Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Selective amplification of glucocorticoid anti-inflammatory activity through synergistic multi-target action of a combination drug 
Glucocorticoids are a mainstay of anti-inflammatory therapy, but significant adverse effects ultimately limit their utility. Previous efforts to design glucocorticoid structures with an increased therapeutic window have focused on dissociating anti-inflammatory transcriptional repression from adverse effects primarily driven by transcriptional activation. An alternative to this medicinal chemistry approach is a systems biology based strategy that seeks to amplify selectively the anti-inflammatory activity of very low dose glucocorticoid in immune cells without modulating alternative cellular networks that mediate glucocorticoid toxicity.
The combination of prednisolone and the antithrombotic drug dipyridamole was profiled using in vitro and in vivo models of anti-inflammatory activity and glucocorticoid-induced adverse effects to demonstrate a dissociated activity profile.
The combination synergistically suppresses release of proinflammatory mediators, including tumour necrosis factor-α, IL-6, chemokine (C-C motif) ligand 5 (RANTES), matrix metalloproteinase-9, and others, from human peripheral blood mononuclear cells and mouse macrophages. In rat models of acute lipopolysaccharide-induced endotoxemia and delayed-type hypersensitivity, and in chronic models of collagen-induced and adjuvant-induced arthritis, the combination produced anti-inflammatory activity that required only a subtherapeutic dose of prednisolone. The immune-specific amplification of prednisolone anti-inflammatory activity by dipyridamole did not extend to glucocorticoid-mediated adverse effects, including corticosterone suppression or increased expression of tyrosine aminotransferase, in vivo after repeat dosing in rats. After 8 weeks of oral dosing in mice, treatment with the combination did not alter prednisolone-induced reduction in osteocalcin and mid-femur bone density, which are markers of steroid-induced osteoporosis. Additionally, amplification was not observed in the cellular network of corticotroph AtT-20/D16v-F2 cells in vitro, as measured by pro-opiomelanocortin expression and adrenocorticotropic hormone secretion.
These data suggest that the multi-target mechanism of low-dose prednisolone and dipyridamole creates a dissociated activity profile with an increased therapeutic window through cellular network selective amplification of glucocorticoid-mediated anti-inflammatory signaling.
PMCID: PMC2688244  PMID: 19171052
2.  Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy 
Journal of Clinical Investigation  2007;117(8):2225-2232.
Recent reports have challenged the notion that retroviruses and retroviral vectors integrate randomly into the host genome. These reports pointed to a strong bias toward integration in and near gene coding regions and, for gammaretroviral vectors, around transcription start sites. Here, we report the results obtained from a large-scale mapping of 572 retroviral integration sites (RISs) isolated from cells of 9 patients with X-linked SCID (SCID-X1) treated with a retrovirus-based gene therapy protocol. Our data showed that two-thirds of insertions occurred in or very near to genes, of which more than half were highly expressed in CD34+ progenitor cells. Strikingly, one-fourth of all integrations were clustered as common integration sites (CISs). The highly significant incidence of CISs in circulating T cells and the nature of their locations indicate that insertion in many gene loci has an influence on cell engraftment, survival, and proliferation. Beyond the observed cases of insertional mutagenesis in 3 patients, these data help to elucidate the relationship between vector insertion and long-term in vivo selection of transduced cells in human patients with SCID-X1.
PMCID: PMC1934585  PMID: 17671652
3.  Modulation of LIGHT-HVEM Costimulation Prolongs Cardiac Allograft Survival 
LIGHT (TNFSF14), a tumor necrosis factor superfamily member expressed by activated T cells, binds to herpes virus entry mediator (HVEM) which is constitutively expressed by T cells and costimulates T cell activation in a CD28-independent manner. Given interest in regulating the effector functions of T cells in vivo, we examined the role of LIGHT-HVEM costimulation in a murine cardiac allograft rejection model. Normal hearts lacked LIGHT or HVEM mRNA expression, but allografts showed strong expression of both genes from day 3 after transplant, and in situ hybridization and immunohistology-localized LIGHT and HVEM to infiltrating leukocytes. To test the importance of LIGHT expression on allograft survival, we generated LIGHT−/− mice by homologous recombination. The mean survival of fully major histocompatibility complex–mismatched vascularized cardiac allografts in LIGHT−/− mice (10 days, P < 0.05) or cyclosporine A (CsA)-treated LIGHT+/+ mice (10 days, P < 0.05) was only slightly prolonged compared with LIGHT+/+ mice (7 days). However, mean allograft survival in CsA-treated LIGHT−/− allograft recipients (30 days) was considerably enhanced (P < 0.001) compared with the 10 days of mean survival in either untreated LIGHT−/− mice or CsA-treated LIGHT+/+ controls. Molecular analyzes showed that the beneficial effects of targeting of LIGHT in CsA-treated recipients were accompanied by decreased intragraft expression of interferon (IFN)-γ, plus IFN-γ–induced chemokine, inducible protein-10, and its receptor, CXCR3. Treatment of LIGHT+/+ allograft recipients with HVEM-Ig plus CsA also enhanced mean allograft survival (21 days) versus wild-type controls receiving HVEM-Ig (mean of 7 days) or CsA alone (P < 0.001). Our data suggest that T cell to T cell–mediated LIGHT/HVEM-dependent costimulation is a significant component of the host response leading to cardiac allograft rejection.
PMCID: PMC2193745  PMID: 11901205
transplantation; allograft rejection; T cell activation; costimulation; TNF superfamily
4.  Rapid selection of differentially expressed genes in TNF[alpha]-activated endothelial cells. 
Molecular Medicine  2002;8(9):559-567.
BACKGROUND: RNA differential display (DD) RT-PCR is a useful method to identify and clone differentially expressed genes. However, the rate of false positives and redundancy associated with this PCR-based method as well as laborious downstream screening steps constitute major limitations.Here we present DD RT-PCR and reverse northern (RN) protocols allowing rapid and acurate identification of genes upregulated in porcine endothelial cells (EC) in response to TNFalpha. MATERIALS AND METHODS: The housekeeping gene beta-actin was used to investigate mispriming and to set up optimal conditions for DD-RT-PCR and RN. In this study DD was performed to compare resting and TNFalpha-activated ECs. Selection of DD-fragments was performed following 30-cycles of PCR using serial dilutions of template cDNA and regulation of 6 out of 17 candidates genes were first confirmed by semi-quantitative RN. RESULTS: Using this protocol, 5 out of 6 DD-fragments were further confirmed to be upregulated by Northern blot, and 3 novel porcine cDNAs were cloned including the pro-apoptotic member of the Bcl-2 family, Noxa. CONCLUSION: In this study we demonstrate that the combination of DD-RT-PCR and RN, which efficiently reduces the number of false positive candidates derived from mispriming at the screening step, allows a rapid identification of differentially expressed genes.
PMCID: PMC2040015  PMID: 12456995

Results 1-4 (4)