodium (Na+) ions to enter the cells. These intracellular Na+ ions are then exchanged for Ca2+ ions from outside the cell, and these Ca2+ ions then couple to the molecular machinery that is responsible for the secretion of the mucins.
By using electrophysiological and Ca2+ imaging approaches, Mitrovic et al. were able to visualize and measure TRPM5-mediated Na+ currents and the subsequent Ca2+ uptake by the cells, and confirmed that extracellular Ca2+ ions were responsible for stimulating the secretion of mucins. The next step is to determine how the other 15 genes are involved in mucin secretion and, in the longer term, explore how these insights might be translated into treatments for cystic fibrosis and other conditions associated with defective mucus secretion.
PMCID: PMC3667631  PMID: 23741618
Mucin5AC; TRPM5; Secretion; Human
3.  Beyond transitional selection: New roles for BLyS in peripheral tolerance 
Drug development research  2011;72(8):779-787.
B cell targeted therapies have enjoyed recent success in the treatment of systemic autoimmune diseases. Among these, Belimumab, which blocks the B cell survival cytokine BLyS, was recently approved for the treatment of Systemic Lupus Erythematosus. It is therefore important to consider the roles BLyS plays in B cell tolerance. Herein, we review how BLyS contributes to the negative selection of autoreactive B cell clones from the preimmune repertoire as well as its role in regulating both germinal center and extrafollicular peripheral B cell responses. We further examine the complex role of Toll-like receptors (TLRs) in humoral autoimmunity, pointing out potential crosstalk between BLyS and TLR pathways.
PMCID: PMC3272642  PMID: 22323842
BLyS; BAFF; B lymphocyte; Autoimmunity; Tolerance; Toll like receptors; Belimumab
4.  RAGE-Independent Autoreactive B Cell Activation In Response To Chromatin And HMGB1/DNA Immune Complexes 
Autoimmunity  2010;43(1):103-110.
Increasing evidence suggests that the excessive accumulation of apoptotic or necrotic cellular debris may contribute to the pathology of systemic autoimmune disease. HMGB1 is a nuclear DNA-associated protein, which can be released from dying cells thereby triggering inflammatory processes. We have previously shown that IgG2a-reactive BCR transgenic AM14 B cells proliferate in response to endogenous chromatin immune complexes (ICs), in the form of the anti-nucleosome antibody PL2-3 and cell debris, in a TLR9-dependent manner, and that these ICs contain HMGB1. Activation of AM14 B cells by these chromatin ICs was inhibited by a soluble form of the HMGB1 receptor, RAGE-Fc, suggesting HMGB1/RAGE interaction was important for this response [1]. To further explore the role of HMGB1 in autoreactive B cell activation, we assessed the capacity of purified calf thymus HMGB1 to bind dsDNA fragments and found that HMGB1 bound both CG-rich and CG-poor DNA. However, HMGB1/DNA complexes could not activate AM14 B cells unless HMGB1 was bound by IgG2a and thereby able to engage the BCR. To ascertain the role of RAGE in autoreactive B cell responses to chromatin ICs, we intercrossed AM14 and RAGE-deficient mice. We found that spontaneous and defined DNA ICs activated RAGE+ and RAGE− AM14 B cells to a comparable extent. These results suggest that HMGB1 promotes B cell responses to endogenous TLR9 ligands through a RAGE-independent mechanism.
PMCID: PMC2929824  PMID: 20014975
HMGB1; RAGE; AM14 B cells; TLR9; Systemic Lupus Erythematosus; autoreactive B cell activation
5.  Murine B Cell Response to TLR7 Ligands Depends on an IFN-β Feedback Loop1 
Type I IFNs play an important, yet poorly characterized, role in systemic lupus erythematosus. To better understand the interplay between type I IFNs and the activation of autoreactive B cells, we evaluated the effect of type I IFN receptor (IFNAR) deficiency in murine B cell responses to common TLR ligands. In comparison to wild-type B cells, TLR7-stimulated IFNAR−/− B cells proliferated significantly less well and did not up-regulate costimulatory molecules. By contrast, IFNAR1−/− B cells did not produce cytokines, but did proliferate and up-regulate activation markers in response to other TLR ligands. These defects were not due to a difference in the distribution of B cell populations or a failure to produce a soluble factor other than a type I IFN. Instead, the compromised response pattern reflected the disruption of an IFN-β feedback loop and constitutively low expression of TLR7 in the IFNAR1−/− B cells. These results highlight subtle differences in the IFN dependence of TLR7 responses compared with other TLR-mediated B cell responses.
PMCID: PMC2929820  PMID: 19587008
6.  Two distinct populations of H chain edited B cells show differential surrogate L chain dependence1 
Developing autoreactive B cells may edit (change) their specificity by secondary H or L chain gene rearrangement. Recently, using mice hemizygous for a site-directed VDJH and VJκ transgene (tg) encoding an auotreactive antibody, we reported ongoing L chain editing not only in bone marrow cells with a pre-B/immature B cell phenotype but also in immature/transitional splenic B cells. Using the same transgenic model, we report here that editing at the H chain locus appears to occur exclusively in bone marrow cells with a pro-B phenotype. H chain editing is shown to involve VH replacement at the tg allele or VH rearrangement at the wild-type (wt) allele when the tg is inactivated by nonproductive VH replacement. VH replacement/rearrangement at the tg/wt alleles was found to entail diverse usage of VH genes. Importantly, whereas the development of edited B cells expressing the wt allele was dependent on the λ5 component of the surrogate L chain, the development of B cells expressing the tg allele, including those with VH replacement, appeared λ5 independent. We suggest the unique CDR3 region of the tg-encoded μH chain is responsible for the λ5 independence of tg-expressing B cells.
PMCID: PMC2796978  PMID: 19265137
B cell differentiation; autoreactive B cells; V(D)J rearrangement; VH replacement

Results 1-6 (6)