Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Amyotrophic Lateral Sclerosis Multiprotein Biomarkers in Peripheral Blood Mononuclear Cells 
PLoS ONE  2011;6(10):e25545.
Amyotrophic lateral sclerosis (ALS) is a fatal progressive motor neuron disease, for which there are still no diagnostic/prognostic test and therapy. Specific molecular biomarkers are urgently needed to facilitate clinical studies and speed up the development of effective treatments.
Methodology/Principal Findings
We used a two-dimensional difference in gel electrophoresis approach to identify in easily accessible clinical samples, peripheral blood mononuclear cells (PBMC), a panel of protein biomarkers that are closely associated with ALS. Validations and a longitudinal study were performed by immunoassays on a selected number of proteins. The same proteins were also measured in PBMC and spinal cord of a G93A SOD1 transgenic rat model. We identified combinations of protein biomarkers that can distinguish, with high discriminatory power, ALS patients from healthy controls (98%), and from patients with neurological disorders that may resemble ALS (91%), between two levels of disease severity (90%), and a number of translational biomarkers, that link responses between human and animal model. We demonstrated that TDP-43, cyclophilin A and ERp57 associate with disease progression in a longitudinal study. Moreover, the protein profile changes detected in peripheral blood mononuclear cells of ALS patients are suggestive of possible intracellular pathogenic mechanisms such as endoplasmic reticulum stress, nitrative stress, disturbances in redox regulation and RNA processing.
Our results indicate that PBMC multiprotein biomarkers could contribute to determine amyotrophic lateral sclerosis diagnosis, differential diagnosis, disease severity and progression, and may help to elucidate pathogenic mechanisms.
PMCID: PMC3187793  PMID: 21998667
2.  Transfer of efficient anti-melanocyte T cells from vitiligo donors to melanoma patients as a novel immunotherapeutical strategy 
Vitiligo is a relatively common progressive depigmentary condition that is believed to be due to the autoimmune-mediated loss of epidermal melanocytes. High frequencies of self-reactive T lymphocytes directed toward melanocyte differentiation antigens are found in vitiligo patients and might be directly responsible for the pathogenesis of the disease. An interesting aspect of vitiligo is its relation to melanoma: cytotoxic T lymphocytes directed to self antigens shared by normal melanocytes and melanoma cells are found in both conditions, but the resulting immune reactions are completely different. From this standpoint, the selective destruction of pigment cells that occurs in cases of vitiligo is the therapeutic goal sought in melanoma research.
Presentation of the hypothesis
Our working hypothesis is that vitiligo patients might represent a unique source of therapeutic cells to be used in allo-transfer for HLA-matched melanoma patients. The adoptive transfer of ex-vivo generated autologous tumor-specific T cells is a therapy that has met with only limited success, essentially because of inability to isolate therapeutically valuable T cells from the majority of tumor patients. Ideally, model systems where strong and efficient responses against the same (tumor) antigens are achieved would represent a better source of therapeutic cells. We believe it is possible to identify one such model in the melanoma-vitiligo dichotomy: T lymphocytes specific for different melanocyte differentiation antigens are found in vitiligo and represent the effective anti-melanocyte reactivity that is often ineffective in melanoma.
Testing the hypothesis
Melanocyte-specific T cell clones can be isolated from the peripheral blood of vitiligo patients and tested for their capacity to efficiently expand in vitro without loosing their cytotoxic activity and to migrate to the skin. Cytotoxicity against melanoma patients' non-tumor cells can also be tested. In addition, it would be interesting to attempt an in vivo animal model. If the results obtained from these validation steps will be satisfactory, it might be possible to plan the clinical grade preparation of relevant clones for transfer.
Implications of the hypothesis
When translated into a clinical trial, the possibility of in vitro selecting few effective tumor-specific T cell clones for infusion, inherent with this approach, could enhance the therapeutic graft-versus-tumor effect while possibly decreasing the risk of graft-versus-host disease.
PMCID: PMC1215509  PMID: 16135249

Results 1-2 (2)