PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-20 (20)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Mitochondrial Changes in Platelets Are Not Related to Those in Skeletal Muscle during Human Septic Shock 
PLoS ONE  2014;9(5):e96205.
Platelets can serve as general markers of mitochondrial (dys)function during several human diseases. Whether this holds true even during sepsis is unknown. Using spectrophotometry, we measured mitochondrial respiratory chain biochemistry in platelets and triceps brachii muscle of thirty patients with septic shock (within 24 hours from admission to Intensive Care) and ten surgical controls (during surgery). Results were expressed relative to citrate synthase (CS) activity, a marker of mitochondrial density. Patients with septic shock had lower nicotinamide adenine dinucleotide dehydrogenase (NADH)/CS (p = 0.015), complex I/CS (p = 0.018), complex I and III/CS (p<0.001) and complex IV/CS (p = 0.012) activities in platelets but higher complex I/CS activity (p = 0.021) in triceps brachii muscle than controls. Overall, NADH/CS (r2 = 0.00; p = 0.683) complex I/CS (r2 = 0.05; p = 0.173), complex I and III/CS (r2 = 0.01; p = 0.485), succinate dehydrogenase (SDH)/CS (r2 = 0.00; p = 0.884), complex II and III/CS (r2 = 0.00; p = 0.927) and complex IV/CS (r2 = 0.00; p = 0.906) activities in platelets were not associated with those in triceps brachii muscle. In conclusion, several respiratory chain enzymes were variably inhibited in platelets, but not in triceps brachii muscle, of patients with septic shock. Sepsis-induced mitochondrial changes in platelets do not reflect those in other organs.
doi:10.1371/journal.pone.0096205
PMCID: PMC4006866  PMID: 24787741
2.  Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies 
BMC Genomics  2014;15:91.
Background
Mutations in the gene encoding thymidine kinase 2 (TK2) result in the myopathic form of mitochondrial DNA depletion syndrome which is a mitochondrial encephalomyopathy presenting in children. In order to unveil some of the mechanisms involved in this pathology and to identify potential biomarkers and therapeutic targets we have investigated the gene expression profile of human skeletal muscle deficient for TK2 using cDNA microarrays.
Results
We have analysed the whole transcriptome of skeletal muscle from patients with TK2 mutations and compared it to normal muscle and to muscle from patients with other mitochondrial myopathies. We have identified a set of over 700 genes which are differentially expressed in TK2 deficient muscle. Bioinformatics analysis reveals important changes in muscle metabolism, in particular, in glucose and glycogen utilisation, and activation of the starvation response which affects aminoacid and lipid metabolism. We have identified those transcriptional regulators which are likely to be responsible for the observed changes in gene expression.
Conclusion
Our data point towards the tumor suppressor p53 as the regulator at the centre of a network of genes which are responsible for a coordinated response to TK2 mutations which involves inflammation, activation of muscle cell death by apoptosis and induction of growth and differentiation factor 15 (GDF-15) in muscle and serum. We propose that GDF-15 may represent a potential novel biomarker for mitochondrial dysfunction although further studies are required.
doi:10.1186/1471-2164-15-91
PMCID: PMC3937154  PMID: 24484525
Gene expression; Microarrays; Bioinformatics; Mitochondrial DNA; Mitochondrial DNA depletion; Mitochondrial encephalomyopathy; Thymidine kinase 2; Skeletal muscle; p53; Apoptosis; GDF-15
3.  Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model 
Brain  2013;137(1):57-68.
Pantothenate kinase-associated neurodegeneration, caused by mutations in the PANK2 gene, is an autosomal recessive disorder characterized by dystonia, dysarthria, rigidity, pigmentary retinal degeneration and brain iron accumulation. PANK2 encodes the mitochondrial enzyme pantothenate kinase type 2, responsible for the phosphorylation of pantothenate or vitamin B5 in the biosynthesis of co-enzyme A. A Pank2 knockout (Pank2−/−) mouse model did not recapitulate the human disease but showed azoospermia and mitochondrial dysfunctions. We challenged this mouse model with a low glucose and high lipid content diet (ketogenic diet) to stimulate lipid use by mitochondrial beta-oxidation. In the presence of a shortage of co-enzyme A, this diet could evoke a general impairment of bioenergetic metabolism. Only Pank2−/− mice fed with a ketogenic diet developed a pantothenate kinase-associated neurodegeneration-like syndrome characterized by severe motor dysfunction, neurodegeneration and severely altered mitochondria in the central and peripheral nervous systems. These mice also showed structural alteration of muscle morphology, which was comparable with that observed in a patient with pantothenate kinase-associated neurodegeneration. We here demonstrate that pantethine administration can prevent the onset of the neuromuscular phenotype in mice suggesting the possibility of experimental treatment in patients with pantothenate kinase-associated neurodegeneration.
doi:10.1093/brain/awt325
PMCID: PMC3891449  PMID: 24316510
pantothenate kinase-associated neurodegeneration (PKAN); mitochondria; ketogenic diet; pantethine
4.  Next-generation sequencing reveals DGUOK mutations in adult patients with mitochondrial DNA multiple deletions 
Brain  2012;135(11):3404-3415.
The molecular diagnosis of mitochondrial disorders still remains elusive in a large proportion of patients, but advances in next generation sequencing are significantly improving our chances to detect mutations even in sporadic patients. Syndromes associated with mitochondrial DNA multiple deletions are caused by different molecular defects resulting in a wide spectrum of predominantly adult-onset clinical presentations, ranging from progressive external ophthalmoplegia to multi-systemic disorders of variable severity. The mutations underlying these conditions remain undisclosed in half of the affected subjects. We applied next-generation sequencing of known mitochondrial targets (MitoExome) to probands presenting with adult-onset mitochondrial myopathy and harbouring mitochondrial DNA multiple deletions in skeletal muscle. We identified autosomal recessive mutations in the DGUOK gene (encoding mitochondrial deoxyguanosine kinase), which has previously been associated with an infantile hepatocerebral form of mitochondrial DNA depletion. Mutations in DGUOK occurred in five independent subjects, representing 5.6% of our cohort of patients with mitochondrial DNA multiple deletions, and impaired both muscle DGUOK activity and protein stability. Clinical presentations were variable, including mitochondrial myopathy with or without progressive external ophthalmoplegia, recurrent rhabdomyolysis in a young female who had received a liver transplant at 9 months of age and adult-onset lower motor neuron syndrome with mild cognitive impairment. These findings reinforce the concept that mutations in genes involved in deoxyribonucleotide metabolism can cause diverse clinical phenotypes and suggest that DGUOK should be screened in patients harbouring mitochondrial DNA deletions in skeletal muscle.
doi:10.1093/brain/aws258
PMCID: PMC3501975  PMID: 23043144
DGUOK; mitochondrial DNA instability; autosomal recessive progressive external ophthalmoplegia; multiple mitochondrial DNA deletions
5.  Large scale genotype–phenotype analyses indicate that novel prognostic tools are required for families with facioscapulohumeral muscular dystrophy 
Brain  2013;136(11):3408-3417.
Facioscapulohumeral muscular dystrophy has been genetically linked to reduced numbers (≤8) of D4Z4 repeats at 4q35 combined with 4A(159/161/168) DUX4 polyadenylation signal haplotype. However, we have recently reported that 1.3% of healthy individuals carry this molecular signature and 19% of subjects affected by facioscapulohumeral muscular dystrophy do not carry alleles with eight or fewer D4Z4 repeats. Therefore, prognosis for subjects carrying or at risk of carrying D4Z4 reduced alleles has become more complicated. To test for additional prognostic factors, we measured the degree of motor impairment in a large group of patients affected by facioscapulohumeral muscular dystrophy and their relatives who are carrying D4Z4 reduced alleles. The clinical expression of motor impairment was assessed in 530 subjects, 163 probands and 367 relatives, from 176 unrelated families according to a standardized clinical score. The associations between clinical severity and size of D4Z4 allele, degree of kinship, gender, age and 4q haplotype were evaluated. Overall, 32.2% of relatives did not display any muscle functional impairment. This phenotype was influenced by the degree of relation with proband, because 47.1% of second- through fifth-degree relatives were unaffected, whereas only 27.5% of first-degree family members did not show motor impairment. The estimated risk of developing motor impairment by age 50 for relatives carrying a D4Z4 reduced allele with 1–3 repeats or 4–8 repeats was 88.7% and 55%, respectively. Male relatives had a mean score significantly higher than females (5.4 versus 4.0, P = 0.003). No 4q haplotype was exclusively associated with the presence of disease. In 13% of families in which D4Z4 alleles with 4–8 repeats segregate, the diagnosis of facioscapulohumeral muscular dystrophy was reported only in one generation. In conclusion, this large-scale analysis provides further information that should be taken into account when counselling families in which a reduced allele with 4–8 D4Z4 repeats segregates. In addition, the reduced expression of disease observed in distant relatives suggests that a family’s genetic background plays a role in the occurrence of facioscapulohumeral muscular dystrophy. These results indicate that the identification of new susceptibility factors for this disease will require an accurate classification of families.
doi:10.1093/brain/awt226
PMCID: PMC3808686  PMID: 24030947
facioscapulohumeral muscular dystrophy; D4Z4 reduced allele; genotype–phenotype correlations; penetrance; disease expression
6.  Telethon Network of Genetic Biobanks: a key service for diagnosis and research on rare diseases 
Several examples have always illustrated how access to large numbers of biospecimens and associated data plays a pivotal role in the identification of disease genes and the development of pharmaceuticals. Hence, allowing researchers to access to significant numbers of quality samples and data, genetic biobanks are a powerful tool in basic, translational and clinical research into rare diseases. Recently demand for well-annotated and properly-preserved specimens is growing at a high rate, and is expected to grow for years to come. The best effective solution to this issue is to enhance the potentialities of well-managed biobanks by building a network.
Here we report a 5-year experience of the Telethon Network of Genetic Biobanks (TNGB), a non-profit association of Italian repositories created in 2008 to form a virtually unique catalogue of biospecimens and associated data, which presently lists more than 750 rare genetic defects. The process of TNGB harmonisation has been mainly achieved through the adoption of a unique, centrally coordinated, IT infrastructure, which has enabled (i) standardisation of all the TNGB procedures and activities; (ii) creation of an updated TNGB online catalogue, based on minimal data set and controlled terminologies; (iii) sample access policy managed via a shared request control panel at web portal. TNGB has been engaged in disseminating information on its services into both scientific/biomedical - national and international - contexts, as well as associations of patients and families. Indeed, during the last 5-years national and international scientists extensively used the TNGB with different purposes resulting in more than 250 scientific publications. In addition, since its inception the TNGB is an associated member of the Biobanking and Biomolecular Resources Research Infrastructure and recently joined the EuroBioBank network. Moreover, the involvement of patients and families, leading to the formalization of various agreements between TNGB and Patients’ Associations, has demonstrated how promoting Biobank services can be instrumental in gaining a critical mass of samples essential for research, as well as, raising awareness, trust and interest of the general public in Biobanks. This article focuses on some fundamental aspects of networking and demonstrates how the translational research benefits from a sustained infrastructure.
doi:10.1186/1750-1172-8-129
PMCID: PMC3766640  PMID: 24004821
Biobanking; Networking; Biological resources centre; IT infrastructure; Biological material; Biospecimens; Cryopreservation; Rare diseases; Patients’ associations
7.  Loss-of-function mutations in MGME1 impair mtDNA replication and cause multi-systemic mitochondrial disease 
Nature genetics  2013;45(2):214-219.
Known disease mechanisms in mitochondrial DNA (mtDNA) maintenance disorders alter either the mitochondrial replication machinery (POLG1, POLG22 and C10orf23) or the biosynthesis pathways of deoxyribonucleoside 5′-triphosphates for mtDNA synthesis4–11. However, in many of these disorders, the underlying genetic defect has not yet been discovered. Here, we identified homozygous nonsense and missense mutations in the orphan gene C20orf72 in three families with a mitochondrial syndrome characterized by external ophthalmoplegia, emaciation, and respiratory failure. Muscle biopsies showed mtDNA depletion and multiple mtDNA deletions. C20orf72, hereafter MGME1 (mitochondrial genome maintenance exonuclease 1), encodes a mitochondrial RecB-type exonuclease belonging to the PD-(D/E)XK nuclease superfamily. We demonstrate that MGME1 cleaves single-stranded DNA and processes DNA flap substrates. Upon chemically induced mtDNA depletion, patient fibroblasts fail to repopulate. They also accumulate intermediates of stalled replication and show increased levels of 7S DNA, as do MGME1-depleted cells. Hence, we show that MGME1-mediated mtDNA processing is essential for mitochondrial genome maintenance.
doi:10.1038/ng.2501
PMCID: PMC3678843  PMID: 23313956
8.  The novel mitochondrial tRNAAsn gene mutation m.5709T>C produces ophthalmoparesis and respiratory impairment 
Although mutations in mitochondrial tRNAs constitute the most common mtDNA defect, the presence of pathological variants in mitochondrial tRNAAsn is extremely rare. We were able to identify a novel mtDNA tRNAAsn gene pathogenic mutation associated with a myopathic phenotype and a previously unreported respiratory impairment. Our proband is an adult woman with ophthalmoparesis and respiratory impairment. Her muscle biopsy presented several cytochrome c oxidase-negative (COX−) fibres and signs of mitochondrial proliferation (ragged red fibres). Sequence analysis of the muscle-derived mtDNA revealed an m.5709T>C substitution, affecting mitochondrial tRNAAsn gene. Restriction-fragment length polymorphism analysis of the mutation in isolated muscle fibres showed that a threshold of at least 91.9% mutated mtDNA results in the COX deficiency phenotype. The new phenotype further increases the clinical spectrum of mitochondrial diseases caused by mutations in the tRNAAsn gene.
doi:10.1038/ejhg.2011.238
PMCID: PMC3283170  PMID: 22189266
progressive external ophthalmoplegia; tRNA(Asn); mitochondrial myopathy
9.  POLG1 mutations and stroke like episodes: a distinct clinical entity rather than an atypical MELAS syndrome 
BMC Neurology  2013;13:8.
Background
POLG1 mutations have been associated with MELAS-like phenotypes. However given several clinical differences it is unknown whether POLG1 mutations are possible causes of MELAS or give raise to a distinct clinical and genetic entity, named POLG1-associated encephalopathy.
Case presentation
We describe a 74 years old man carrying POLG1 mutations presenting with strokes, myopathy and ragged red fibers with some atypical aspects for MELAS such as late onset, lack of cerebral calcification and presence of frontal and occipital MRI lesions better consistent with the POLG associated-encephalopathy spectrum.
Conclusion
The lack of available data hampers a definite diagnosis in our patient as well as makes it difficult to compare MELAS, which is a clearly defined clinical syndrome, with POLG1-associated encephalopathy, which is so far a purely molecularly defined syndrome with a quite heterogeneous clinical picture. However, the present report contributes to expand the phenotypic spectrum of POLG1 mutations underlining the importance of searching POLG1 mutations in patients with mitochondrial signs and MELAS like phenotypes but negative for common mtDNA mutations.
doi:10.1186/1471-2377-13-8
PMCID: PMC3570393  PMID: 23324391
POLG1; MELAS; Red-ragged fibers; Stroke-like
10.  Frequency and characterisation of anoctamin 5 mutations in a cohort of Italian limb-girdle muscular dystrophy patients 
Neuromuscular Disorders  2012;22(11):934-943.
Limb-girdle muscular dystrophy (LGMD) 2L, caused by mutations in the anoctamin 5 (ANO5) gene, is the third most common LGMD in Northern and Central Europe, where the c.191dupA mutation causes the majority of cases. We evaluated data from 228 Italian LGMD patients to determine the prevalence of LGMD2L and the c.191dupA mutation, and to describe the clinical, muscle biopsy, and magnetic resonance imaging findings in these patients. Forty-three patients who lacked molecular diagnosis were studied for ANO5 mutations, and four novel mutations were found in three probands. Only one proband carried the c.191dupA mutation, which was compound heterozygous with c.2516T>G. Two probands were homozygous for the c.1627dupA and c.397A>T mutations, respectively, while a fourth proband had a compound heterozygous status (c.220C>T and c.1609T>C). Therefore occurrence and molecular epidemiology of LGMD2L in this Italian cohort differed from those observed in other European countries. ANO5 mutations accounted for ∼2% of our sample. Affected patients exhibited benign progression with variable onset and an absence of cardiac and respiratory impairment; muscle biopsy generally showed mild signs, except when performed on the quadriceps muscles; MRI showed predominant involvement of the posterior thigh. Overall these common clinical, morphological and imaging findings could be useful in differential diagnosis.
doi:10.1016/j.nmd.2012.05.001
PMCID: PMC3500692  PMID: 22742934
Limb girdle muscular dystrophy 2L; Quadriceps myopathy; Anoctamin 5; Chloride channel; Membrane repair
11.  Metformin overdose causes platelet mitochondrial dysfunction in humans 
Critical Care  2012;16(5):R180.
Introduction
We have recently demonstrated that metformin intoxication causes mitochondrial dysfunction in several porcine tissues, including platelets. The aim of the present work was to clarify whether it also causes mitochondrial dysfunction (and secondary lactate overproduction) in human platelets, in vitro and ex vivo.
Methods
Human platelets were incubated for 72 hours with saline or increasing doses of metformin (in vitro experiments). Lactate production, respiratory chain complex activities (spectrophotometry), mitochondrial membrane potential (flow-cytometry after staining with JC-1) and oxygen consumption (Clark-type electrode) were then measured. Platelets were also obtained from ten patients with lactic acidosis (arterial pH 6.97 ± 0.18 and lactate 16 ± 7 mmol/L) due to accidental metformin intoxication (serum drug level 32 ± 14 mg/L) and ten healthy volunteers of similar sex and age. Respiratory chain complex activities were measured as above (ex vivo experiments).
Results
In vitro, metformin dose-dependently increased lactate production (P < 0.001), decreased respiratory chain complex I activity (P = 0.009), mitochondrial membrane potential (P = 0.003) and oxygen consumption (P < 0.001) of human platelets. Ex vivo, platelets taken from intoxicated patients had significantly lower complex I (P = 0.045) and complex IV (P < 0.001) activity compared to controls.
Conclusions
Depending on dose, metformin can cause mitochondrial dysfunction and lactate overproduction in human platelets in vitro and, possibly, in vivo.
Trial registration
NCT 00942123.
doi:10.1186/cc11663
PMCID: PMC3682281  PMID: 23034133
12.  Optic atrophy plus phenotype due to mutations in the OPA1 gene: Two more Italian families 
Journal of the Neurological Sciences  2012;315(1-2):146-149.
Autosomal Dominant Optic Atrophy (ADOA) is characterized by the selective degeneration of retinal ganglion cells. The occurrence of mutations in the gene encoding the dynamin-like GTPase protein Optic Atrophy 1 (OPA1) has been observed in about 60–70% of ADOA cases. A subset of missense mutations, mostly within the GTPase domain, has recently been associated with a syndromic ADOA form called “OPA1 plus” phenotype presenting, at muscle level, mitochondrial DNA (mtDNA) instability.
In this study we disclosed two OPA1 gene mutations in independent probands from two families affected by OPA1 plus phenotype: the previously reported c.985-2A > G substitution and a novel microdeletion (c.2819-1_2821del).
The correlation between genotype and phenotype and the effects of these variants at the transcript level and in the muscle tissue were investigated, confirming the broad complexity in the phenotypic spectrum associated with these OPA1 mutations.
doi:10.1016/j.jns.2011.12.002
PMCID: PMC3315002  PMID: 22197506
Autosomal Dominant Optic Atrophy; Optic Atrophy 1 gene; Splice-site mutations
13.  Two novel mutations in PEO1 (Twinkle) gene associated with chronic external ophthalmoplegia☆ 
Journal of the Neurological Sciences  2011;308(1-2):173-176.
Maintenance and replication of mitochondrial DNA require the concerted action of several factors encoded by nuclear genome. The mitochondrial helicase Twinkle is a key player of replisome machinery. Heterozygous mutations in its coding gene, PEO1, are associated with progressive external ophthalmoplegia (PEO) characterised by ptosis and ophthalmoparesis, with cytochrome c oxidase (COX)-deficient fibres, ragged-red fibres (RRF) and multiple mtDNA deletions in muscle. Here we describe clinical, histological and molecular features of two patients presenting with mitochondrial myopathy associated with PEO. PEO1 sequencing disclosed two novel mutations in exons 1 and 4 of the gene, respectively. Although mutations in PEO1 exon 1 have already been described, this is the first report of mutation occurring in exon 4.
doi:10.1016/j.jns.2011.05.042
PMCID: PMC3158327  PMID: 21689831
Progressive external ophthalmoplegia; PEO1 (C10ORF2); Mitochondrial myopathy; mtDNA multiple deletions; COX deficiency
14.  Clinical and molecular features of an infant patient affected by Leigh Disease associated to m.14459G > A mitochondrial DNA mutation: a case report 
BMC Neurology  2011;11:85.
Background
Leigh Syndrome (LS) is a severe neurodegenerative disorder characterized by bilateral symmetrical necrotic lesions in the basal ganglia and brainstem. Onset is in early infancy and prognosis is poor. Causative mutations have been disclosed in mitochondrial DNA and nuclear genes affecting respiratory chain subunits and assembly factors.
Case presentation
Here we report the clinical and molecular features of a 15-month-old female LS patient. Direct sequencing of her muscle-derived mtDNA revealed the presence of two apparently homoplasmic variants: the novel m.14792C > G and the already known m.14459G > A resulting in p.His16Asp change in cytochrome b (MT-CYB) and p.Ala72Val substitution in ND6 subunit, respectively. The m.14459G > A was heteroplasmic in the mother's blood-derived DNA.
Conclusions
The m.14459G > A might lead to LS, complicated LS or Leber Optic Hereditary Neuropathy. A comprehensive re-evaluation of previously described 14459G > A-mutated patients does not explain this large clinical heterogeneity.
doi:10.1186/1471-2377-11-85
PMCID: PMC3148968  PMID: 21749722
Leigh Syndrome; mitochondrial DNA; LHON; MT-ND6; MT-CYB; mitochondrial Complex I
15.  In Vivo Correction of COX Deficiency by Activation of the AMPK/PGC-1α Axis 
Cell Metabolism  2011;14(1):80-90.
Summary
Increased mitochondrial biogenesis by activation of PPAR- or AMPK/PGC-1α-dependent homeostatic pathways has been proposed as a treatment for mitochondrial disease. We tested this hypothesis on three recombinant mouse models characterized by defective cytochrome c-oxidase (COX) activity: a knockout (KO) mouse for Surf1, a knockout/knockin mouse for Sco2, and a muscle-restricted KO mouse for Cox15. First, we demonstrated that double-recombinant animals overexpressing PGC-1α in skeletal muscle on a Surf1 KO background showed robust induction of mitochondrial biogenesis and increase of mitochondrial respiratory chain activities, including COX. No such effect was obtained by treating both Surf1−/− and Cox15−/− mice with the pan-PPAR agonist bezafibrate, which instead showed adverse effects in either model. Contrariwise, treatment with the AMPK agonist AICAR led to partial correction of COX deficiency in all three models, and, importantly, significant motor improvement up to normal in the Sco2KO/KI mouse. These results open new perspectives for therapy of mitochondrial disease.
Highlights
► AICAR partially corrects COX deficiency in three mouse models ► Bezafibrate, a pan-PPAR activator, failed to correct COX deficiency in vivo ► Motor performance improves under AICAR in one mouse model ► Activation of the AMPK/Pgc1α axis can correct OXPHOS defects in vivo
doi:10.1016/j.cmet.2011.04.011
PMCID: PMC3130927  PMID: 21723506
16.  Clinical and molecular characterization of a cohort of patients with novel nucleotide alterations of the Dystrophin gene detected by direct sequencing 
BMC Medical Genetics  2011;12:37.
Background
Duchenne and Becker Muscular dystrophies (DMD/BMD) are allelic disorders caused by mutations in the dystrophin gene, which encodes a sarcolemmal protein responsible for muscle integrity. Deletions and duplications account for approximately 75% of mutations in DMD and 85% in BMD. The implementation of techniques allowing complete gene sequencing has focused attention on small point mutations and other mechanisms underlying complex rearrangements.
Methods
We selected 47 patients (41 families; 35 DMD, 6 BMD) without deletions and duplications in DMD gene (excluded by multiplex ligation-dependent probe amplification and multiplex polymerase chain reaction analysis). This cohort was investigated by systematic direct sequence analysis to study sequence variation. We focused our attention on rare mutational events which were further studied through transcript analysis.
Results
We identified 40 different nucleotide alterations in DMD gene and their clinical correlates; altogether, 16 mutations were novel. DMD probands carried 9 microinsertions/microdeletions, 19 nonsense mutations, and 7 splice-site mutations. BMD patients carried 2 nonsense mutations, 2 splice-site mutations, 1 missense substitution, and 1 single base insertion. The most frequent stop codon was TGA (n = 10 patients), followed by TAG (n = 7) and TAA (n = 4). We also analyzed the molecular mechanisms of five rare mutational events. They are two frame-shifting mutations in the DMD gene 3'end in BMD and three novel splicing defects: IVS42: c.6118-3C>A, which causes a leaky splice-site; c.9560A>G, which determines a cryptic splice-site activation and c.9564-426 T>G, which creates pseudoexon retention within IVS65.
Conclusion
The analysis of our patients' sample, carrying point mutations or complex rearrangements in DMD gene, contributes to the knowledge on phenotypic correlations in dystrophinopatic patients and can provide a better understanding of pre-mRNA maturation defects and dystrophin functional domains. These data can have a prognostic relevance and can be useful in directing new therapeutic approaches, which rely on a precise definition of the genetic defects as well as their molecular consequences.
doi:10.1186/1471-2350-12-37
PMCID: PMC3061890  PMID: 21396098
17.  Tyr78Phe Transthyretin Mutation with Predominant Motor Neuropathy as the Initial Presentation 
Case Reports in Neurology  2011;3(1):62-68.
Transthyretin (TTR) amyloidosis, the most frequent form of hereditary amyloidosis, is caused by dominant mutations in the TTR gene. More than 100 mutations have been identified. Clinical manifestations of TTR amyloidosis are usually induced by extracellular amyloid deposition in several organs. The major neurological manifestation is motor-sensory neuropathy associated with dysautonomic impairment. Here, we describe a 63-year-old man who came to our institution due to a suspected motor neuron disease. During a 4-year follow-up period, he underwent extensive clinical examination, electromyographic studies, sural nerve biopsy and TTR gene analysis by direct sequencing. Despite the predominant motor involvement, the detailed clinical examination also showed some mild sensory and dysautonomic signs. In addition, his clinical and family history included multiorgan disorders, such as carpal tunnel syndrome, as well as conditions with cardiac, renal, eye, and hepatic involvement. The sural nerve biopsy disclosed amyloid deposition, and the sequence analysis of the TTR gene detected a heterozygous Tyr78Phe substitution. The TTR gene variant found in our patient had only been described once so far, in a French man of Italian origin presenting with late-onset peripheral neuropathy and bilateral carpal tunnel syndrome. The predominant motor involvement presented by our patient is an uncommon occurrence and demonstrates the clinical heterogeneity of TTR amyloidosis.
doi:10.1159/000324925
PMCID: PMC3072196  PMID: 21490715
Amyloid neuropathy; Motor-sensory neuropathy; Transthyretin gene
18.  Rapid progression of late onset axonal Charcot–Marie–Tooth disease associated with a novel MPZ mutation in the extracellular domain 
Myelin protein zero (MPZ) is a major component of compact myelin in peripheral nerves where it plays an essential role in myelin formation and adhesion. MPZ gene mutations are usually responsible for demyelinating neuropathies, namely Charcot–Marie–Tooth (CMT) type 1B, Déjèrine–Sottas neuropathy and congenital hypomyelinating neuropathy. Less frequently, axonal CMT (CMT2) associated with MPZ mutations has been described. We report six patients (one sporadic case and five subjects from two apparently unrelated families) with a late onset, but rapidly progressive, axonal peripheral neuropathy. In all patients, molecular analysis demonstrated a novel heterozygous missense mutation (208C>T) in MPZ exon 2, causing the Pro70Ser substitution in the extracellular domain. The diagnosis of CMT2 associated with MPZ mutations should be considered in both sporadic and familial cases of late onset, progressive polyneuropathy. The mechanism whereby compact myelin protein mutations cause axonal neuropathy remains to be elucidated.
doi:10.1136/jnnp.2006.112276
PMCID: PMC2117588  PMID: 17940173
19.  Low Anaerobic Threshold and Increased Skeletal Muscle Lactate Production in Subjects with Huntington's Disease 
Movement Disorders  2010;26(1):130-137.
Mitochondrial defects that affect cellular energy metabolism have long been implicated in the etiology of Huntington's disease (HD). Indeed, several studies have found defects in the mitochondrial functions of the central nervous system and peripheral tissues of HD patients. In this study, we investigated the in vivo oxidative metabolism of exercising muscle in HD patients. Ventilatory and cardiometabolic parameters and plasma lactate concentrations were monitored during incremental cardiopulmonary exercise in twenty-five HD subjects and twenty-five healthy subjects. The total exercise capacity was normal in HD subjects but notably the HD patients and presymptomatic mutation carriers had a lower anaerobic threshold than the control subjects. The low anaerobic threshold of HD patients was associated with an increase in the concentration of plasma lactate. We also analyzed in vitro muscular cell cultures and found that HD cells produce more lactate than the cells of healthy subjects. Finally, we analyzed skeletal muscle samples by electron microscopy and we observed striking mitochondrial structural abnormalities in two out of seven HD subjects. Our findings confirm mitochondrial abnormalities in HD patients' skeletal muscle and suggest that the mitochondrial dysfunction is reflected functionally in a low anaerobic threshold and an increased lactate synthesis during intense physical exercise. © 2010 Movement Disorder Society
doi:10.1002/mds.23258
PMCID: PMC3081141  PMID: 20931633
Huntington's disease; skeletal muscle; anaerobic threshold; mitochondria
20.  Impaired Expression of Insulin-Like Growth Factor-1 System in Skeletal Muscle of Amyotrophic Lateral Sclerosis Patients 
Muscle & Nerve  2012;45(2):200-208.
Introduction
Adult muscle fibers are a source of growth factors, including insulin-like growth factor-1 (IGF-1). These factors influence neuronal survival, axonal growth, and maintenance of synaptic connections.
Methods
We investigated the components of the IGF system in skeletal muscle samples obtained from 17 sporadic amyotrophic lateral sclerosis patients (sALS) and 29 control subjects (17 with normal muscle and 12 with denervated muscle unrelated to ALS).
Results
The muscle expression of IGF-1 and IGF-binding proteins 3, 4, and 5 (IGF-BP3, -4, and -5, respectively), assessed by immunohistochemistry, was differently decreased in sALS compared with both control groups; conversely, IGF-1 receptor β subunit (IGF-1Rβ) was significantly increased. Western blot analysis confirmed the severe reduction of IGF-1, IGF-BP3, and -BP5 with the increment of IGF-1Rβ in sALS.
Conclusion
In this study we describe the abnormal expression of the IGF-1 system in skeletal muscle of sALS patients that could participate in motor neuron degeneration and should be taken into account when developing treatments with IGF-1. Muscle Nerve, 2012
doi:10.1002/mus.22288
PMCID: PMC3306791  PMID: 22246875
amyotrophic lateral sclerosis; IGF-1; IGF-BPs; IGF-1 receptor; skeletal muscle

Results 1-20 (20)