PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-18 (18)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
Document Types
1.  Functional genomics to identify the factors contributing to successful persistence and global spread of an antibiotic resistance plasmid 
BMC Microbiology  2014;14:168.
Background
The spread of bacterial plasmids is an increasing global problem contributing to the widespread dissemination of antibiotic resistance genes including β-lactamases. Our understanding of the details of the biological mechanisms by which these natural plasmids are able to persist in bacterial populations and are able to establish themselves in new hosts via conjugative transfer is very poor. We recently identified and sequenced a globally successful plasmid, pCT, conferring β-lactam resistance.
Results
Here, we investigated six plasmid encoded factors (tra and pil loci; rci shufflon recombinase, a putative sigma factor, a putative parB partitioning gene and a pndACB toxin-antitoxin system) hypothesised to contribute to the ‘evolutionary success’ of plasmid pCT. Using a functional genomics approach, the role of these loci was investigated by systematically inactivating each region and examining the impact on plasmid persistence, conjugation and bacterial host biology. While the tra locus was found to be essential for all pCT conjugative transfer, the second conjugation (pil) locus was found to increase conjugation frequencies in liquid media to particular bacterial host recipients (determined in part by the rci shufflon recombinase). Inactivation of the pCT pndACB system and parB did not reduce the stability of this plasmid.
Conclusions
Our findings suggest the success of pCT may be due to a combination of factors including plasmid stability within a range of bacterial hosts, a lack of a fitness burden and efficient transfer rates to new bacterial hosts rather than the presence of a particular gene or phenotype transferred to the host. The methodology used in our study could be applied to other ‘successful’ globally distributed plasmids to discover the role of currently unknown plasmid backbone genes or to investigate other factors which allow these elements to persist and spread.
doi:10.1186/1471-2180-14-168
PMCID: PMC4083329  PMID: 24961279
Beta-lactam; ESBL; Mobile genetic element; Plasmid; Recombination
2.  Prognostic Significance of Deregulated Dicer Expression in Breast Cancer 
PLoS ONE  2013;8(12):e83724.
Background
Dicer, an RNase III-type endonuclease, is the key enzyme involved in RNA interference and microRNA pathways. Aberrant expression of Dicer is reported in several human cancers. Our aim was to assess the prognostic role of Dicer in breast cancer.
Methods
The entire series comprised 666 invasive breast cancers (IBCs), 480 DCIS cases (397 associated with IBC and 83 pure DCIS) and 305 lymph node metastases. Cytoplasmic Dicer expression by immunohistochemistry was scored as negative (no staining) and positive (weak, moderate or strong staining).
Results
Dicer staining was assessable in 446 IBC, 128 DCIS and 101 lymph node metastases. Expression of Dicer was observed in 33% (145/446) of IBCs, 34% (44/128) of DCIS and 57% (58/101) of lymph node metastases. Dicer expression was increased in nodal metastases compared to primary tumours (p<0.001); and was associated with ER negativity (p<0.001), HER2 positivity (p<0.001), high Ki67 labeling index (p<0.001) and expression of basal-like biomarkers (p = 0.002). Dicer positivity was more frequent in the HER2 overexpressing (p<0.001) and basal-like (p = 0.002) subtypes compared to luminal A subtype. Dicer expression was associated with reduced overall survival (OS) on univariate analysis (p = 0.058) and remained an independent predictor of OS on multivariate analysis (HR 2.84, 95% CI 1.43–5.62, p = 0.003), with nodal status (HR 2.61, 95% CI 1.18–5.80, p = 0.018) and PR (HR 0.28, 95% CI 0.13–0.59, p = 0.001). Further, moderate or strong expression of Dicer was associated with improved disease-free survival in the HER2-overexpressing subtype compared to negative or weak expression (p = 0.038).
Conclusion
Deregulated Dicer expression is associated with aggressive tumour characteristics and is an independent prognostic factor for OS. Our findings suggest that Dicer is an important prognostic marker in breast cancer and that its prognostic role may be subtype specific.
doi:10.1371/journal.pone.0083724
PMCID: PMC3875475  PMID: 24386264
3.  Clinically Relevant Mutant DNA Gyrase Alters Supercoiling, Changes the Transcriptome, and Confers Multidrug Resistance 
mBio  2013;4(4):e00273-13.
ABSTRACT
Bacterial DNA is maintained in a supercoiled state controlled by the action of topoisomerases. Alterations in supercoiling affect fundamental cellular processes, including transcription. Here, we show that substitution at position 87 of GyrA of Salmonella influences sensitivity to antibiotics, including nonquinolone drugs, alters global supercoiling, and results in an altered transcriptome with increased expression of stress response pathways. Decreased susceptibility to multiple antibiotics seen with a GyrA Asp87Gly mutant was not a result of increased efflux activity or reduced reactive-oxygen production. These data show that a frequently observed and clinically relevant substitution within GyrA results in altered expression of numerous genes, including those important in bacterial survival of stress, suggesting that GyrA mutants may have a selective advantage under specific conditions. Our findings help contextualize the high rate of quinolone resistance in pathogenic strains of bacteria and may partly explain why such mutant strains are evolutionarily successful.
IMPORTANCE
Fluoroquinolones are a powerful group of antibiotics that target bacterial enzymes involved in helping bacteria maintain the conformation of their chromosome. Mutations in the target enzymes allow bacteria to become resistant to these antibiotics, and fluoroquinolone resistance is common. We show here that these mutations also provide protection against a broad range of other antimicrobials by triggering a defensive stress response in the cell. This work suggests that fluoroquinolone resistance mutations may be beneficial under a range of conditions.
doi:10.1128/mBio.00273-13
PMCID: PMC3735185  PMID: 23882012
4.  Persistence of Transferable Extended-Spectrum-β-Lactamase Resistance in the Absence of Antibiotic Pressure 
The treatment of infections caused by antibiotic-resistant bacteria is one of the great challenges faced by clinicians in the 21st century. Antibiotic resistance genes are often transferred between bacteria by mobile genetic vectors called plasmids. It is commonly believed that removal of antibiotic pressure will reduce the numbers of antibiotic-resistant bacteria due to the perception that carriage of resistance imposes a fitness cost on the bacterium. This study investigated the ability of the plasmid pCT, a globally distributed plasmid that carries an extended-spectrum-β-lactamase (ESBL) resistance gene (blaCTX-M-14), to persist and disseminate in the absence of antibiotic pressure. We investigated key attributes in plasmid success, including conjugation frequencies, bacterial-host growth rates, ability to cause infection, and impact on the fitness of host strains. We also determined the contribution of the blaCTX-M-14 gene itself to the biology of the plasmid and host bacterium. Carriage of pCT was found to impose no detectable fitness cost on various bacterial hosts. An absence of antibiotic pressure and inactivation of the antibiotic resistance gene also had no effect on plasmid persistence, conjugation frequency, or bacterial-host biology. In conclusion, plasmids such as pCT have evolved to impose little impact on host strains. Therefore, the persistence of antibiotic resistance genes and their vectors is to be expected in the absence of antibiotic selective pressure regardless of antibiotic stewardship. Other means to reduce plasmid stability are needed to prevent the persistence of these vectors and the antibiotic resistance genes they carry.
doi:10.1128/AAC.00848-12
PMCID: PMC3421869  PMID: 22710119
5.  SadA, a Trimeric Autotransporter from Salmonella enterica Serovar Typhimurium, Can Promote Biofilm Formation and Provides Limited Protection against Infection ▿ †  
Infection and Immunity  2011;79(11):4342-4352.
Salmonella enterica is a major cause of morbidity worldwide and mortality in children and immunocompromised individuals in sub-Saharan Africa. Outer membrane proteins of Salmonella are of significance because they are at the interface between the pathogen and the host, they can contribute to adherence, colonization, and virulence, and they are frequently targets of antibody-mediated immunity. In this study, the properties of SadA, a purported trimeric autotransporter adhesin of Salmonella enterica serovar Typhimurium, were examined. We demonstrated that SadA is exposed on the Salmonella cell surface in vitro and in vivo during infection of mice. Expression of SadA resulted in cell aggregation, biofilm formation, and increased adhesion to human intestinal Caco-2 epithelial cells. Immunization of mice with folded, full-length, purified SadA elicited an IgG response which provided limited protection against bacterial challenge. When anti-SadA IgG titers were enhanced by administering alum-precipitated protein, a modest additional protection was afforded. Therefore, despite SadA having pleiotropic functions, it is not a dominant, protective antigen for antibody-mediated protection against Salmonella.
doi:10.1128/IAI.05592-11
PMCID: PMC3257908  PMID: 21859856
6.  Resistance and Tolerance to Tropodithietic Acid, an Antimicrobial in Aquaculture, Is Hard To Select▿ †  
The antibacterial compound tropodithietic acid (TDA) is produced by bacteria of the marine Roseobacter clade and is thought to explain the fish probiotic properties of some roseobacters. The aim of the present study was to determine the antibacterial spectrum of TDA and the likelihood of development of TDA resistance. A bacterial extract containing 95% TDA was effective against a range of human-pathogenic bacteria, including both Gram-negative and Gram-positive bacteria. TDA was bactericidal against Salmonella enterica serovar Typhimurium SL1344 and Staphylococcus aureus NCTC 12493 and killed both growing and nongrowing cells. Several experimental approaches were used to select mutants resistant to TDA or subpopulations of strains with enhanced tolerance to TDA. No approach (single exposures to TDA extract administered via different methods, screening of a transposon library for resistant mutants, or prolonged exposure to incremental concentrations of TDA) resulted in resistant or tolerant strains. After more than 300 generations exposed to sub-MIC and MIC concentrations of a TDA-containing extract, strains tolerant to 2× the MIC of TDA for wild-type strains were selected, but the tolerance disappeared after one passage in medium without TDA extract. S. Typhimurium mutants with nonfunctional efflux pump and porin genes had the same TDA susceptibility as wild-type strains, suggesting that efflux pumps and porins are not involved in innate tolerance to TDA. TDA is a promising broad-spectrum antimicrobial in part due to the fact that enhanced tolerance is difficult to gain and that the TDA-tolerant phenotype appears to confer only low-level resistance and is very unstable.
doi:10.1128/AAC.01222-10
PMCID: PMC3067165  PMID: 21263047
7.  Exposure of Salmonella enterica Serovar Typhimurium to High Level Biocide Challenge Can Select Multidrug Resistant Mutants in a Single Step 
PLoS ONE  2011;6(7):e22833.
Background
Biocides are crucial to the prevention of infection by bacteria, particularly with the global emergence of multiply antibiotic resistant strains of many species. Concern has been raised regarding the potential for biocide exposure to select for antibiotic resistance due to common mechanisms of resistance, notably efflux.
Methodology/Principal Findings
Salmonella enterica serovar Typhimurium was challenged with 4 biocides of differing modes of action at both low and recommended-use concentration. Flow cytometry was used to investigate the physiological state of the cells after biocide challenge. After 5 hours exposure to biocide, live cells were sorted by FACS and recovered. Cells recovered after an exposure to low concentrations of biocide had antibiotic resistance profiles similar to wild-type cells. Live cells were recovered after exposure to two of the biocides at in-use concentration for 5 hours. These cells were multi-drug resistant and accumulation assays demonstrated an efflux phenotype of these mutants. Gene expression analysis showed that the AcrEF multidrug efflux pump was de-repressed in mutants isolated from high-levels of biocide.
Conclusions/Significance
These data show that a single exposure to the working concentration of certain biocides can select for mutant Salmonella with efflux mediated multidrug resistance and that flow cytometry is a sensitive tool for identifying biocide tolerant mutants. The propensity for biocides to select for MDR mutants varies and this should be a consideration when designing new biocidal formulations.
doi:10.1371/journal.pone.0022833
PMCID: PMC3146503  PMID: 21829527
8.  Complete Sequence and Molecular Epidemiology of IncK Epidemic Plasmid Encoding blaCTX-M-14 
Emerging Infectious Diseases  2011;17(4):645-652.
This plasmid is disseminated worldwide in Escherichia coli isolated from humans and animals.
Antimicrobial drug resistance is a global challenge for the 21st century with the emergence of resistant bacterial strains worldwide. Transferable resistance to β-lactam antimicrobial drugs, mediated by production of extended-spectrum β-lactamases (ESBLs), is of particular concern. In 2004, an ESBL-carrying IncK plasmid (pCT) was isolated from cattle in the United Kingdom. The sequence was a 93,629-bp plasmid encoding a single antimicrobial drug resistance gene, blaCTX-M-14. From this information, PCRs identifying novel features of pCT were designed and applied to isolates from several countries, showing that the plasmid has disseminated worldwide in bacteria from humans and animals. Complete DNA sequences can be used as a platform to develop rapid epidemiologic tools to identify and trace the spread of plasmids in clinically relevant pathogens, thus facilitating a better understanding of their distribution and ability to transfer between bacteria of humans and animals.
doi:10.3201/eid1704.101009
PMCID: PMC3377399  PMID: 21470454
Bacteria; Escherichia coli; antimicrobial drug resistance; extended-spectrum beta-lactamase; CTX-M; plasmid; epidemiology; research
9.  Mechanisms of Resistance in Nontyphoidal Salmonella enterica Strains Exhibiting a Nonclassical Quinolone Resistance Phenotype▿  
Nontyphoidal Salmonella enterica strains with a nonclassical quinolone resistance phenotype were isolated from patients returning from Thailand or Malaysia to Finland. A total of 10 isolates of seven serovars were studied in detail, all of which had reduced susceptibility (MIC ≥ 0.125 μg/ml) to ciprofloxacin but were either susceptible or showed only low-level resistance (MIC ≤ 32 μg/ml) to nalidixic acid. Phenotypic characterization included susceptibility testing by the agar dilution method and investigation of efflux activity. Genotypic characterization included the screening of mutations in the quinolone resistance-determining regions (QRDR) of gyrA, gyrB, parC, and parE by PCR and denaturing high-pressure liquid chromatography and the amplification of plasmid-mediated quinolone resistance (PMQR) genes qnrA, qnrB, qnrS, qnrD, aac(6′)-Ib-cr, and qepA by PCR. PMQR was confirmed by plasmid analysis, Southern hybridization, and plasmid transfer. No mutations in the QRDRs of gyrA, gyrB, parC, or parE were detected with the exception of a Thr57-Ser substitution within ParC seen in all but the S. enterica serovar Typhimurium strains. The qnrA and qnrS genes were the only PMQR determinants detected. Plasmids carrying qnr alleles were transferable in vitro, and the resistance phenotype was reproducible in Escherichia coli DH5α transformants. These data demonstrate the emergence of a highly mobile qnr genotype that, in the absence of mutation within topoisomerase genes, confers the nontypical quinolone resistance phenotype in S. enterica isolates. The qnr resistance mechanism enables bacteria to survive elevated quinolone concentrations, and therefore, strains carrying qnr alleles may be able to expand during fluoroquinolone treatment. This is of concern since nonclassical quinolone resistance is plasmid mediated and therefore mobilizable.
doi:10.1128/AAC.00121-09
PMCID: PMC2737843  PMID: 19596880
10.  Complete Genome Sequence and Comparative Metabolic Profiling of the Prototypical Enteroaggregative Escherichia coli Strain 042 
PLoS ONE  2010;5(1):e8801.
Background
Escherichia coli can experience a multifaceted life, in some cases acting as a commensal while in other cases causing intestinal and/or extraintestinal disease. Several studies suggest enteroaggregative E. coli are the predominant cause of E. coli-mediated diarrhea in the developed world and are second only to Campylobacter sp. as a cause of bacterial-mediated diarrhea. Furthermore, enteroaggregative E. coli are a predominant cause of persistent diarrhea in the developing world where infection has been associated with malnourishment and growth retardation.
Methods
In this study we determined the complete genomic sequence of E. coli 042, the prototypical member of the enteroaggregative E. coli, which has been shown to cause disease in volunteer studies. We performed genomic and phylogenetic comparisons with other E. coli strains revealing previously uncharacterised virulence factors including a variety of secreted proteins and a capsular polysaccharide biosynthetic locus. In addition, by using Biolog™ Phenotype Microarrays we have provided a full metabolic profiling of E. coli 042 and the non-pathogenic lab strain E. coli K-12. We have highlighted the genetic basis for many of the metabolic differences between E. coli 042 and E. coli K-12.
Conclusion
This study provides a genetic context for the vast amount of experimental and epidemiological data published thus far and provides a template for future diagnostic and intervention strategies.
doi:10.1371/journal.pone.0008801
PMCID: PMC2808357  PMID: 20098708
11.  The Global Consequence of Disruption of the AcrAB-TolC Efflux Pump in Salmonella enterica Includes Reduced Expression of SPI-1 and Other Attributes Required To Infect the Host▿ †  
Journal of Bacteriology  2009;191(13):4276-4285.
The mechanisms by which RND pumps contribute to pathogenicity are currently not understood. Using the AcrAB-TolC system as a paradigm multidrug-resistant efflux pump and Salmonella enterica serovar Typhimurium as a model pathogen, we have demonstrated that AcrA, AcrB, and TolC are each required for efficient adhesion to and invasion of epithelial cells and macrophages by Salmonella in vitro. In addition, AcrB and TolC are necessary for Salmonella to colonize poultry. Mutants lacking acrA, acrB, or tolC showed differential expression of major operons and proteins involved in pathogenesis. These included chemotaxis and motility genes, including cheWY and flgLMK and 14 Salmonella pathogenicity island (SPI)-1-encoded type III secretion system genes, including sopE, and associated effector proteins. Reverse transcription-PCR confirmed these data for identical mutants in two other S. Typhimurium backgrounds. Western blotting showed reduced production of SipA, SipB, and SipC. The absence of AcrB or TolC also caused widespread repression of chemotaxis and motility genes in these mutants, and for acrB::aph, this was associated with decreased motility. For mutants lacking a functional acrA or acrB gene, the nap and nir operons were repressed, and both mutants grew poorly in anaerobic conditions. All phenotypes were restored to that of the wild type by trans-complementation with the wild-type allele of the respective inactivated gene. These data explain how mutants lacking a component of AcrAB-TolC are attenuated and that this phenotype is a result of decreased expression of numerous genes encoding proteins involved in pathogenicity. The link between antibiotic resistance and pathogenicity establishes the AcrAB-TolC system as fundamental to the biology of Salmonella.
doi:10.1128/JB.00363-09
PMCID: PMC2698494  PMID: 19411325
12.  Reduced Fluoroquinolone Susceptibility in Salmonella enterica Isolates from Travelers, Finland 
Emerging Infectious Diseases  2009;15(5):809-812.
We tested the fluoroquinolone susceptibility of 499 Salmonella enterica isolates collected from travelers returning to Finland during 2003–2007. Among isolates from travelers to Thailand and Malaysia, reduced fluoroquinolone susceptibility decreased from 65% to 22% (p = 0.002). All isolates showing nonclassical quinolone resistance were from travelers to these 2 countries.
doi:10.3201/eid1505.080849
PMCID: PMC2687029  PMID: 19402977
Antimicrobial resistance; enteric infections; nonclonal; reduced susceptibility; Salmonella enterica; serovar; travelers’ diarrhea; Finland; dispatch
13.  Phenotypic and Proteomic Characterization of Multiply Antibiotic-Resistant Variants of Salmonella enterica Serovar Typhimurium Selected Following Exposure to Disinfectants▿ † 
In previous work, Salmonella enterica serovar Typhimurium strain SL1344 was exposed to sublethal concentrations of three widely used farm disinfectants in daily serial passages for 7 days in an attempt to investigate possible links between the use of disinfectants and antimicrobial resistance. Stable variants OXCR1, QACFGR2, and TOPR2 were obtained following treatment with an oxidizing compound blend, a quaternary ammonium disinfectant containing formaldehyde and glutaraldehyde, and a tar acid-based disinfectant, respectively. All variants exhibited ca. fourfold-reduced susceptibility to ciprofloxacin, chloramphenicol, tetracycline, and ampicillin. This coincided with reduced levels of outer membrane proteins for all strains and high levels of AcrAB-TolC for OXCR1 and QACFGR2, as demonstrated by two-dimensional high-performance liquid chromatography-mass spectrometry. The protein profiles of OXCR1 and QACFGR2 were similar, but they were different from that of TOPR2. An array of different proteins protecting against oxidants, nitroaromatics, disulfides, and peroxides were overexpressed in all strains. The growth and motility of variants were reduced compared to the growth and motility of the parent strain, the expression of several virulence proteins was altered, and the invasiveness in an enteric epithelial cell line was reduced. The colony morphology of OXCR1 and QACFGR2 was smooth, and both variants exhibited a loss of modal distribution of the lipopolysaccharide O-antigen chain length, favoring the production of short O-antigen chain molecules. Metabolic changes were also detected, suggesting that there was increased protein synthesis and a shift from oxidative phosphorylation to substrate level phosphorylation. In this study, we obtained evidence that farm disinfectants can select for strains with reduced susceptibility to antibiotics, and here we describe changes in protein expression in such strains.
doi:10.1128/AEM.01931-07
PMCID: PMC2258635  PMID: 18083849
14.  Meta-analysis confirms BCL2 is an independent prognostic marker in breast cancer 
BMC Cancer  2008;8:153.
Background
A number of protein markers have been investigated as prognostic adjuncts in breast cancer but their translation into clinical practice has been impeded by a lack of appropriate validation. Recently, we showed that BCL2 protein expression had prognostic power independent of current used standards. Here, we present the results of a meta-analysis of the association between BCL2 expression and both disease free survival (DFS) and overall survival (OS) in female breast cancer.
Methods
Reports published in 1994–2006 were selected for the meta-analysis using a search of PubMed. Studies that investigated the role of BCL2 expression by immunohistochemistry with a sample size greater than 100 were included. Seventeen papers reported the results of 18 different series including 5,892 cases with an average median follow-up of 92.1 months.
Results
Eight studies investigated DFS unadjusted for other variables in 2,285 cases. The relative hazard estimates ranged from 0.85 – 3.03 with a combined random effects estimate of 1.66 (95%CI 1.25 – 2.22). The effect of BCL2 on DFS adjusted for other prognostic factors was reported in 11 studies and the pooled random effects hazard ratio estimate was 1.58 (95%CI 1.29–1.94). OS was investigated unadjusted for other variables in eight studies incorporating 3,910 cases. The hazard estimates ranged from 0.99–4.31 with a pooled estimate of risk of 1.64 (95%CI 1.36–2.0). OS adjusted for other parameters was evaluated in nine series comprising 3,624 cases and the estimates for these studies ranged from 1.10 to 2.49 with a pooled estimate of 1.37 (95%CI 1.19–1.58).
Conclusion
The meta-analysis strongly supports the prognostic role of BCL2 as assessed by immunohistochemistry in breast cancer and shows that this effect is independent of lymph node status, tumour size and tumour grade as well as a range of other biological variables on multi-variate analysis. Large prospective studies are now needed to establish the clinical utility of BCL2 as an independent prognostic marker.
doi:10.1186/1471-2407-8-153
PMCID: PMC2430210  PMID: 18510726
15.  Medium Plays a Role in Determining Expression of acrB, marA, and soxS in Escherichia coli 
Analysis of expression of acrB, marA, and soxS in rich and minimal media, at early and late logarithmic growth phases, showed that acrB had increased expression in minimal medium compared to rich medium, but expression decreased dose dependently upon exposure to ciprofloxacin.
doi:10.1128/AAC.50.3.1071-1074.2006
PMCID: PMC1426439  PMID: 16495271
16.  Contribution of Mutation at Amino Acid 45 of AcrR to acrB Expression and Ciprofloxacin Resistance in Clinical and Veterinary Escherichia coli Isolates 
Antimicrobial Agents and Chemotherapy  2005;49(10):4390-4392.
Fluoroquinolone-resistant Escherichia coli isolates which overexpressed acrB and had a substitution at amino acid 45 of AcrR were complemented with wild-type acrR. Complementation led to increased sensitivity to ciprofloxacin and to ethidium bromide, suggesting that mutation at amino acid 45 of AcrR contributes to ciprofloxacin resistance.
doi:10.1128/AAC.49.10.4390-4392.2005
PMCID: PMC1251554  PMID: 16189130
17.  Novel Ciprofloxacin-Resistant, Nalidixic Acid-Susceptible Mutant of Staphylococcus aureus 
A ciprofloxacin-resistant, nalidixic acid-susceptible mutant of Staphylococcus aureus (F145) contained no mutations within gyrA, gyrB, grlA, and grlB or within norA or its promoter region. MICs and accumulation studies suggest the role of a novel multidrug efflux pump.
doi:10.1128/AAC.46.7.2276-2278.2002
PMCID: PMC127307  PMID: 12069989
18.  Absence of Mutations in marRAB or soxRS in acrB-Overexpressing Fluoroquinolone-Resistant Clinical and Veterinary Isolates of Escherichia coli 
The amount of acrB, marA, and soxS mRNA was determined in 36 fluoroquinolone-resistant E. coli from humans and animals, 27 of which displayed a multiple-resistance phenotype. acrB mRNA was elevated in 11 of 36 strains. A mutation at codon 45 (Arg→Cys) in acrR was found in 6 of these 11 strains. Ten of the 36 isolates appeared to overexpress soxS, and five appeared to overexpress marA. A number of mutations were found in the marR and soxR repressor genes, correlating with greater amounts of marA and soxS mRNA, respectively.
doi:10.1128/AAC.45.5.1550-1552.2001
PMCID: PMC90504  PMID: 11302826

Results 1-18 (18)