PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (27)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Mature oligodendrocytes actively increase in vivo cytoskeletal plasticity following CNS damage 
Background
Oligodendrocytes are myelinating cells of the central nervous system which support functionally, structurally, and metabolically neurons. Mature oligodendrocytes are generally believed to be mere targets of destruction in the context of neuroinflammation and tissue damage, but their real degree of in vivo plasticity has become a matter of debate. We thus investigated the in vivo dynamic, actin-related response of these cells under different kinds of demyelinating stress.
Methods
We used a novel mouse model (oLucR) expressing luciferase in myelin oligodendrocyte glycoprotein-positive oligodendrocytes under the control of a β-actin promoter. Activity of this promoter served as surrogate for dynamics of the cytoskeleton gene transcription through recording of in vivo bioluminescence following diphtheria toxin-induced oligodendrocyte death and autoimmune demyelination. Cytoskeletal gene expression was quantified from mature oligodendrocytes directly isolated from transgenic animals through cell sorting.
Results
Experimental demyelinating setups augmented oligodendrocyte-specific in vivo bioluminescence. These changes in luciferase signal were confirmed by further ex vivo analysis of the central nervous system tissue from oLucR mice. Increase in bioluminescence upon autoimmune inflammation was parallel to an oligodendrocyte-specific increased transcription of β-tubulin.
Conclusions
Mature oligodendrocytes acutely increase their cytoskeletal plasticity in vivo during demyelination. They are therefore not passive players under demyelinating conditions but can rather react dynamically to external insults.
doi:10.1186/s12974-015-0271-2
PMCID: PMC4404661  PMID: 25889302
Demyelination; Experimental autoimmune encephalomyelitis; In vivo imaging; CNS plasticity; Cytoskeletal dynamics
2.  Deletion of Jun Proteins in Adult Oligodendrocytes Does Not Perturb Cell Survival, or Myelin Maintenance In Vivo 
PLoS ONE  2015;10(3):e0120454.
Oligodendrocytes, the myelin-forming glial cells of the central nervous system (CNS), are fundamental players in rapid impulse conduction and normal axonal functions. JunB and c-Jun are DNA-binding components of the AP-1 transcription factor, which is known to regulate different processes such as proliferation, differentiation, stress responses and death in several cell types, including cultured oligodendrocyte/lineage cells. By selectively inactivating Jun B and c-Jun in myelinating oligodendrocytes in vivo, we generated mutant mice that developed normally, and within more than 12 months showed normal ageing and survival rates. In the adult CNS, absence of JunB and c-Jun from mature oligodendrocytes caused low-grade glial activation without overt signs of demyelination or secondary leukocyte infiltration into the brain. Even after exposure to toxic or autoimmune oligodendrocyte insults, signs of altered oligodendrocyte viability were mild and detectable only upon cuprizone treatment. We conclude that JunB and c-Jun expression in post-mitotic oligodendrocytes is mostly dispensable for the maintainance of white matter tracts throughout adult life, even under demyelinating conditions.
doi:10.1371/journal.pone.0120454
PMCID: PMC4361052  PMID: 25774663
3.  Does dietary salt induce autoimmunity? 
Cell Research  2013;23(7):872-873.
doi:10.1038/cr.2013.65
PMCID: PMC3698635  PMID: 23649312
4.  Intratumoral IL-12 combined with CTLA-4 blockade elicits T cell–mediated glioma rejection 
The Journal of Experimental Medicine  2013;210(13):2803-2811.
T cells are crucial effectors of glioma rejection induced by local IL-12 application and CTLA-4 blockade.
Glioblastomas (GBs) are the most aggressive form of primary brain cancer and virtually incurable. Accumulation of regulatory T (T reg) cells in GBs is thought to contribute to the dampening of antitumor immunity. Using a syngeneic mouse model for GB, we tested whether local delivery of cytokines could render the immunosuppressive GB microenvironment conducive to an antitumor immune response. IL-12 but not IL-23 reversed GB-induced immunosuppression and led to tumor clearance. In contrast to models of skin or lung cancer, IL-12–mediated glioma rejection was T cell dependent and elicited potent immunological memory. To translate these findings into a clinically relevant setting, we allowed for GB progression before initiating therapy. Combined intratumoral IL-12 application with systemic blockade of the co-inhibitory receptor CTLA-4 on T cells led to tumor eradication even at advanced disease stages where monotherapy with either IL-12 or CTLA-4 blockade failed. The combination of IL-12 and CTLA-4 blockade acts predominantly on CD4+ cells, causing a drastic decrease in FoxP3+ T reg cells and an increase in effector T (T eff) cells. Our data provide compelling preclinical findings warranting swift translation into clinical trials in GB and represent a promising approach to increase response rates of CTLA-4 blockade in solid tumors.
doi:10.1084/jem.20130678
PMCID: PMC3865478  PMID: 24277150
5.  Cytokine Complex–expanded Natural Killer Cells Improve Allogeneic Lung Transplant Function via Depletion of Donor Dendritic Cells 
Rationale: Natural killer (NK) cells are innate lymphocytes that target virus-infected and tumor cells. Much less is known about their ability to limit adaptive immune responses.
Objectives: Thus, we investigated to what extent NK cells can influence mouse lung allograft rejection.
Methods: For this purpose, we employed an orthotopic lung transplantation model in mice.
Measurements and Main Results: We demonstrate here that NK cells infiltrate mouse lung allografts before T cells and thereby diminished allograft inflammation, and that NK-cell deficiency enhanced allograft rejection. In contrast, expansion of recipient NK cells through IL-15/IL-15Rα complex treatment resulted in decreased T-cell infiltration and alloreactive T-cell priming as well as improved function of the allogeneic lung transplant. Only perforin-competent, but not perforin-deficient, NK cells were able to transfer these beneficial effects into transplanted NK cell–deficient IL-15Rα−/− mice. These NK cells killed allogeneic dendritic cells (DCs) in vitro and significantly decreased the number of allogeneic DCs in transplanted lungs in vivo. Furthermore, DC-depleted lung allografts presented decreased signs of rejection.
Conclusions: These results suggest that NK cells favor allograft acceptance by depleting donor-derived DCs, which otherwise would prime alloreactive T-cell responses. Thus, conditioning regimens that augment NK-cell reactivity should be clinically explored to prepare lung allograft recipients.
doi:10.1164/rccm.201209-1749OC
PMCID: PMC3734612  PMID: 23590269
natural killer cells; dendritic cells; lung; mouse transplantation; acute rejection
6.  T Cell Contamination in Flow Cytometry Gating Approaches for Analysis of Innate Lymphoid Cells 
PLoS ONE  2014;9(4):e94196.
Innate lymphoid cells (ILCs) differ from T and B cells as they do not express genetically rearranged antigen receptors. The most prominent member of this group, NK cells, can be identified by numerous surface receptors such as natural cytotoxicity receptors (NCRs). However, novel groups of ILCs have recently been described and classified based on fate-determining transcription factors and cytokines being produced, similarly to T helper cells. Due to the lack of exclusive markers, ILCs are primarily defined by the paucity of lineage markers. Using RORc-fate-mapping mice, we found that the common lineage exclusion using CD3 yields an ILC population containing a large proportion of T cells with recombined TCR loci and low expression of CD3. Thus, we suggest adding CD5 as a marker for thorough elimination of T cells to avoid erroneous interpretations of ILC function in immunity.
doi:10.1371/journal.pone.0094196
PMCID: PMC3997334  PMID: 24759759
7.  Neuroprotective intervention by interferon-γ blockade prevents CD8+ T cell–mediated dendrite and synapse loss 
The Journal of Experimental Medicine  2013;210(10):2087-2103.
IFN-γ produced by CD8+ cytotoxic T cells acts on neurons to induce Stat1-associated loss of dendrites and synapses in a mouse model of viral encephalitis.
Neurons are postmitotic and thus irreplaceable cells of the central nervous system (CNS). Accordingly, CNS inflammation with resulting neuronal damage can have devastating consequences. We investigated molecular mediators and structural consequences of CD8+ T lymphocyte (CTL) attack on neurons in vivo. In a viral encephalitis model in mice, disease depended on CTL-derived interferon-γ (IFN-γ) and neuronal IFN-γ signaling. Downstream STAT1 phosphorylation and nuclear translocation in neurons were associated with dendrite and synapse loss (deafferentation). Analogous molecular and structural alterations were also found in human Rasmussen encephalitis, a CTL-mediated human autoimmune disorder of the CNS. Importantly, therapeutic intervention by IFN-γ blocking antibody prevented neuronal deafferentation and clinical disease without reducing CTL responses or CNS infiltration. These findings identify neuronal IFN-γ signaling as a novel target for neuroprotective interventions in CTL-mediated CNS disease.
doi:10.1084/jem.20122143
PMCID: PMC3782053  PMID: 23999498
8.  TGF-β Signalling Is Required for CD4+ T Cell Homeostasis But Dispensable for Regulatory T Cell Function 
PLoS Biology  2013;11(10):e1001674.
Signalling by the cytokine TGF-β regulates mature CD4+ T cell populations but is not involved in the survival and function of regulatory T cells.
TGF-β is widely held to be critical for the maintenance and function of regulatory T (Treg) cells and thus peripheral tolerance. This is highlighted by constitutive ablation of TGF-β receptor (TR) during thymic development in mice, which leads to a lethal autoimmune syndrome. Here we describe that TGF-β–driven peripheral tolerance is not regulated by TGF-β signalling on mature CD4+ T cells. Inducible TR2 ablation specifically on CD4+ T cells did not result in a lethal autoinflammation. Transfer of these TR2-deficient CD4+ T cells to lymphopenic recipients resulted in colitis, but not overt autoimmunity. In contrast, thymic ablation of TR2 in combination with lymphopenia led to lethal multi-organ inflammation. Interestingly, deletion of TR2 on mature CD4+ T cells does not result in the collapse of the Treg cell population as observed in constitutive models. Instead, a pronounced enlargement of both regulatory and effector memory T cell pools was observed. This expansion is cell-intrinsic and seems to be caused by increased T cell receptor sensitivity independently of common gamma chain-dependent cytokine signals. The expression of Foxp3 and other regulatory T cells markers was not dependent on TGF-β signalling and the TR2–deficient Treg cells retained their suppressive function both in vitro and in vivo. In summary, absence of TGF-β signalling on mature CD4+ T cells is not responsible for breakdown of peripheral tolerance, but rather controls homeostasis of mature T cells in adult mice.
Author Summary
TGF-β is a cytokine thought to be critical for the maintenance and function of tolerance in the immune system. In many studies the disruption of TGF-β signalling in CD4+ T cells (a type of white blood cell that coordinates immune responses) has resulted in autoimmune syndromes. We show here that the induced removal of this cytokine's receptor from these specialised blood cells results in an astonishingly mild outcome. Contrary to expectations, the number of regulatory T cells is actually increased, and we find that these cells are not dependent on TGF-β signalling. We also show that removal of the receptor from mature CD4+ T cells does not lead to lethal autoinflammation; only when we removed the receptor during development of the cells did we see the characteristic lethal multi-organ inflammation reported previously in constitutive models of TGF-β receptor ablation. In summary, our findings indicate that although TGF-β regulates maintenance of mature CD4+ T cells, its signals are dispensable for immune tolerance within this cell population.
doi:10.1371/journal.pbio.1001674
PMCID: PMC3792861  PMID: 24115907
9.  IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4+ Th17 cells 
The Journal of Experimental Medicine  2012;209(9):1595-1609.
IL-1β promotes chronic intestinal inflammation through recruitment of granulocytes, activation of ILCs, accumulation of pathogenic T cells, and promotion of Th17 responses.
Although very high levels of interleukin (IL)-1β are present in the intestines of patients suffering from inflammatory bowel diseases (IBD), little is known about the contribution of IL-1β to intestinal pathology. Here, we used two complementary models of chronic intestinal inflammation to address the role of IL-1β in driving innate and adaptive pathology in the intestine. We show that IL-1β promotes innate immune pathology in Helicobacter hepaticus–triggered intestinal inflammation by augmenting the recruitment of granulocytes and the accumulation and activation of innate lymphoid cells (ILCs). Using a T cell transfer colitis model, we demonstrate a key role for T cell–specific IL-1 receptor (IL-1R) signals in the accumulation and survival of pathogenic CD4+ T cells in the colon. Furthermore, we show that IL-1β promotes Th17 responses from CD4+ T cells and ILCs in the intestine, and we describe synergistic interactions between IL-1β and IL-23 signals that sustain innate and adaptive inflammatory responses in the gut. These data identify multiple mechanisms through which IL-1β promotes intestinal pathology and suggest that targeting IL-1β may represent a useful therapeutic approach in IBD.
doi:10.1084/jem.20111453
PMCID: PMC3428945  PMID: 22891275
10.  TH17 cytokines in autoimmune neuro-inflammation 
Current opinion in immunology  2011;23(6):707-712.
It has been firmly established that IL-23 polarized TH17 cells are potent effectors in the pathogenesis of experimental autoimmune encephalitomyelitis (EAE). However, the relative importance of these cells in comparison to other encephalitogenic TH subsets, and the mechanisms that they employ to effect inflammatory demyelination, are topics of continuing investigation. Interestingly, deletion of individual ‘TH17 cytokines’, such as IL-17A, IL-17F, IL-22 and IL-21, does not phenocopy the complete EAE-resistance of IL-23-deficient mice. The instability of TH17 cells in vivo introduces an additional layer of complexity to their role in the context of relapsing or chronic disease. Recent data indicate that IL-23 drives the production of myeloid activating factors, such as GM-CSF, by myelin-reactive T cells and facilitates their accumulation in the CNS. This review discusses the above issues in relation to the use of TH17 cells and related factors as potential therapeutic targets and biomarkers in CNS autoimmune diseases such as multiple sclerosis (MS).
doi:10.1016/j.coi.2011.08.005
PMCID: PMC3535446  PMID: 21907555
12.  Evaluation of OPEN Zinc Finger Nucleases for Direct Gene Targeting of the ROSA26 Locus in Mouse Embryos 
PLoS ONE  2012;7(9):e41796.
Zinc finger nucleases (ZFNs) enable precise genome modification in a variety of organisms and cell types. Commercial ZFNs were reported to enhance gene targeting directly in mouse zygotes, whereas similar approaches using publicly available resources have not yet been described. Here we report precise targeted mutagenesis of the mouse genome using Oligomerized Pool Engineering (OPEN) ZFNs. OPEN ZFN can be constructed using publicly available resources and therefore provide an attractive alternative for academic researchers. Two ZFN pairs specific to the mouse genomic locus gt(ROSA26)Sor were generated by OPEN selections and used for gene disruption and homology-mediated gene replacement in single cell mouse embryos. One specific ZFN pair facilitated non-homologous end joining (NHEJ)-mediated gene disruption when expressed in mouse zygotes. We also observed a single homologous recombination (HR)-driven gene replacement event when this ZFN pair was co-injected with a targeting vector. Our experiments demonstrate the feasibility of achieving both gene ablation through NHEJ and gene replacement by HR by using the OPEN ZFN technology directly in mouse zygotes.
doi:10.1371/journal.pone.0041796
PMCID: PMC3435328  PMID: 22970113
13.  Rorγt+ innate lymphocytes and γδ T cells initiate psoriasiform plaque formation in mice  
The Journal of Clinical Investigation  2012;122(6):2252-2256.
Psoriasis is a common, relapsing inflammatory skin disease characterized by erythematous scaly plaques. Histological manifestations of psoriasis include keratinocyte dysregulation and hyperproliferation, elongated rete ridges, and inflammatory infiltrates consisting of T cells, macrophages, dendritic cells, and neutrophils. Despite the availability of new effective drugs to treat psoriasis, the underlying mechanisms of pathogenesis are still poorly understood. Recent studies have shown that Aldara cream, used to treat benign skin abnormalities, triggers psoriasis-like disease in humans and mice and have implicated Th17 cells in disease initiation. Using this as a model, we found a predominant role for the Th17 signature cytokines IL-17A, IL-17F, and IL-22 in psoriasiform plaque formation in mice. Using gene-targeted mice, we observed that loss of Il17a, Il17f, or Il22 strongly reduced disease the severity of psoriasis. However, we found that Th17 cells were not the primary source of these pathogenic cytokines. Rather, IL-17A, IL-17F, and IL-22 were produced by a skin-invading population of γδ T cells and RORγt+ innate lymphocytes. Furthermore, our findings establish that RORγt+ innate lymphocytes and γδ T cells are necessary and sufficient for psoriatic plaque formation in an experimental disease model that closely resembles human psoriatic plaque formation.
doi:10.1172/JCI61862
PMCID: PMC3366412  PMID: 22546855
14.  NIK signaling in dendritic cells but not in T cells is required for the development of effector T cells and cell-mediated immune responses 
The Journal of Experimental Medicine  2011;208(9):1917-1929.
NIK expression in thymic dendritic cells is required for the development of effector T cells and their ability to promote EAE.
The canonical NF-κB pathway is a driving force for virtually all aspects of inflammation. Conversely, the role of the noncanonical NF-κB pathway and its central mediator NF-κB–inducing kinase (NIK) remains poorly defined. NIK has been proposed to be involved in the formation of TH17 cells, and its absence in TH cells renders them incapable of inducing autoimmune responses, suggesting a T cell–intrinsic role for NIK. Upon systematic analysis of NIK function in cell-mediated immunity, we found that NIK signaling is dispensable within CD4+ T cells but played a pivotal role in dendritic cells (DCs). We discovered that NIK signaling is required in DCs to deliver co-stimulatory signals to CD4+ T cells and that DC-restricted expression of NIK is sufficient to restore TH1 and TH17 responses as well as cell-mediated immunity in NIK−/− mice. When CD4+ T cells developed in the absence of NIK-sufficient DCs, they were rendered anergic. Reintroduction of NIK into DCs allowed developing NIK−/− CD4+ T cells to become functional effector populations and restored the development of autoimmune disease. Therefore, our data suggest that a population of thymic DCs requires NIK to shape the formation of most αβ CD4+ T effector lineages during early development.
doi:10.1084/jem.20110128
PMCID: PMC3171087  PMID: 21807870
15.  IL-22 Is Produced by Innate Lymphoid Cells and Limits Inflammation in Allergic Airway Disease 
PLoS ONE  2011;6(7):e21799.
Interleukin (IL)-22 is an effector cytokine, which acts primarily on epithelial cells in the skin, gut, liver and lung. Both pro- and anti-inflammatory properties have been reported for IL-22 depending on the tissue and disease model. In a murine model of allergic airway inflammation, we found that IL-22 is predominantly produced by innate lymphoid cells in the inflamed lungs, rather than TH cells. To determine the impact of IL-22 on airway inflammation, we used allergen-sensitized IL-22-deficient mice and found that they suffer from significantly higher airway hyperreactivity upon airway challenge. IL-22-deficiency led to increased eosinophil infiltration lymphocyte invasion and production of CCL17 (TARC), IL-5 and IL-13 in the lung. Mice treated with IL-22 before antigen challenge displayed reduced expression of CCL17 and IL-13 and significant amelioration of airway constriction and inflammation. We conclude that innate IL-22 limits airway inflammation, tissue damage and clinical decline in allergic lung disease.
doi:10.1371/journal.pone.0021799
PMCID: PMC3138740  PMID: 21789181
16.  Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells  
The Journal of Clinical Investigation  2011;121(8):3088-3093.
Atopic asthma is a chronic disease of the airways that has taken on epidemic proportions in the industrialized world. The increase in asthma rates has been linked epidemiologically to the rapid disappearance of Helicobacter pylori, a bacterial pathogen that persistently colonizes the human stomach, from Western societies. In this study, we have utilized mouse models of allergic airway disease induced by ovalbumin or house dust mite allergen to experimentally examine a possible inverse correlation between H. pylori and asthma. H. pylori infection efficiently protected mice from airway hyperresponsiveness, tissue inflammation, and goblet cell metaplasia, which are hallmarks of asthma, and prevented allergen-induced pulmonary and bronchoalveolar infiltration with eosinophils, Th2 cells, and Th17 cells. Protection against asthma was most robust in mice infected neonatally and was abrogated by antibiotic eradication of H. pylori. Asthma protection was further associated with impaired maturation of lung-infiltrating dendritic cells and the accumulation of highly suppressive Tregs in the lungs. Systemic Treg depletion abolished asthma protection; conversely, the adoptive transfer of purified Treg populations was sufficient to transfer protection from infected donor mice to uninfected recipients. Our results thus provide experimental evidence for a beneficial effect of H. pylori colonization on the development of allergen-induced asthma.
doi:10.1172/JCI45041
PMCID: PMC3148731  PMID: 21737881
17.  Dietary α-linolenic acid diminishes experimental atherogenesis and restricts T cell-driven inflammation 
European Heart Journal  2011;32(20):2573-2584.
Aims
Epidemiological studies report an inverse association between plant-derived dietary α-linolenic acid (ALA) and cardiovascular events. However, little is known about the mechanism of this protection. We assessed the cellular and molecular mechanisms of dietary ALA (flaxseed) on atherosclerosis in a mouse model.
Methods and results
Eight-week-old male apolipoprotein E knockout (ApoE−/−) mice were fed a 0.21 % (w/w) cholesterol diet for 16 weeks containing either a high ALA [7.3 % (w/w); n = 10] or low ALA content [0.03 % (w/w); n = 10]. Bioavailability, chain elongation, and fatty acid metabolism were measured by gas chromatography of tissue lysates and urine. Plaques were assessed using immunohistochemistry. T cell proliferation was investigated in primary murine CD3-positive lymphocytes. T cell differentiation and activation was assessed by expression analyses of interferon-γ, interleukin-4, and tumour necrosis factor α (TNFα) using quantitative PCR and ELISA. Dietary ALA increased aortic tissue levels of ALA as well as of the n−3 long chain fatty acids (LC n−3 FA) eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid. The high ALA diet reduced plaque area by 50% and decreased plaque T cell content as well as expression of vascular cell adhesion molecule-1 and TNFα. Both dietary ALA and direct ALA exposure restricted T cell proliferation, differentiation, and inflammatory activity. Dietary ALA shifted prostaglandin and isoprostane formation towards 3-series compounds, potentially contributing to the atheroprotective effects of ALA.
Conclusion
Dietary ALA diminishes experimental atherogenesis and restricts T cell-driven inflammation, thus providing the proof-of-principle that plant-derived ALA may provide a valuable alternative to marine LC n−3 FA.
doi:10.1093/eurheartj/ehq501
PMCID: PMC3195262  PMID: 21285075
α-Linolenic acid; Atherosclerosis; Inflammation; Polyunsaturated fatty acids
18.  SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis 
European Heart Journal  2010;31(18):2301-2309.
Aims
Endothelial activation, macrophage infiltration, and foam cell formation are pivotal steps in atherogenesis. Our aim in this study was to analyse the role of SIRT1, a class III deacetylase with important metabolic functions, in plaque macrophages and atherogenesis.
Methods and results
Using partial SIRT1 deletion in atherosclerotic mice, we demonstrate that SIRT1 protects against atherosclerosis by reducing macrophage foam cell formation. Peritoneal macrophages from heterozygous SIRT1 mice accumulate more oxidized low-density lipoprotein (oxLDL), thereby promoting foam cell formation. Bone marrow-restricted SIRT1 deletion confirmed that SIRT1 function in macrophages is sufficient to decrease atherogenesis. Moreover, we show that SIRT1 reduces the uptake of oxLDL by diminishing the expression of lectin-like oxLDL receptor-1 (Lox-1) via suppression of the NF-κB signalling pathway.
Conclusion
Our findings demonstrate protective effects of SIRT1 in atherogenesis and suggest pharmacological SIRT1 activation as a novel anti-atherosclerotic strategy by reducing macrophage foam cell formation.
doi:10.1093/eurheartj/ehq107
PMCID: PMC2938465  PMID: 20418343
SIRT1; Macrophage foam cell; Atherogenesis
19.  IL-9 as a mediator of Th17-driven inflammatory disease 
The Journal of Experimental Medicine  2009;206(8):1653-1660.
We report that like other T cells cultured in the presence of transforming growth factor (TGF) β, Th17 cells also produce interleukin (IL) 9. Th17 cells generated in vitro with IL-6 and TGF-β as well as purified ex vivo Th17 cells both produced IL-9. To determine if IL-9 has functional consequences in Th17-mediated inflammatory disease, we evaluated the role of IL-9 in the development and progression of experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. The data show that IL-9 neutralization and IL-9 receptor deficiency attenuates disease, and this correlates with decreases in Th17 cells and IL-6–producing macrophages in the central nervous system, as well as mast cell numbers in the regional lymph nodes. Collectively, these data implicate IL-9 as a Th17-derived cytokine that can contribute to inflammatory disease.
doi:10.1084/jem.20090246
PMCID: PMC2722185  PMID: 19596803
20.  Neo-Lymphoid Aggregates in the Adult Liver Can Initiate Potent Cell-Mediated Immunity 
PLoS Biology  2009;7(5):e1000109.
Are lymph nodes really essential for successful immunizations? We found that the liver can compensate for missing lymphoid structures in initiating cellular, but not antibody-mediated, immunity.
Subcutaneous immunization delivers antigen (Ag) to local Ag-presenting cells that subsequently migrate into draining lymph nodes (LNs). There, they initiate the activation and expansion of lymphocytes specific for their cognate Ag. In mammals, the structural environment of secondary lymphoid tissues (SLTs) is considered essential for the initiation of adaptive immunity. Nevertheless, cold-blooded vertebrates can initiate potent systemic immune responses even though they lack conventional SLTs. The emergence of lymph nodes provided mammals with drastically improved affinity maturation of B cells. Here, we combine the use of different strains of alymphoplastic mice and T cell migration mutants with an experimental paradigm in which the site of Ag delivery is distant from the site of priming and inflammation. We demonstrate that in mammals, SLTs serve primarily B cell priming and affinity maturation, whereas the induction of T cell-driven immune responses can occur outside of SLTs. We found that mice lacking conventional SLTs generate productive systemic CD4- as well as CD8-mediated responses, even under conditions in which draining LNs are considered compulsory for the initiation of adaptive immunity. We describe an alternative pathway for the induction of cell-mediated immunity (CMI), in which Ag-presenting cells sample Ag and migrate into the liver where they induce neo-lymphoid aggregates. These structures are insufficient to support antibody affinity maturation and class switching, but provide a novel surrogate environment for the initiation of CMI.
Author Summary
Lymph nodes (LNs) are believed to be the most important tissues initiating immune responses by facilitating the activation of T and B lymphocytes. Mice lacking such LNs (called alymphoplastic) are severely immune compromised and resistant to immunizations. We discovered that the immune-deficiency of such alymphoplastic mice is actually not caused by the loss of LNs, but rather by the underlying genetic lesion. Surprisingly, mice lacking all lymph nodes can still mount potent T cell-mediated immune responses. We also discovered that T and B cells have completely different structural requirements for their activation/maturation. Whereas B cells rely on LNs to become efficient antibody-producing cells, T cells can be activated successfully outside of such dedicated tissues. So—in the absence of LNs—antigens delivered by immunization are actively transported into the liver where cellular immunity is initiated. The mammalian fetal liver is responsible for the early formation of blood and immune cells, and we propose that the adult liver can still provide a niche for T cell–antigen encounters. During evolution, T and B cells emerged simultaneously, allowing cold-blooded vertebrates (which lack LNs) to launch adaptive immune responses. The development of LNs in mammals coincided with a drastic improvement in antibody affinity maturation, whereas T cells remain LN-independent to this day.
doi:10.1371/journal.pbio.1000109
PMCID: PMC2680335  PMID: 19468301
21.  IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice 
The clear association of Th17 cells with autoimmune pathogenicity implicates Th17 cytokines as critical mediators of chronic autoimmune diseases such as EAE. To study the impact of IL-17A on CNS inflammation, we generated transgenic mice in which high levels of expression of IL-17A could be initiated after Cre-mediated recombination. Although ubiquitous overexpression of IL-17A led to skin inflammation and granulocytosis, T cell–specific IL-17A overexpression did not have a perceptible impact on the development and health of the mice. In the context of EAE, neither the T cell–driven overexpression of IL-17A nor its complete loss had a major impact on the development of clinical disease. Since IL-17F may be able to compensate for the loss of IL-17A, we also generated IL-17F–deficient mice. This strain was fully susceptible to EAE and displayed unaltered emergence and expansion of autoreactive T cells during disease. To eliminate potential compensatory effects of either cytokine, we treated IL-17F–deficient mice with antagonistic monoclonal antibodies specific for IL-17A and found again only a minimal beneficial impact on disease development. We conclude therefore that both IL-17A and IL-17F, while prominently expressed by an encephalitogenic T cell population, may only marginally contribute to the development of autoimmune CNS disease.
doi:10.1172/JCI35997
PMCID: PMC2613466  PMID: 19075395
22.  Pathogen Specificity and Autoimmunity Are Distinct Features of Antigen-Driven Immune Responses in Neuroborreliosis▿  
Infection and Immunity  2007;75(8):3842-3847.
Neuroborreliosis (NB) is a chronic infectious disease of the central nervous system (CNS) caused by a tick-borne spirochete, Borrelia burgdorferi. In addition to direct effects of the causative infectious agent, additional immunity-mediated mechanisms are thought to play a role in the CNS pathology of NB. In order to further understand the involvement of humoral immune mechanisms in NB, we dissected the intrathecal antibody responses down to the single-plasma-cell level. Starting with single-cell reverse transcription-PCR of fluorescence-activated cell sorter-sorted cerebrospinal fluid plasma cells from an NB patient, we identified expanded clones and resurrected the antigen specificity of their secreted antibodies through recombinant expression of the correctly paired immunoglobulin heavy- and light-chain genes as monoclonal antibodies (MAbs). As expected, we found specificity for the causative infectious agent, B. burgdorferi, among the clonally expanded plasma cell (cePC)-derived MAbs. However, from an independent cePC of the same patient, we could derive MAbs specific for human CNS myelin, without detectable cross-reactivity with B. burgdorferi antigens. While reactivity against B. burgdorferi is a known feature of humoral immune responses in NB, we show (i) that immune responses specific for self antigens may be a distinct feature of CNS infections independent of pathogen reactivity and (ii) that humoral autoimmunity in NB (since found in cePC) is the result of a truly antigen-driven immune response. Our findings indicate that in NB mechanisms may be at play that induce distinct immune responses specific for pathogen and self antigens independent from “molecular mimicry.”
doi:10.1128/IAI.00260-07
PMCID: PMC1951992  PMID: 17517881
23.  APC-derived cytokines and T cell polarization in autoimmune inflammation 
Journal of Clinical Investigation  2007;117(5):1119-1127.
T cell–mediated autoimmune diseases such as multiple sclerosis and rheumatoid arthritis are driven by autoaggressive Th cells. The pathogenicity of such Th cells has, in the past, been considered to be dictated by their cytokine polarization profile. The polarization of such effector T cells relies critically upon the actions of cytokines secreted by APCs. While Th1 polarization has long been associated with the pathogenesis of autoimmune diseases, recent data obtained in gene-targeted mice and the discovery of Th17 cell involvement in autoimmunity conflict with this hypothesis. In light of these recent developments, we discuss in this review the actions of APC-derived cytokines and their emerging roles in T cell polarization in the context of autoimmune inflammatory responses.
doi:10.1172/JCI31720
PMCID: PMC1857272  PMID: 17476341
24.  Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis 
Journal of Clinical Investigation  2006;116(2):456-464.
Inflammatory diseases of the CNS, such as MS and its animal model EAE, are characterized by infiltration of activated lymphocytes and phagocytes into the CNS. Within the CNS, activation of resident cells initiates an inflammatory cascade, leading to tissue destruction, demyelination, and neurologic deficit. TLRs recognize microbes and are pivotal mediators of innate immunity. Within the CNS, augmented TLR expression during EAE is observed, even in the absence of any apparent microbial involvement. To determine the functional relevance of this phenomenon during sterile autoimmunity, we studied the role of different TLRs as well as their common signaling adaptor MyD88 in the development of EAE. We found that MyD88–/– mice were completely EAE resistant. Surprisingly, this protection is partly due to engagement of the CpG receptor TLR9. Restricting the MyD88 or TLR9 mutation to host radio-resistant cells, including the cells within the CNS, revealed that engagement of radio-resistant cells modulated the disease course and histopathological changes. Our data clearly demonstrate that both TLR9 and MyD88 are essential modulators of the autoimmune process during the effector phase of disease and suggest that endogenous “danger signals” modulate the disease pathogenesis.
doi:10.1172/JCI26078
PMCID: PMC1350999  PMID: 16440059
25.  IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis 
Journal of Clinical Investigation  2003;112(8):1186-1191.
CNS-resident cells, in particular microglia and macrophages, are a source of inflammatory cytokines during inflammation within the CNS. Expression of IL-23, a recently discovered cytokine, has been shown to be critical for the development of experimental autoimmune encephalomyelitis (EAE) in mice. Expression of the p40 subunit of IL-12 and IL-23 by microglia has been shown in situ and in vitro, but direct evidence for a functional significance of p40 expression by CNS cells during an immune response in vivo is still lacking. Here we report that p40 plays a critical role in maintaining encephalitogenicity during the disease course. By using irradiation bone marrow chimeras, we have generated mice in which p40 is deleted from the CNS parenchyma but not the systemic immune compartment. Our studies show that p40 expressed by CNS-endogenous cells is critical for the development of myelin oligodendrocyte glycoprotein–induced EAE. In spite of the reduced clinical disease, the absence of p40 from the CNS has little impact on the degree of inflammation. Expression profiles of the CNS lesions show an increase in Th2 cytokines when compared with mice that develop EAE in the presence of CNS IL-12 and/or IL-23. Taken together, our data demonstrate that p40 expression by CNS-resident cells forms the basis for the Th1 bias of the CNS.
doi:10.1172/JCI200319079
PMCID: PMC213492  PMID: 14561703

Results 1-25 (27)