Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Cytokines in chronic respiratory diseases 
Cytokines are small, secreted proteins that control immune responses. Within the lung, they can control host responses to injuries or infection, resulting in clearance of the insult, repair of lung tissue, and return to homeostasis. Problems can arise when this response is over exuberant and/or cytokine production becomes dysregulated. In such cases, chronic and repeated inflammatory reactions and cytokine production can be established, leading to airway remodeling and fibrosis with unintended, maladaptive consequences. In this report, we describe the cytokines and molecular mechanisms behind the pathology observed in three major chronic diseases of the lung: asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis. Overlapping mechanisms are presented as potential sites for therapeutic intervention.
PMCID: PMC3564216  PMID: 23413371
2.  Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung 
Nature medicine  2004;10(10):1095-1103.
Exaggerated levels of VEGF (vascular endothelial growth factor) are present in persons with asthma, but the role(s) of VEGF in normal and asthmatic lungs has not been defined. We generated lung-targeted VEGF165 transgenic mice and evaluated the role of VEGF in T-helper type 2 cell (TH2)-mediated inflammation. In these mice, VEGF induced, through IL-13–dependent and –independent pathways, an asthma-like phenotype with inflammation, parenchymal and vascular remodeling, edema, mucus metaplasia, myocyte hyperplasia and airway hyper-responsiveness. VEGF also enhanced respiratory antigen sensitization and TH2 inflammation and increased the number of activated DC2 dendritic cells. In antigen-induced inflammation, VEGF was produced by epithelial cells and preferentially by TH2 versus TH1 cells. In this setting, it had a critical role in TH2 inflammation, cytokine production and physiologic dysregulation. Thus, VEGF is a mediator of vascular and extravascular remodeling and inflammation that enhances antigen sensitization and is crucial in adaptive TH2 inflammation. VEGF regulation may be therapeutic in asthma and other TH2 disorders.
PMCID: PMC3434232  PMID: 15378055
3.  Biology and function of neuroimmune semaphorins 4A and 4D 
Immunologic Research  2011;50(1):10-21.
Semaphorins belong to a family of membrane-bound and secreted molecules that regulate the functional activity of axons in the nervous system. Sema4A and Sema4D were the first semaphorins also found to be expressed in immune cells and were, therefore, termed “immune semaphorins”. It is known that Sema4A has three functional receptors, namely Plexin D1, Plexin B1, and Tim-2, whereas Sema4D binds to Plexin B1 and CD72. Recent studies suggest that immune semaphorins play critical roles in many physiological and pathological processes and such. In this review, we summarize the current knowledge on the biology of neuroimmune semaphorins and their corresponding receptors, their distribution in organs and tissues, function in the immune response, and critical regulatory roles in various diseases.
PMCID: PMC3366695  PMID: 21203905
Sema4A; Sema4D; Tim-2; CD72; Plexin B1; Plexin D1; Expression; Lung; Immune response; Diseases
4.  STAT6 Expression in Multiple Cell Types Mediates the Cooperative Development of Allergic Airway Disease 
Th2 cells induce asthma through the secretion of cytokines. Two such cytokines, IL-4 and IL-13, are critical mediators of many features of this disease. They both share a common receptor subunit, IL-4Rα, and signal through the STAT6 pathway. STAT6−/− mice have impaired Th2 differentiation and reduced airway response to allergen. Transferred Th2 cells were not able to elicit eosinophilia in response to OVA in STAT6−/− mice. To clarify the role of STAT6 in allergic airway inflammation, we generated mouse bone marrow (BM) chimeras. We observed little to no eosinophilia in OVA-treated STAT6−/− mice even when STAT6+/+ BM or Th2 cells were provided. However, when Th2 cells were transferred to STAT6×Rag2−/− mice, we observed an eosinophilic response to OVA. Nevertheless, the expression of STAT6 on either BM-derived cells or lung resident cells enhanced the severity of OVA-induced eosinophilia. Moreover, when both the BM donor and recipient lacked lymphocytes, transferred Th2 cells were sufficient to induce the level of eosinophilia comparable with that of wild-type (WT) mice. The expression of STAT6 in BM-derived cells was more critical for the enhanced eosinophilic response. Furthermore, we found a significantly higher number of CD4+CD25+ Foxp3+ T cells (regulatory T cells [Tregs]) in PBS- and OVA-treated STAT6−/− mouse lungs compared with that in WT animals suggesting that STAT6 limits both naturally occurring and Ag-induced Tregs. Tregs obtained from either WT or STAT6−/− mice were equally efficient in suppressing CD4+ T cell proliferation in vitro. Taken together, our studies demonstrate multiple STAT6-dependent and -independent features of allergic inflammation, which may impact treatments targeting STAT6.
PMCID: PMC3139332  PMID: 21242523
5.  Transfer of in vivo primed transgenic T cells supports allergic lung inflammation and FIZZ1 and Ym1 production in an IL-4Rα and STAT6 dependent manner 
BMC Immunology  2011;12:60.
CD4+ T helper type 2 (TH2) cells, their cytokines IL-4, IL-5 and IL-13 and the transcription factor STAT6 are known to regulate various features of asthma including lung inflammation, mucus production and airway hyperreactivity and also drive alternative activation of macrophages (AAM). However, the precise roles played by the IL-4/IL-13 receptors and STAT6 in inducing AAM protein expression and modulating specific features of airway inflammation are still unclear. Since TH2 differentiation and activation plays a pivotal role in this disease, we explored the possibility of developing an asthma model in mice using T cells that were differentiated in vivo.
In this study, we monitored the activation and proliferation status of adoptively transferred allergen-specific naïve or in vivo primed CD4+ T cells. We found that both the naïve and in vivo primed T cells expressed similar levels of CD44 and IL-4. However, in vivo primed T cells underwent reduced proliferation in a lymphopenic environment when compared to naïve T cells. We then used these in vivo generated effector T cells in an asthma model. Although there was reduced inflammation in mice lacking IL-4Rα or STAT6, significant amounts of eosinophils were still present in the BAL and lung tissue. Moreover, specific AAM proteins YM1 and FIZZ1 were expressed by epithelial cells, while macrophages expressed only YM1 in RAG2-/- mice. We further show that FIZZ1 and YM1 protein expression in the lung was completely dependent on signaling through the IL-4Rα and STAT6. Consistent with the enhanced inflammation and AAM protein expression, there was a significant increase in collagen deposition and smooth muscle thickening in RAG2-/- mice compared to mice deficient in IL-4Rα or STAT6.
These results establish that transfer of in vivo primed CD4+ T cells can induce allergic lung inflammation. Furthermore, while IL-4/IL-13 signaling through IL-4Rα and STAT6 is essential for AAM protein expression, lung inflammation and eosinophilia are only partially dependent on this pathway. Further studies are required to identify other proteins and signaling pathways involved in airway inflammation.
PMCID: PMC3212823  PMID: 22014099
6.  Expression and regulation in the brain of the chemokine CCL27 gene locus 
Journal of neuroimmunology  2010;225(1-2):82-90.
The chemokine CCL27 has chemoattractant properties for memory T cells and has been implicated in skin allergic reactions. The present study reports the expression in the brain of two CCL27 splice variants localized in the cerebral cortex and limbic regions. CCL27-like immunoreactivity was identified mainly in neurons. Variant 1 was found elevated in the olfactory bulbs during allergic inflammation induced by intranasal challenge with allergen. This was accompanied by the presence of T cells in the olfactory bulbs. Intranasal administration of neutralizing antibodies against CCL27 reduced the presence of T cells in the olfactory bulbs suggesting a function in T cell activity in the brain.
PMCID: PMC2924910  PMID: 20605223
CTACK; PESKY; alternative splicing; in situ hybridization; neuroimmune; RT-PCR
7.  Expression of neuroimmune semaphorins 4A and 4D and their receptors in the lung is enhanced by allergen and vascular endothelial growth factor 
BMC Immunology  2011;12:30.
Semaphorins were originally identified as molecules regulating a functional activity of axons in the nervous system. Sema4A and Sema4D were the first semaphorins found to be expressed on immune cells and were termed "immune semaphorins". It is known that Sema4A and Sema4D bind Tim-2 and CD72 expressed on leukocytes and PlexinD1 and B1 present on non-immune cells. These neuroimmune semaphorins and their receptors have been shown to play critical roles in many physiological and pathological processes including neuronal development, immune response regulation, cancer, autoimmune, cardiovascular, renal, and infectious diseases. However, the expression and regulation of Sema4A, Sema4D, and their receptors in normal and allergic lungs is undefined.
Allergen treatment and lung-specific vascular endothelial growth factor (VEGF) expression induced asthma-like pathologies in the murine lungs. These experimental models of allergic airway inflammation were used for the expression analysis of immune semaphorins and their receptors employing immunohistochemistry and flow cytometry techniques. We found that besides accessory-like cells, Sema4A was also detected on bronchial epithelial and smooth muscle cells, whereas Sema4D expression was high on immune cells such as T and B lymphocytes. Surprisingly, under inflammation various cell types including macrophages, lymphocytes, and granulocytes in the lung expressed Tim-2, a previously defined marker for Th2 cells. CD72 was found on lung immune, inflammatory, and epithelial cells. Bronchial epithelial cells were positive for both plexins, whereas some endothelial cells selectively expressed Plexin D1. Plexin B1 expression was also detected on lung DC. Both allergen and VEGF upregulated the expression of neuroimmune semaphorins and their receptors in the lung tissue. However, the lung tissue Sema4A-Tim2 expression was rather weak, whereas Sema4D-CD72 ligand-receptor pair was vastly upregulated by allergen. Soluble Sema4D protein was present in the lung lysates and a whole Sema4A protein plus its dimer were readily detected in the bronchoalveolar (BAL) fluids under inflammation.
This study clearly shows that neuroimmune semaphorins Sema4A and Sema4D and their receptors might serve as potential markers for the allergic airway inflammatory diseases. Our current findings pave the way for further investigations of the role of immune semaphorins in inflammation and their use as potential therapeutic targets for the inflammatory lung conditions.
PMCID: PMC3118960  PMID: 21595947
8.  Lung vascular endothelial growth factor expression induces local myeloid dendritic cell activation 
Clinical immunology (Orlando, Fla.)  2009;132(3):371-384.
We previously demonstrated that vascular endothelial growth factor (VEGF) expression in the murine lung increases local CD11c+ MHCII+ DC number and activation. In this study, employing a multicolor flow cytometry, we report increases in both myeloid (mDC) and plasmacytoid (pDC) DC in the lungs of VEGF transgenic (tg) compared to WT mice. Lung pDC from VEGF tg mice exhibited higher levels of activation with increased expression of MHCII and costimulatory molecules. As VEGF tg mice display an asthma-like phenotype and lung mDC play a critical role in asthmatic setting, studies were undertaken to further characterize murine lung mDC. Evaluations of sorted mDC from VEGF tg lungs demonstrated a selective upregulation of cathepsin K, MMP-8, -9, -12, and -14, and chemokine receptors as compared to those obtained from WT control mice. They also had increased VEGFR2 but downregulated VEGFR1 expression. Analysis of chemokine and regulatory cytokine expression in these cells showed an upregulation of macrophage chemotactic protein-3 (MCP-3), thymus-expressed chemokine (TECK), secondary lymphoid organ chemokine (SLC), macrophage-derived chemokine (MDC), IL-1β, IL-6, IL-12 and IL-13. The antigen (Ag) OVA-FITC uptake by lung DC and the migration of Ag-loaded DC to local lymph nodes were significantly increased in VEGF tg mice compared to WT mice. Thus, VEGF may predispose the lung to inflammation and/or repair by activating local DC. It regulates lung mDC expression of innate immunity effector molecules. The data presented here demonstrate how lung VEGF expression functionally affects local mDC for the transition from the innate response to a Th2-type inflammatory response.
PMCID: PMC2780370  PMID: 19553159
Rodent; lung; inflammation; dendritic cells; cell activation
9.  P21 Regulates TGF-β1–Induced Pulmonary Responses via a TNF-α–Signaling Pathway 
Transforming growth factor (TGF)-β1 is an essential regulatory cytokine that has been implicated in the pathogenesis of diverse facets of the injury and repair responses in the lung. The types of responses that it elicits can be appreciated in studies from our laboratory that demonstrated that the transgenic (Tg) overexpression of TGF-β1 in the murine lung causes epithelial apoptosis followed by fibrosis, inflammation, and parenchymal destruction. Because a cyclin-dependent kinase inhibitor, p21, is a key regulator of apoptosis, we hypothesized that p21 plays an important role in the pathogenesis of TGF-β1–induced tissue responses. To test this hypothesis we evaluated the effect of TGF-β1 on the expression of p21 in the murine lung. We also characterized the effects of transgenic TGF-β1 in mice with wild-type and null mutant p21 loci. These studies demonstrate that TGF-β1 is a potent stimulator of p21 expression in the epithelial cells and macrophages in the murine lung. They also demonstrate that TGF-β1–induced lung inflammation, fibrosis, myofibroblast accumulation, and alveolar destruction are augmented in the absence of p21, and that these alterations are associated with exaggerated levels of apoptosis and caspase-3 activation. Finally, our studies further demonstrated that TGF-β1 induces p21 via a TNF-α–signaling pathway and that p21 is a negative modulator of TGF-β1–induced TNF-α expression. Collectively, our studies demonstrate that p21 regulates TGF-β1–induced apoptosis, inflammation, fibrosis, and alveolar remodeling by interacting with TNF-α–signaling pathways.
PMCID: PMC2258454  PMID: 17932374
TGF-β; p21; apoptosis; fibrosis; emphysema
10.  Role of CCR5 in IFN-γ–induced and cigarette smoke–induced emphysema 
Journal of Clinical Investigation  2005;115(12):3460-3472.
Th1 inflammation and remodeling characterized by tissue destruction frequently coexist in human diseases. To further understand the mechanisms of these responses, we defined the role(s) of CCR5 in the pathogenesis of IFN-γ–induced inflammation and remodeling in a murine emphysema model. IFN-γ was a potent stimulator of the CCR5 ligands macrophage inflammatory protein–1α/CCL-3 (MIP-1α/CCL-3), MIP-1β/CCL-4, and RANTES/CCL-5, among others. Antibody neutralization or null mutation of CCR5 decreased IFN-γ–induced inflammation, DNA injury, apoptosis, and alveolar remodeling. These interventions decreased the expression of select chemokines, including CCR5 ligands and MMP-9, and increased levels of secretory leukocyte protease inhibitor. They also decreased the expression and/or activation of Fas, FasL, TNF, caspase-3, -8, and -9, Bid, and Bax. In accordance with these findings, cigarette smoke induced pulmonary inflammation, DNA injury, apoptosis, and emphysema via an IFN-γ–dependent pathway(s), and a null mutation of CCR5 decreased these responses. These studies demonstrate that IFN-γ is a potent stimulator of CC and CXC chemokines and highlight the importance of CCR5 in the pathogenesis of IFN-γ–induced and cigarette smoke–induced inflammation, tissue remodeling, and emphysema. They also demonstrate that CCR5 is required for optimal IFN-γ stimulation of its own ligands, other chemokines, MMPs, caspases, and cell death regulators and the inhibition of antiproteases.
PMCID: PMC1280966  PMID: 16284650
11.  Early Growth Response Gene 1–mediated Apoptosis Is Essential for Transforming Growth Factor β1–induced Pulmonary Fibrosis 
Fibrosis and apoptosis are juxtaposed in pulmonary disorders such as asthma and the interstitial diseases, and transforming growth factor (TGF)-β1 has been implicated in the pathogenesis of these responses. However, the in vivo effector functions of TGF-β1 in the lung and its roles in the pathogenesis of these responses are not completely understood. In addition, the relationships between apoptosis and other TGF-β1–induced responses have not been defined. To address these issues, we targeted bioactive TGF-β1 to the murine lung using a novel externally regulatable, triple transgenic system. TGF-β1 produced a transient wave of epithelial apoptosis that was followed by mononuclear-rich inflammation, tissue fibrosis, myofibroblast and myocyte hyperplasia, and septal rupture with honeycombing. Studies of these mice highlighted the reversibility of this fibrotic response. They also demonstrated that a null mutation of early growth response gene (Egr)-1 or caspase inhibition blocked TGF-β1–induced apoptosis. Interestingly, both interventions markedly ameliorated TGF-β1–induced fibrosis and alveolar remodeling. These studies illustrate the complex effects of TGF-β1 in vivo and define the critical role of Egr-1 in the TGF-β1 phenotype. They also demonstrate that Egr-1–mediated apoptosis is a prerequisite for TGF-β1–induced fibrosis and remodeling.
PMCID: PMC2211975  PMID: 15289506
asthma; pulmonary fibrosis; fibrosis reversibility; airway remodeling
12.  Identification of antigenic epitopes on human allergens: studies with HLA transgenic mice. 
Environmental Health Perspectives  2003;111(2):245-250.
Environmental factors play an important role in the rise and manifestation of allergic conditions in genetically predisposed subjects. Increased exposure to indoor/outdoor allergens is a significant factor in the development of allergic sensitization and asthma. Recently, strong relationships between the immune response to several highly purified allergens and specific human leukocyte antigen (HLA)-DQ and -DR haplotypes have been reported. The major antigens from clinically important allergens have been cloned and sequenced. However, whether innate structural features of major allergens or peculiar immune recognition of these molecules contribute to the overly robust immune responses is not known. We generated and used transgenic (tg) mice expressing single HLA class II transgene(s) to characterize the allergen epitopes presented by particular HLA class II molecules. Next, we generated in vivo models for asthma in the HLA tg mice by intranasal challenge with allergenic extracts. Furthermore, we used a single epitope to induce an allergic lung inflammation. Our system offers a sophisticated technique for systematically identifying the genetic (individual human class II) and antigenic (individual allergenic epitopes) basis of asthma sensitivity and has important implications for new treatment strategies.
PMCID: PMC1241359  PMID: 12573914
13.  Short ragweed allergen induces eosinophilic lung disease in HLA-DQ transgenic mice 
Journal of Clinical Investigation  1999;103(12):1707-1717.
The human leukocyte antigen (HLA) restriction of the IgE response to different allergens in humans has been a subject of numerous published studies. However, the role and contribution of specific HLA class II molecules in the pathogenesis of allergic airway inflammation are unknown and difficult to assess. HLA-DQ6 and HLA-DQ8 transgenic mice lacking endogenous mouse class II gene expression were actively immunized and later challenged intranasally with short ragweed (SRW) allergenic extract. The HLA-DQ transgenic mice developed pulmonary eosinophilia and lung tissue damage. We also found an increase in total protein (TP) level and IL-5 production in bronchoalveolar lavage (BAL) fluid and an increase in SRW-specific Th2-type immunoglobulins (IgG1, IgG2b) and total serum IgE levels. Under similar treatment, DQ-negative full-sib control mice were normal. The allergic response could be significantly inhibited or abrogated in HLA-DQ mice by systemic treatment with anti-DQ mAb. The in vivo responses of HLA-DQ6 and HLA-DQ8 mice showed differences in terms of levels of eosinophilia, BAL protein, IL-5 concentration, and lung hyperreactivity to inhaled methacholine. These findings demonstrate the crucial role for specific HLA-DQ molecules in SRW-specific CD4+ T-cell activation and resulting recruitment of eosinophils into the airways.
J. Clin. Invest. 103:1707–1717 (1999).
PMCID: PMC408385  PMID: 10377177

Results 1-13 (13)