PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (35)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Serum apolipoprotein A-1 quantification by LC–MS with a SILAC internal standard reveals reduced levels in smokers 
Bioanalysis  2015;7(22):2895-2911.
Background
Absolute quantification of protein biomarkers such as serum apolipoprotein A1 by both immunoassays and LC–MS can provide misleading results.
Results
Recombinant ApoA-1 internal standard was prepared using stable isotope labeling by amino acids in cell culture with [13C615N2]-lysine and [13C915N1]-tyrosine in human cells. A stable isotope dilution LC–MS method for serum ApoA-1 was validated and levels analyzed for 50 nonsmokers and 50 smokers.
Conclusion
The concentration of ApoA-1 in nonsmokers was 169.4 mg/dl with an 18.4% reduction to 138.2 mg/dl in smokers. The validated assay will have clinical utility for assessing effects of smoking cessation and therapeutic or dietary interventions in high-risk populations.
doi:10.4155/bio.15.195
PMCID: PMC4737526  PMID: 26394123
2.  Serum apolipoprotein A-1 quantification by LC–MS with a SILAC internal standard reveals reduced levels in smokers 
Bioanalysis  2015;7(22):2895-2911.
Background:
Absolute quantification of protein biomarkers such as serum apolipoprotein A1 by both immunoassays and LC–MS can provide misleading results.
Results:
Recombinant ApoA-1 internal standard was prepared using stable isotope labeling by amino acids in cell culture with [13C615N2]-lysine and [13C915N1]-tyrosine in human cells. A stable isotope dilution LC–MS method for serum ApoA-1 was validated and levels analyzed for 50 nonsmokers and 50 smokers.
Conclusion:
The concentration of ApoA-1 in nonsmokers was 169.4 mg/dl with an 18.4% reduction to 138.2 mg/dl in smokers. The validated assay will have clinical utility for assessing effects of smoking cessation and therapeutic or dietary interventions in high-risk populations.
doi:10.4155/bio.15.195
PMCID: PMC4737526  PMID: 26394123
3.  Metabolism of an Alkylated Polycyclic Aromatic Hydrocarbon 5-Methylchrysene in Human Hepatoma (HepG2) Cells 
Chemical research in toxicology  2015;28(10):2045-2058.
Exposure to polycyclic aromatic hydrocarbons (PAHs) in the food chain is the major human health hazard associated with the Deepwater Horizon oil spill. C1-chrysenes are representative PAHs present in the crude oil and have been detected in contaminated sea food in amounts that exceed their permissible safety thresholds. We describe the metabolism of the most carcinogenic C1-chrysene regioisomer, 5-methylchrysene (5-MC), in human HepG2 cells. The structures of the metabolites were identified by HPLC-UV-fluorescence detection and LC-MS/MS. 5-MC-tetraol, a signature metabolite of the diol-epoxide pathway, was identified as reported previously. Novel O-monosulfonated-5-MC-catechol isomers and O-monomethyl-O-monosulfonated-5-MC-catechol were discovered, and evidence for their precursor ortho-quinones was obtained. The identities of O-monosulfonated-5-MC-1,2-catechol, O-monomethyl-O-monosulfonated-5-MC-1,2-catechol, and 5-MC-1,2-dione were validated by comparison to authentic synthesized standards. Dual metabolic activation of 5-MC involving the formation of bis-electrophiles, i.e., a mono-diol-epoxide and a mono-ortho-quinone within the same structure, bis-diol-epoxides, and bis-ortho-quinones is reported for the first time. Evidence was also obtained for minor metabolic conversion of 5-MC to form monohydroxylated-quinones and bis-phenols. The identification of 5-MC-tetraol, O-monosulfonated-5-MC-1,2-catechol, O-monomethyl-O-monosulfonated-5-MC-1,2-catechol, and 5-MC-1,2-dione supports metabolic activation of 5-MC by P450 and AKR isozymes followed by metabolic detoxification of the ortho-quinone through interception of redox cycling by COMT and SULT isozymes. The major metabolites, O-monosulfonated-catechols and tetraols, could be used as biomarkers of human exposure to 5-MC resulting from oil spills.
doi:10.1021/acs.chemrestox.5b00256
PMCID: PMC4709222  PMID: 26395544
4.  Mass spectrometry-based approaches to targeted quantitative proteomics in cardiovascular disease 
Clinical Proteomics  2016;13:20.
Mass spectrometry-based proteomics methodology has become an important tool in elucidating some of the underlying mechanisms involved in cardiovascular disease. The present review provides details on selected important protein targets where highly selective and specific mass spectrometry-based approaches have led to important new findings and provided new mechanistic information. The role of six proteins involved in the etiology of cardiovascular disease (acetylated platelet cyclooxygenase-1, serum apolipoprotein A1, apolipoprotein C-III, serum C-reactive protein, serum high mobility group box-1 protein, insulin-like growth factor I) and their quantification has been discussed. There are an increasing number of examples where highly selective mass spectrometry-based quantification has provided new important data that could not be obtained with less labor intensive and cheaper immunoassay-based procedures. It is anticipated that these findings will lead to significant advances in a number of important issues related to the role of specific proteins in cardiovascular disease. The availability of a new generation of high-resolution high-sensitivity mass spectrometers will greatly facilitate these studies so that in the future it will be possible to analyze serum proteins of relevance to cardiovascular disease with levels of specificity and/or sensitivity that cannot be attained by immunoassay-based procedures.
doi:10.1186/s12014-016-9121-1
PMCID: PMC5050566  PMID: 27713681
Apolipoprotein AI; Apolipoprotein CIII; C-reactive protein; COX-2; Multiple reaction monitoring; Stable isotopes; Electrospray ionization; UPLC
5.  Translational metabolomics in cancer research 
Biomarkers in medicine  2015;9(9):821-834.
Over the last decade there has been a bottleneck in the introduction of new validated cancer metabolic biomarkers into clinical practice. Unfortunately, there are no biomarkers with adequate sensitivity for the early detection of cancer, and there remain a reliance on cancer antigens for monitoring treatment. The need for new diagnostics has led to the exploration of untargeted metabolomics for discovery of early biomarkers of specific cancers and targeted metabolomics to elucidate mechanistic aspects of tumor progression. The successful translation of such strategies to the treatment of cancer would allow earlier intervention to improve survival. We have reviewed the methodology that is being used to achieve these goals together with recent advances in implementing translational metabolomics in cancer.
doi:10.2217/bmm.15.52
PMCID: PMC4718447  PMID: 26329905
cancer; cancer diagnosis; diagnostic biomarkers; lipidomics; liquid chromatography-mass spectrometry; NMR spectroscopy; prognostic biomarkers; untargeted metabolomics targeted metabolomics
6.  A broad-spectrum lipidomics screen of antiinflammatory drug combinations in human blood 
JCI insight  2016;1(12):e87031.
Current methods of drug screening in human blood focus on the immediate products of the affected pathway and mostly rely on approaches that lack sensitivity and the capacity for multiplex analysis. We have developed a sensitive and selective method based on ultra-performance liquid chromatography–tandem mass spectrometry to scan the effect of drugs on the bioactive eicosanoid lipidome in vitro and ex vivo. Using small sample sizes, we can reproducibly measure a broad spectrum of eicosanoids in human blood and capture drug-induced substrate rediversion and unexpected shifts in product formation. Microsomal prostaglandin E synthase-1 (mPGES-1) is an antiinflammatory drug target alternative to COX-1/-2. Contrasting effects of targeting mPGES-1 versus COX-1/-2, due to differential substrate shifts across the lipidome, were observed and can be used to rationalize and evaluate drug combinations. Finally, the in vitro results were extrapolated to ex vivo studies by administration of the COX-2 inhibitor, celecoxib, to volunteers, illustrating how this approach can be used to integrate preclinical and clinical studies during drug development.
doi:10.1172/jci.insight.87031
PMCID: PMC4990354  PMID: 27547824
7.  A broad-spectrum lipidomics screen of antiinflammatory drug combinations in human blood 
JCI Insight  null;1(12):e87031.
Current methods of drug screening in human blood focus on the immediate products of the affected pathway and mostly rely on approaches that lack sensitivity and the capacity for multiplex analysis. We have developed a sensitive and selective method based on ultra-performance liquid chromatography–tandem mass spectrometry to scan the effect of drugs on the bioactive eicosanoid lipidome in vitro and ex vivo. Using small sample sizes, we can reproducibly measure a broad spectrum of eicosanoids in human blood and capture drug-induced substrate rediversion and unexpected shifts in product formation. Microsomal prostaglandin E synthase-1 (mPGES-1) is an antiinflammatory drug target alternative to COX-1/-2. Contrasting effects of targeting mPGES-1 versus COX-1/-2, due to differential substrate shifts across the lipidome, were observed and can be used to rationalize and evaluate drug combinations. Finally, the in vitro results were extrapolated to ex vivo studies by administration of the COX-2 inhibitor, celecoxib, to volunteers, illustrating how this approach can be used to integrate preclinical and clinical studies during drug development.
A method that can reproducibly scan drug combinations in human blood in small sample sizes and integrate pre-clinical and clinical studies during drug development is presented.
doi:10.1172/jci.insight.87031
PMCID: PMC4990354  PMID: 27547824
8.  Biosynthesis and actions of 5-oxoeicosatetraenoic acid (5-oxo-ETE) on feline granulocytes1 
Biochemical pharmacology  2015;96(3):247-255.
The 5-lipoxygenase product 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is the most powerful human eosinophil chemoattractant among lipid mediators and could play a major pathophysiological role in eosinophilic diseases such as asthma. Its actions are mediated by the OXE receptor, orthologs of which are found in many species from humans to fish, but not rodents. The unavailability of rodent models to examine the pathophysiological roles of 5-oxo-ETE and the OXE receptor has substantially hampered progress in this area. As an alternative, we have explored the possibility that the cat could serve as an appropriate animal model to investigate the role of 5-oxo-ETE. We found that feline peripheral blood leukocytes synthesize 5-oxo-ETE and that physiologically relevant levels of 5-oxo-ETE are present in bronchoalveolar lavage fluid from cats with experimentally induced asthma. 5-Oxo-ETE (EC50, 0.7 nM) is a much more potent activator of actin polymerization in feline eosinophils than various other eicosanoids, including leukotriene (LT) B4 and prostaglandin D2. 5-Oxo-ETE and LTB4 induce feline leukocyte migration to similar extents at low concentrations (1 nM), but at higher concentrations the response to 5-oxo-ETE is much greater. Although high concentrations of selective human OXE receptor antagonists blocked 5-oxo-ETE-induced actin polymerization in feline granulocytes, their potencies were about 200 times lower than for human granulocytes. We conclude that feline leukocytes synthesize and respond to 5-oxo-ETE, which could potentially play an important role in feline asthma, a common condition in this species. The cat could serve as a useful animal model to investigate the pathophysiological role of 5-oxo-ETE.
Graphical Abstract
doi:10.1016/j.bcp.2015.05.009
PMCID: PMC4830392  PMID: 26032638
5-Lipoxygenase; OXE receptor; Eicosanoids; Eosinophils; Neutrophils; Inflammation
9.  Analysis of Estrogens and Androgens in Postmenopausal Serum and Plasma by Liquid Chromatography-Mass Spectrometry 
Steroids  2014;99(0 0):76-83.
Liquid chromatography-selected reaction monitoring/mass spectrometry-based methodology has evolved to the point where accurate analyses of trace levels of estrogens and androgens in postmenopausal serum and plasma can be accomplished with high precision and accuracy. A suite of derivatization procedures has been developed, which together with modern mass spectrometry instrumentation provide investigators with robust and sensitive methodology. Preionized derivatives are proving to be useful as they are not subject to suppression of the electrospray signal. Postmenopausal women with elevated plasma or serum estrogens are thought to be at increased risk for breast and endometrial cancer. Therefore, significant advances in risk assessment should be possible now that reliable methodology is available. It is also possible to conduct analyses of multiple estrogens in plasma or serum. Laboratories that are currently employing liquid chromatography/mass spectrometry methodology can now readily implement this strategy. This will help conserve important plasma and serum samples available in Biobanks, as it will be possible to conduct high sensitivity analyses using low initial sample volumes. Reported levels of both conjugated and non-conjugated estrogen metabolites are close to the limits of sensitivity of many assays to date, urging caution in the interpretation of these low values. The analysis of serum androgen precursors in postmenopausal women has not been conducted routinely in the past using liquid chromatography/mass spectrometry methodology. Integration of serum androgen levels into the panel of metabolites analyzed could provide additional information for assessing cancer risk and should be included in the future.
doi:10.1016/j.steroids.2014.08.012
PMCID: PMC4336238  PMID: 25150018
estrogens; androgens; stable isotope dilution; liquid chromatography/mass spectrometry; pre-ionized derivatives
10.  Potential Metabolic Activation of a Representative C2-Alkylated Polycyclic Aromatic Hydrocarbon 6-Ethylchrysene Associated with the Deepwater Horizon Oil Spill in Human Hepatoma (HepG2) Cells 
Chemical Research in Toxicology  2016;29(6):991-1002.
Exposure to polycyclic aromatic hydrocarbons (PAHs) is the major human health hazard associated with the Deepwater Horizon oil spill. C2-Chrysenes are representative PAHs present in crude oil and could contaminate the food chain. We describe the metabolism of a C2-chrysene regioisomer, 6-ethylchrysene (6-EC), in human HepG2 cells. The structures of the metabolites were identified by HPLC-UV-fluorescence detection and LC-MS/MS. 6-EC-tetraol isomers were identified as signature metabolites of the diol-epoxide pathway. O-Monomethyl-O-monosulfonated-6-EC-catechol, its monohydroxy products, and N-acetyl-l-cysteine(NAC)-6-EC-ortho-quinone were discovered as signature metabolites of the ortho-quinone pathway. Potential dual metabolic activation of 6-EC involving the formation of bis-electrophiles, i.e., a mono-diol-epoxide and a mono-ortho-quinone within the same structure, bis-diol-epoxides, and bis-ortho-quinones was observed as well. The identification of 6-EC-tetraol, O-monomethyl-O-monosulfonated-6-EC-catechol, its monohydroxy products, and NAC-6-EC-ortho-quinone supports potential metabolic activation of 6-EC by P450 and AKR enzymes followed by metabolic detoxification of the ortho-quinone through interception of its redox cycling capability by catechol-O-methyltransferase and sulfotransferase enzymes. The tetraols and catechol conjugates could be used as biomarkers of human exposure to 6-EC resulting from oil spills.
doi:10.1021/acs.chemrestox.6b00036
PMCID: PMC4916485  PMID: 27054409
11.  BluePen Biomarkers LLC: integrated biomarker solutions 
Future Science OA  2016;2(2):FSO124.
BluePen Biomarkers provides a unique comprehensive multi-omics biomarker discovery and validation platform. We can quantify, integrate and analyze genomics, proteomics, metabolomics and lipidomics biomarkers, alongside clinical data, demographics and other phenotypic data. A unique bio-inspired signal processing analytic approach is used that has the proven ability to identify biomarkers in a wide variety of diseases. The resulting biomarkers can be used for diagnosis, prognosis, mechanistic studies and predicting treatment response, in contexts from core research through clinical trials. BluePen Biomarkers provides an additional groundbreaking research goal: identifying surrogate biomarkers from different modalities. This not only provides new biological insights, but enables least invasive, least-cost tests that meet or exceed the predictive quality of current tests.
doi:10.4155/fsoa-2016-0031
PMCID: PMC5137845  PMID: 28031971
bioinformatics; biomarkers; lipidomics; metabolomics; proteomics; systems biology
12.  Rotenone Stereospecifically Increases (S)-2-Hydroxyglutarate in SH-SY5Y Neuronal Cells 
Chemical research in toxicology  2015;28(5):948-954.
The α-ketoglutarate metabolite, 2-hydroxyglutarate (2-HG), has emerged as an important mediator in a subset of cancers and rare inherited inborn errors of metabolism. Because of potential enantiospecific metabolism, chiral analysis is essential for determining the biochemical impacts of altered 2-HG metabolism. We have developed a novel application of chiral liquid chromatography–electron capture/atmospheric pressure chemical ionization/mass spectrometry, which allows for the quantification of both (R)-2-HG (D-2-HG) and (S)-2-HG (L-2-HG) in human cell lines. This method avoids the need for chiral derivatization, which could potentially distort enantiomer ratios through racemization during the derivatization process. The study revealed that the pesticide rotenone (100 nM), a mitochondrial complex I inhibitor, caused a significant almost 3-fold increase in the levels of (S)-2-HG, (91.7 ± 7.5 ng/106 cells) when compared with the levels of (R)-2-HG (24.1 ± 1.2 ng/106 cells) in the SH-SY5Y neuronal cells, a widely used model of human neurons. Stable isotope tracers and isotopologue analysis revealed that the increased (S)-2-HG was derived primarily from L-glutamine. Accumulation of highly toxic (S)-2-HG occurs in the brains of subjects with reduced L-2-HG dehydrogenase activity that results from mutations in the L2HGDH gene. This suggests that the observed stereospecific increase of (S)-2-HG in neuronal cells is due to rotenone-mediated inhibition of L-2-HG dehydrogenase but not D-2-HG dehydrogenase. The high sensitivity chiral analytical methodology that has been developed in the present study can also be employed for analyzing other disruptions to 2-HG formation and metabolism such as those resulting from mutations in the isocitrate dehydrogenase gene.
Graphical abstract
doi:10.1021/tx500535c
PMCID: PMC4721232  PMID: 25800467
13.  Bioanalytical techniques for detecting biomarkers of response to human asbestos exposure 
Bioanalysis  2015;7(9):1157-1173.
Asbestos exposure is known to cause lung cancer and mesothelioma and its health and economic impacts have been well documented. The exceptionally long latency periods of most asbestos-related diseases have hampered preventative and precautionary steps thus far. We aimed to summarize the state of knowledge on biomarkers of response to asbestos exposure. Asbestos is not present in human biological fluids; rather it is inhaled and trapped in lung tissue. Biomarkers of response, which reflect a change in biologic function in response to asbestos exposure, are analyzed. Several classes of molecules have been studied and evaluated for their potential utility as biomarkers of asbestos exposure. These studies range from small molecule oxidative stress biomarkers to proteins involved in immune responses.
doi:10.4155/bio.15.53
PMCID: PMC4487641  PMID: 26039812
14.  Ultrasensitive quantification of serum estrogens in postmenopausal women and older men by liquid chromatography-tandem mass spectrometry 
Steroids  2015;96:140-152.
An ultrasensitive stable isotope dilution liquid chromatography-tandem mass spectrometry method (LC-MS/MS) was developed and validated for multiplexed quantitative analysis of six unconjugated and conjugated estrogens in human serum. The quantification utilized a new derivatization procedure, which formed analytes as pre-ionized N-methyl pyridinium-3-sulfonyl (NMPS) derivatives. This method required only 0.1 mL of human serum, yet was capable of simultaneously quantifying six estrogens within 20 min. The lower limit of quantitation (LLOQ) for estradiol (E2), 16α-hydroxy (OH)-E2, 4-methoxy (MeO)-E2 and 2-MeO-E2 was 1 fg on column, and was 10 fg on column for 4-OH-E2 and 2-OH-E2. All analytes demonstrated a linear response from 0.5 to 200 pg/mL (5–2000 pg/mL for 4-OH-E2 and 2-OH-E2). Using this validated method, the estrogen levels in human serum samples from 20 female patients and 20 male patients were analyzed and compared. The levels found for unconjugated serum E2 from postmenopausal women (mean 2.7 pg/mL) were very similar to those obtained by highly sensitive gas chromatography-mass spectrometry (GC-MS) methodology. However, the level obtained in serum from older men (mean 9.5 pg/mL) was lower than has been reported previously by both GC-MS and LC-MS procedures. The total (unconjugated + conjugated) 4-MeO-E2 levels were significantly higher in female samples compared with males (p<0.05). The enhanced sensitivity offered by the present method will allow for a more specific analysis of estrogens and their metabolites. Our observations might suggest that the level of total 4-MeO-E2 could be a potential biomarker for breast cancer cases.
doi:10.1016/j.steroids.2015.01.014
PMCID: PMC4369926  PMID: 25637677
Estrogen; 17β-estradiol; breast cancer; endometrial cancer; prostate cancer; stable isotope dilution
15.  Bacterial exploitation of phosphorylcholine mimicry suppresses inflammation to promote airway infection 
The Journal of Clinical Investigation  2015;125(10):3878-3890.
Regulation of neutrophil activity is critical for immune evasion among extracellular pathogens, yet the mechanisms by which many bacteria disrupt phagocyte function remain unclear. Here, we have shown that the respiratory pathogen Streptococcus pneumoniae disables neutrophils by exploiting molecular mimicry to degrade platelet-activating factor (PAF), a host-derived inflammatory phospholipid. Using mass spectrometry and murine upper airway infection models, we demonstrated that phosphorylcholine (ChoP) moieties that are shared by PAF and the bacterial cell wall allow S. pneumoniae to leverage a ChoP-remodeling enzyme (Pce) to remove PAF from the airway. S. pneumoniae–mediated PAF deprivation impaired viability, activation, and bactericidal capacity among responding neutrophils. In the absence of Pce, neutrophils rapidly cleared S. pneumoniae from the airway and impeded invasive disease and transmission between mice. Abrogation of PAF signaling rendered Pce dispensable for S. pneumoniae persistence, reinforcing that this enzyme deprives neutrophils of essential PAF-mediated stimulation. Accordingly, exogenous activation of neutrophils overwhelmed Pce-mediated phagocyte disruption. Haemophilus influenzae also uses an enzyme, GlpQ, to hydrolyze ChoP and subvert PAF function, suggesting that mimicry-driven immune evasion is a common paradigm among respiratory pathogens. These results identify a mechanism by which shared molecular structures enable microbial enzymes to subvert host lipid signaling, suppress inflammation, and ensure bacterial persistence at the mucosa.
doi:10.1172/JCI81888
PMCID: PMC4607119  PMID: 26426079
16.  What are the main considerations for bioanalysis of estrogens and androgens in plasma and serum samples from postmenopausal women? 
Bioanalysis  2014;6(23):3073-3075.
doi:10.4155/bio.14.277
PMCID: PMC4278565  PMID: 25529875
androgens; breast cancer biomarkers; endometrial cancer biomarkers estrogens; LC/MS; stable isotope dilution
17.  Bioanalytical techniques for detecting biomarkers of response to human asbestos exposure 
Bioanalysis  2015;7(9):1157-1173.
Asbestos exposure is known to cause lung cancer and mesothelioma and its health and economic impacts have been well documented. The exceptionally long latency periods of most asbestos-related diseases have hampered preventative and precautionary steps thus far. We aimed to summarize the state of knowledge on biomarkers of response to asbestos exposure. Asbestos is not present in human biological fluids; rather it is inhaled and trapped in lung tissue. Biomarkers of response, which reflect a change in biologic function in response to asbestos exposure, are analyzed. Several classes of molecules have been studied and evaluated for their potential utility as biomarkers of asbestos exposure. These studies range from small molecule oxidative stress biomarkers to proteins involved in immune responses.
doi:10.4155/bio.15.53
PMCID: PMC4487641  PMID: 26039812
18.  8-Oxo-2′-Deoxyguanosine as a Biomarker of Tobacco Smoking-Induced Oxidative Stress 
Free radical biology & medicine  2012;53(3):610-617.
7,8-Dihydro-8-oxo-2′-deoxyguanosine (8-oxo-dGuo) is a useful biomarker of oxidative stress. However, its analysis can be challenging because 8-oxo-dGuo must be quantified in the presence of dGuo, without artifactual conversion to 8-oxo-dGuo. Urine is the ideal biological fluid for population studies, since it can be obtained non-invasively and it is less likely that artifactual oxidation of dGuo can occur because of the relatively low amounts that are present when compared with hydrolyzed DNA. Stable isotope dilution liquid chromatography/selected reaction monitoring-mass spectrometry (LC-SRM/MS) with [15N5]-8-oxo-dGuo as internal standard provided the highest possible specificity for 8-oxo-dGuo analysis. Furthermore, artifact formation was determined by addition of [13C1015N5]-dGuo and monitoring its conversion to [13C1015N5]-8-oxo-dGuo during the analytical procedure. 8-Oxo-dGuo concentrations were normalized for inter-individual differences in urine flow by analysis of creatinine using stable isotope dilution LC-SRM/MS. A significant increase in urinary 8-oxo-dGuo was observed in tobacco smokers when compared with non-smokers using either simple urinary concentrations or after normalization for creatinine excretion. The mean levels of 8-oxo-dGuo were 1.65 ng/mL and the levels normalized to creatinine were 1.72 μg/g creatinine. Therefore, stable isotope dilution LC-SRM/MS analysis of urinary 8-oxo-dGuo complements urinary isoprostane (isoP) analysis for assessing tobacco-smoking-induced oxidative stress. This method will be particularly useful for studies that employ polyunsaturated fatty acids, where reduction in arachidonic acid precursor could confound isoP measurements.
doi:10.1016/j.freeradbiomed.2012.04.006
PMCID: PMC4283839  PMID: 22613262
stable isotope dilution; liquid chromatography-mass spectrometry; 8-oxo-dGuo; urine; oxidative DNA damage
19.  Metabolism of a Representative Oxygenated Polycyclic Aromatic Hydrocarbon (PAH) Phenanthrene-9,10-quinone in Human Hepatoma (HepG2) Cells 
Chemical Research in Toxicology  2014;27(5):852-863.
Exposure to polycyclic aromatic hydrocarbons (PAHs) in the food chain is the major human health hazard associated with the Deepwater Horizon oil spill. Phenanthrene is a representative PAH present in crude oil, and it undergoes biological transformation, photooxidation, and chemical oxidation to produce its signature oxygenated derivative, phenanthrene-9,10-quinone. We report the downstream metabolic fate of phenanthrene-9,10-quinone in HepG2 cells. The structures of the metabolites were identified by HPLC–UV–fluorescence detection and LC–MS/MS. O-mono-Glucuronosyl-phenanthrene-9,10-catechol was identified, as reported previously. A novel bis-conjugate, O-mono-methyl-O-mono-sulfonated-phenanthrene-9,10-catechol, was discovered for the first time, and evidence for both of its precursor mono conjugates was obtained. The identities of these four metabolites were unequivocally validated by comparison to authentic enzymatically synthesized standards. Evidence was also obtained for a minor metabolic pathway of phenanthrene-9,10-quinone involving bis-hydroxylation followed by O-mono-sulfonation. The identification of 9,10-catechol conjugates supports metabolic detoxification of phenanthrene-9,10-quinone through interception of redox cycling by UGT, COMT, and SULT isozymes and indicates the possible use of phenanthrene-9,10-catechol conjugates as biomarkers of human exposure to oxygenated PAH.
doi:10.1021/tx500031p
PMCID: PMC4028327  PMID: 24646012
20.  THE EFFECT OF MENTHOL ON CIGARETTE SMOKING BEHAVIORS, BIOMARKERS AND SUBJECTIVE RESPONSES 
Background
As part of the Family Smoking Prevention and Tobacco Control Act, the United States Food and Drug Administration charged the Tobacco Products Scientific Advisory Committee with developing a report and recommendations regarding the effect of menthol in cigarettes on the public health. The purpose of this study was to examine smoking behaviors, biomarkers of exposure and subjective responses when switching from a novel menthol cigarette to a non-menthol cigarette to isolate the effect of menthol and to approximate the effect a menthol ban might have on smokers.
Methods
Thirty two adult smokers completed this 35-day randomized, open-label, laboratory study. After a 5-day baseline period, participants were randomized to the experimental group (n=22) where they would smoke menthol Camel Crush for 15 days followed by 15 days of non-menthol Camel Crush, or the control group (n=10) where they smoked their own brand cigarette across all periods. Participants attended study visits every five days and completed measures of smoking rate, smoking topography, biomarkers of exposure, and subjective responses.
Results
Although total puff volume tended to increase when the experimental group switched from menthol to non-menthol (p=0.06), there were no corresponding increases in cigarette consumption or biomarkers of exposure (ps>0.1). Subjective ratings related to taste and smell decreased during the non-menthol period (ps<0.01), compared to the menthol.
Conclusions
Results suggest menthol has minimal impact on smoking behaviors, biomarkers of exposure and subjective ratings.
Impact
When controlling for all other cigarette design features, menthol in cigarettes had minimal effect on outcome measures.
doi:10.1158/1055-9965.EPI-12-1097
PMCID: PMC3596436  PMID: 23334588
cigarette; menthol; smoking; nicotine; behavior
21.  Dietary Flaxseed in Non-Small Cell Lung Cancer Patients Receiving Chemoradiation 
Purpose
The standard of care in Locally-Advanced Non-Small Cell Lung Cancer (LA-NSCLC) is chemotherapy and radiation; however, Radiation-Induced Lung Injury (RILI), which may be prevented by the anti-inflammatory and anti-oxidant properties of Flaxseed (FS), impedes its maximum benefit.
Materials and Methods
Patients with LA-NSCLC requiring definitive RT were randomized to one FS or control muffin daily from start to 2 weeks after RT. Blood and urine were collected to quantify plasma FS metabolites, Enterodione (ED) and Enterolactone (EL), and urinary oxidative stress biomarkers, 8, 12-iso-iPF2a-VI (isoprostane) and 8-oxo-7,8-dihydro-2′deoxyguanosine (8-oxo-dGuo). Tolerability was defined as consuming ≥ 75% of the intended muffins and no ≥ grade 3 gastrointestinal toxicities.
Results
Fourteen patients (control,7; FS,7) were enrolled. The tolerability rates were 42.9 versus 71.4% (p=0.59) for FS and control, respectively. Mean percentages of intended number of muffins consumed were 37% versus 73% (p=0.12). ED and EL increased at onset of FS and decreased with discontinuation, confirming bioavailability. Isoprostane and 8-oxo-dGuo were detectable. There was a trend towards decreased rates of pneumonitis in FS.
Conclusions
This is the first study to report FS bioavailability and quantify oxidative stress markers in NSCLC patients. FS in the administered muffin formulation did not meet tolerability criteria. Given the promising mechanism of FS as a radioprotectant, further investigations should focus on the optimal method for administration of FS.
doi:10.4172/2161-105X.1000154
PMCID: PMC3932620  PMID: 24575360
Flaxseed; Lignan; Radiation; Isoprostane; 8-oxo dGuo; Non-small cell lung cancer; Radiation induced lung injury; RILI; Pneumonitis; Fibrosis; Esophagitis
22.  Stereospecific reduction of 5β-reduced steroids by human ketosteroid reductases of the AKR (aldo-keto reductase) superfamily: role of AKR1C1–AKR1C4 in the metabolism of testosterone and progesterone via the 5β-reductase pathway 
The Biochemical journal  2011;437(1):10.1042/BJ20101804.
Active sex hormones such as testosterone and progesterone are metabolized to tetrahydrosteroids in the liver to terminate hormone action. One main metabolic pathway, the 5β-pathway, involves 5β-steroid reductase (AKR1D1, where AKR refers to the aldo-keto reductase superfamily), which catalyses the reduction of the 4-ene structure, and ketosteroid reductases (AKR1C1–AKR1C4), which catalyse the subsequent reduction of the 3-oxo group. The activities of the four human AKR1C enzymes on 5β-dihydrotestosterone, 5β-pregnane-3,20-dione and 20α-hydroxy-5β-pregnan-3-one, the intermediate 5β-dihydrosteroids on the 5β-pathway of testosterone and progesterone metabolism, were investigated. Product characterization by liquid chromatography–MS revealed that the reduction of the 3-oxo group of the three steroids predominantly favoured the formation of the corresponding 3α-hydroxy steroids. The stereochemistry was explained by molecular docking. Kinetic properties of the enzymes identified AKR1C4 as the major enzyme responsible for the hepatic formation of 5β-tetrahydrosteroid of testosterone, but indicated differential routes and roles of human AKR1C for the hepatic formation of 5β-tetrahydrosteroids of progesterone. Comparison of the kinetics of the AKR1C1–AKR1C4-catalysed reactions with those of AKR1D1 suggested that the three intermediate 5β-dihydrosteroids derived from testosterone and progesterone are unlikely to accumulate in liver, and that the identities and levels of 5β-reduced metabolites formed in peripheral tissues will be governed by the local expression of AKR1D1 and AKR1C1–AKR1C3.
doi:10.1042/BJ20101804
PMCID: PMC3825703  PMID: 21521174
dihydrosteroid; hydroxysteroid dehydrogenases; liquid-chromatography–MS (LC–MS); steroid metabolism; tetrahydrosteroid
23.  Antioxidant protection by PECAM-targeted delivery of a novel NADPH-oxidase inhibitor to the endothelium in vitro and in vivo 
Oxidant stress caused by pathological elevation of reactive oxygen species (ROS) production in the endothelial cells lining the vascular lumen is an important component of many vascular and pulmonary disease conditions. NADPH oxidase (NOX) activated by pathological mediators including angiotensin and cytokines is a major source of endothelial ROS. In order to intercept this pathological pathway, we have encapsulated an indirect NOX inhibitor, MJ33, into immunoliposomes (Ab-MJ33/IL) targeted to endothelial marker platelet endothelial cell adhesion molecule (PECAM-1). Ab-MJ33/IL, but not control IgG-MJ33/IL specifically bound to endothelium and attenuated angiotensin-induced ROS production in vitro and in vivo. Additionally, Ab-MJ33/IL inhibited endothelial expression of the inflammatory marker vascular cell adhesion molecule (VCAM) in cells and animals challenged with the cytokine TNF. Furthermore, Ab-MJ33/IL alleviated pathological disruption of endothelial permeability barrier function in cells exposed to vascular endothelial growth factor (VEGF) and in the lungs of mice challenged with lipopolysaccharide (LPS). Of note, the latter beneficial effect has been achieved both by prophylactic and therapeutic injection of Ab-MJ33/IL in animals. Therefore, specific suppression of ROS production by NOX in endothelium, attainable by Ab-MJ33/IL targeting, may help deciphering mechanisms of vascular oxidative stress and inflammation, and potentially improve treatment of these conditions.
doi:10.1016/j.jconrel.2012.08.031
PMCID: PMC3495982  PMID: 22974832
24.  Bisphenol A Exposure Disrupts Genomic Imprinting in the Mouse 
PLoS Genetics  2013;9(4):e1003401.
Exposure to endocrine disruptors is associated with developmental defects. One compound of concern, to which humans are widely exposed, is bisphenol A (BPA). In model organisms, BPA exposure is linked to metabolic disorders, infertility, cancer, and behavior anomalies. Recently, BPA exposure has been linked to DNA methylation changes, indicating that epigenetic mechanisms may be relevant. We investigated effects of exposure on genomic imprinting in the mouse as imprinted genes are regulated by differential DNA methylation and aberrant imprinting disrupts fetal, placental, and postnatal development. Through allele-specific and quantitative real-time PCR analysis, we demonstrated that maternal BPA exposure during late stages of oocyte development and early stages of embryonic development significantly disrupted imprinted gene expression in embryonic day (E) 9.5 and 12.5 embryos and placentas. The affected genes included Snrpn, Ube3a, Igf2, Kcnq1ot1, Cdkn1c, and Ascl2; mutations and aberrant regulation of these genes are associated with imprinting disorders in humans. Furthermore, the majority of affected genes were expressed abnormally in the placenta. DNA methylation studies showed that BPA exposure significantly altered the methylation levels of differentially methylated regions (DMRs) including the Snrpn imprinting control region (ICR) and Igf2 DMR1. Moreover, exposure significantly reduced genome-wide methylation levels in the placenta, but not the embryo. Histological and immunohistochemical examinations revealed that these epigenetic defects were associated with abnormal placental development. In contrast to this early exposure paradigm, exposure outside of the epigenetic reprogramming window did not cause significant imprinting perturbations. Our data suggest that early exposure to common environmental compounds has the potential to disrupt fetal and postnatal health through epigenetic changes in the embryo and abnormal development of the placenta.
Author Summary
BPA is a widely used compound to which humans are exposed, and recent studies have demonstrated the association between exposure and adverse developmental outcomes in both animal models and humans. Unfortunately, exact mechanisms of BPA–induced health abnormalities are unclear, and elucidation of these relevant biological pathways is critical for understanding the public health implication of exposure. Recently, increasing data have demonstrated the ability of BPA to induce changes in DNA methylation, suggesting that epigenetic mechanisms are relevant. In this work, we study effects of BPA exposure on expression and regulation of imprinted genes in the mouse. Imprinted genes are regulated by differential DNA methylation, and they play critical roles during fetal, placental, and postnatal development. We have found that fetal exposure to BPA at physiologically relevant doses alters expression and methylation status of imprinted genes in the mouse embryo and placenta, with the latter tissue exhibiting the more significant changes. Additionally, abnormal imprinting is associated with defective placental development. Our data demonstrate that BPA exposure may perturb fetal and postnatal health through epigenetic changes in the embryo as well as through alterations in placental development.
doi:10.1371/journal.pgen.1003401
PMCID: PMC3616904  PMID: 23593014
25.  Effects of 21 days of varenicline versus placebo on smoking behaviors and urges among non-treatment seeking smokers 
Varenicline promotes smoking cessation and reduces urges to smoke. However, the mechanisms associated with these effects and their time course are not well characterized. One mechanism may be extinction, but the duration of the current dosing protocol may not be sufficient. We examined the effect of extended pre-treatment with varenicline on smoking behavior among 17 non-treatment seeking adult smokers. Using a within-subjects, double-blind, placebo-controlled crossover design, participants received standard dosing of varenicline for 21 days, followed by a 14-day washout period and 21 days of placebo; order counterbalanced. Cigarettes per day (CPD), smoking topography, smoking urges (QSU), and side effects were assessed every three days. Biomarkers (e.g. nicotine metabolites) were collected on days 1, 7, and 21. There was a significant drug by time interaction indicating a reduction in CPD during varenicline phase (between days 10–21), but no reduction during placebo. Varenicline also led to reductions in nicotine metabolites and urges to smoke. Among this sample of non-treatment seeking smokers, varenicline significantly reduced smoking behavior. Results have important treatment implications because changes in CPD and craving did not occur until after the typical one-week run-up period. This suggests that a longer duration of pre-treatment may be beneficial for some smokers.
doi:10.1177/0269881112449397
PMCID: PMC3526838  PMID: 22695488
Cigarette smoking; varenicline; nicotine; positive reinforcement; smoking cessation

Results 1-25 (35)